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A B S T R A C T  
This paper presents an algorithm implementing robustness 
in beamforming, by directly reducing localization errors in 
the presence of pointing errors or a single moving target. 
Given an initial position, the desired source signal is first 
estimated using a classical beamforming unit. It is in a 
second step, processed by an “LMS-like” gradient stochas- 
tic estimation procedure of the steering vector. to adap. 
tively track the correct source position The newly iden- 
tified source position is projected over the array manifold, 
then finally transmitted in a feedback loop to  the beain- 
foxming unit, closing in this way the global algorithm iter- 
ation. The simulation results show that  robustness is effec- 
tively realized without any compromising output SNR loss. 
Moreover, they prove an efficient tracking behavior in the 
presence of mobile sources. 

1 I N T R O D U C T I O N  

The potential for using adaptive beamforming to improve 
the performance of source signal estimation was recognized 
in the early 1960’s in the fields of signal processing [lj. 
Unfortunately, classical beamforming algorithms are very 
sensitive to  localization errors, and can not be used for a 
reliable signal extraction unless a robusl.ness feature is ap- 
pended. 

Different versions were developed to  make the beam- 
former robust to such errors [2-41. Robustness is usually in- 
troduced via a certain compromise fixing some constraints 
representing a tradeoff between signal distortion and output 
noise reduction . This solution avoids signal cancellation, 
with however an allowable threshold of distortion. More- 
over, sources are assumed either immobile with relatively 
small pointing errors, or mobile with strictly limited motion 
range around a fixed position. Whenever this assumption 
is not valid by the presence of strong pointing errors or free 
moving targets, beamforming is no longer convenient to a 
reliable signal extraction. 

Thu paper alternatively proposes to gain robustness 
through an efficient reduction of localization errors, us- 
ing classical beamforming with time-corrected and adapted 
steering vector. 

Regarding the reduction of localization errors, localiza- 
tion methods such as the minimum variance, the maximum 
likelihood, MUSIC, and the related minimum norm, could 
be used in the case of a stationary environment, to reliably 
estimate the correct source position and the corresponding 

steering vector. Such techniques see however their perfor- 
mances drop drastically in the presence of spatially nonstk 
tionary moving targets. They can be used in thm case to  
estimate an initial source position allowing the initidisation 
of some tracking algorithms, which look conceptually more 
suitable to adapt to nonstationary sourcea. 

Several estimation techniques such = Kalman filtering 
have been applied in target motion analysis to  estimate the 
trajectory of an object, using maximum a priori (MAP) 
or maximum likelihood (ML) estimators, etc.. . [SI. These 
methods are expensive in terms of complexity, and we found 
that a more efficient algorithm can be used instead. 

Our approach is to time-adapt the steering vector of a 
classical beainformer [6]. To do so. we use a simple LMS- 
like tracking procedure correcting the steering vector by a 
gradient stochastic term depending on the classical beam- 
forming output. The LMS-like iterative equation can be in- 
terpreted as the result of an identification problem. Given 
a parametric model corresponding to  a propagation law, 
the parameterizing variables such as the DOA or the tar- 
get coordinates are then extracted by a projection of the 
LMS-adapted steering vector over the array manifold, say 
I’. The estimated parameters are finally used t o  reconstruct 
the steering vector of the classical beamformer for enhanced 
signal extraction. 

2 M A T H E M A T I C A L  F O R M U L A T I O N  

We consider the following model of a plane wave propagat- 
ing signal received by a linear array (see Figure 1): 

X t  = Gist +Nt, (1) 
Gt = F ( e , ) ,  ( 2) 

where X t  is the m-dimensional observation vector, dl in the 
desired narrowband signal t o  be extracted, Nl is an additive 
noise vector, and GI is the transfer function (i.e. steering 
vector) between the emitted source st and the m-sensor an- 
tenna array. All the quantities considered herein are com- 
plex, and the subscript t stands for time index. 

The parameterizing function F is given by: 

I T >  (3)  ~ ( 8 )  = [e-?h-ri , e - > x r 2 , .  , , , e - 3 w = m  

where 8 5 [E  71’. The wavenumber K 5 where 

4 E [ - x / Z , x / 2  is the DOA, and X is the wave length. 3 k 
[ X I ,  2 2 , .  . . , .,,,I L. IS the sensor positions vector. r represents 
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Figure 1: The  block diagram of the algorithm. 

the phase delay from the origin to within about an  integer 
multiple of 2r, and is obviously restricted to [O, Z T [ .  

We further make the following assuniptions: 
A l :  G,  N and s are mutually independent. 
A2: On each relatively short time interval, G has 

a Gaussian distribution with mcan and auto- 
correlation matrix both slowly time varying in 
comparison to s and N variations. 

A3: An approximation of Bo possibly erroneous, say 
Bo, is provided initially either by an approxi- 
mate a priori guess, or by a given localization 
technique. 

A4: N is a white noise with zero mean Gaussian 
distribution nnd autocorrelation matrix RN = 
O f I .  

We finally assume X to be the unique observation avail- 
able, and the modeling function F to be given. 

3 PROPOSED A L G O R I T H M  

In this section, we present the algorithm in the simple case 
of a plane wave propagation model and a linear array. 

Given the modeling equations and the assumptions made 
in section 2, robust adaptive beamforming via LMS-like tar- 
get tracking can be sumined iip to the following steps (we 
Figure 1): 

At  iteration 1,  we suppose that  an estimation of G < - I ,  
say Gt-l is available. Thanks to assumption A 2  stat- 
ing that  G is slowly time varying, it is possible to 
estimate s t  using one of the adapted classical beam- 
forming techniques with Gl- l  as the adapted steering 
vector. For illustration and simulations, we consider 
the case of the GSC algorithm without any loss of 
generality: 

yt = W y X t ,  

0 1  r i  -1  o ... 

0 1 -  1 :  '. . . . .  ' . o  .. 
0 1 - 1  . . .  

0 ' . . .  1 -1 

( 4 )  

X;" = P diag[&Fl]  X t ,  
€ t  = w;' x;, 
2, = Y t  - e t ,  

w:+~ = w;'-v jBX:. 

It should be noted here that P is a (m- 1) x m matrix 
(remark: Pdiag[GEl]Gt- l  = 0), and that  W; is a 
(m - 1)-dimcnsional vector initialized a t  0. 

0 The resulting estimate of s t ,  say S t ,  can be used in a 
LMS-like procedure to track or correct the steering 
vector variations: 

et = + p ( ~ t  - & t - l j l ) $ .  ( 5 )  

It is actually the approximation result of a MAP esti- 
mation method, made possible thanks to  the a s s u m p  
tions introduced in part 2. At this stage, we notice 
that the LMS-like updated vector C?t obtained in (5) 
does not necessarily belong to  the array manifold I?. 
This is why we denote it a t  the present by C?, in (5). 

This estimator of Gt can be improved by DOA ad- 
justment respectively to a projection over the array 
manifold as follows: 

ct = argniin d(&, ,G) ,  (6) Ger 

where d is a metric distance; or equivalently: 

(7)  

Using the log-distance d ~ , , ~ ( l ' ,  Z) 
we have: 

(Ilog Y - log 211, 

ht = F ( [ R t , O I T ) ,  (8) 

with: 

where h i ( . )  denotes the complex imaginary part, and: 

The  Euclidean distance can be used successfully with 
a linearization technique of F around B t .  Equation 
(9)  can be interpreted as a linear regression of the 
arguments of et components over the sensor posi- 
tions. Hence, it is first estimated to  make the linear 
regression consistent. I t  is finally set t o  zero (8), giv- 
ing in this way the classical beamforming modeling 
where the delays are computed respectively to  the 
array origin 

It should be noted that  all the steps above involve e 
number of operations proportional to the number of sensors 
m. The computational complexity of this algorithm is then 
of order O(nz). 

The pcrformance analysis of the algorithm [6,7] proves 
that  the initial localization error must be kept smaller than 
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Figure 3: 
sonrce and a step moving jammer with 1r: = 1. 

DOA trajectories in the case of an immobile 

the main lobe width, or say a locking range. Under such 
condition, the proof of convergence in mean and covariance 
is given, with some results regarding the stability conditio11 
over the stepsiae p ,  and the steady stale covariance of lo- 
calitation error. I t  is shown that the covariance decreases 
with higher SNR's and slower DOA variations; and that it 
depends on the sensors positioning, or equivalently on the 
array geometry. It is also proved that an optimal step-size 
can be selected to minimize the covariance (see Figure 2). 

These theoretical results of the performance analysis are 
confirmed by simulations as expected intuitively [6 ,7 ] .  

4 SIMULATION RESULTS 
In this section, we consider an equidistant linear array where 
the number of sensors is m = 16, Z,+I - z, = 1, and the 
origin is a t  the array center. We take the values X = 2,  the 
sonrce signal variance mi = I ,  and U:, = 0.1. 

We study a t  the present the case of a.n immobile source 
with fixed DOA 0 = 2a/5. 

To illustrate the efficiency of the presented algorithm, 
we run a simulation with a fixed step-size p = 0.005 in 
thr  presence of a step moving jammer initially a t  d, = 
x / 5 ,  with a variance cri = 1 (see Figure 3). Started with 
an  initial DOA error 6 4 n  as high as 3ai40, the presented 
algorithm is able to  converge within a 200 sample time lag to 
the correct position. The simulations show that DOA errors 

1 U' 

Figure 4: Absolute UOA e n o i  in the case of an  immobile 
source and a step moving jammer. 

Figure 5: Total distortion E[lst  -dr12]. Notice the proposed 
algorithm's adaptation to the jammer's step move. 

are reduced to a very small range of about IO-' degree (sec 
Figure 4). 

Figure 5 shows that the output SNR of the classical 
beamformer is quite equal to OdB, while the presented al- 
gorithm allows an output SNK as high as the optimal per- 
forinance 22dBz (S,") + IOlog,, m. The resulting high 
resolution of localization actually enables the adapted clas- 
sical beamformer to  be brought back to its optimal per- 
formances. This is basically due to a very small desired 
source signal distortion of approximately -75dB (see Fig- 
lrre 6) ,  combined with an optimum white noise reduction 
( 1 2 d B ~  IOlog,,, m reduction) and an efficient jammer can- 
rellation of approxiinatively 40dB by the GSC structure 
(see Figure 7). On the other hand, the classical beamformer 
considers the desired source as a jammer, and cancels it as 
expected while maintaining a unit gain in the initial cor- 
rupted direction (see Figures 5 and 7 ) .  

We run another simulation with a moving target in the 
same cmvironment. Figure 8 shows that the algorithm is 
able to correct rapidly the strering error, and to  track ef- 
ficiently the DOA variations. DOA errors are reduced to 
about lo-' degree and remain acceptable. T h r  resolution 
of localization slightly degrades, but still enables the al- 
gorithm to  properly extract the desired source signal and 
efficiently reduce the noise and the jammer as shown in Fig- 
ure 9 (i.e. the total signal distortion is experimentally close 
to  the optimal 22dB). 
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Figure 6: Source signal distortion 11 - W?F(&)l' in the 
case of an immobile source and a step moving jammer. 
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Figure 7: Array patterns a t  iterations t = 0 (1: array pat- 
terns are initially the same), and t = 10000 ( 2 ,  array pat- 
tern of classical GSC, 3: array pattern of the proposed al- 
gorithm) in the case of immoblle source and a step niovlng 
jammer, where 0: = 1 

5 CONCLUSION 
We presented in this paper an algorithm for robust adap- 
tive beamforming, based on a LMS-like correcting/tracking 
procedure. This algorithm avoids source signal cancella- 
tion by correcting the steering errors. It brings back an 
adapted classical beamformer to  its optimal performance 
without any compromising loss in SNR, or any relative in- 
crease in source signal distortion. In addition, it proves to  
have high resolution capacity for localization, and an effi- 
cient behavior in moving target tracking. This algorithm 
has a complexity of order O(m) where m is the number of 
sensors, and can be implemented in a very easy way. 

At the present, the generalization of the presented al- 
gorithm to the multi-target tracking [8] and the wideband 
caaes even for the near field propagation model is under 
study. Simultaneously, we are investigating the capacities 
of this algorithm to be adapted to  calibration applications. 
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