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ABSTRACT 

Reliable estimates of Rayleigh Doppler frequency are use- 
ful for the optimization of adaptive multiple access wireless 
receivers. The adaptation parameters of such receivers are 
sensitive to the amount of Doppler and automatic recon- 
figuration to the speed of terminal movement can optimize 
cell capacities in low and high speed situations. We derive a 
Doppler frequency estimator using the maximum likelihood 
method and Jakes model [l] of a Rayleigh fading channel. 
This estimator requires an FFT and simple post-processing 
only. Its performance is verified through simulations and 
found to yield good results. 

1. INTRODUCTION 

The mobile channel is characterized by multipath propaga- 
tion and the received signal manifests significant variations 
of the channel gain. The received signal over a propagation 
channel may be written as (complex base band representa- 
tion) 

T ( t )  = cY(t)eiwots(t) + n(t) (1) 
where the variations of a are modeled as Rayleigh fading, 
W O  is a frequency offset due to instability of the receiver 
and transmitter oscillators, s ( t )  is the information bearing 
signal, and n(t) is additive noise. WO will change over time 
as a result of drift of oscillators and transmitter/receiver 
relative acceleration; however, its rate of change is much 
smaller than the symbol rate. We will, as a result, as- 
sume that this factor is cancelled already. On the other 
hand, the variations of a(t) ,  caused by transmitter/receiver 
relative motion and reflections, can be very rapid because 
the wavelength of transmission is often small compared to 
the relative speed between receiver and transmitter. The 
Rayleigh fading characteristics of a(t) is a random process 
determined by one parameter only, the Doppler frequency 
f~ [l]. The amount of Doppler present affects the per- 
formance of mobile receivers, and the parameters used for 
demodulation can be optimized for one Doppler frequency 
only. The Spatio-Temporal Array-Receiver (STAR) is an 
example of receiver for CDMA which has been used as a 
reference herein [2]. STAR tracks the channel using an 
LMS-type approach and the performance of STAR is largely 
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determined by the step-size used for tracking. Fig. 1 shows 
the BER performance of STAR as a function of the SNR 
for two step-size values and two different Doppler frequen- 
cies corresponding to a speed of 180km/h (e.g., in a train) 
and 5km/h (e.g., pedestrian), respectively. The optimal 
step-size for the fast mobile is p = 0.5; whereas, the op- 
timal step-size for the slow mobile is p = 0.1. Using the 
wrong step-size in the two situations causes approximate 
degradations of 1 - 2 d B  and 3 - 4 d B ,  respectively. Clearly, 
knowledge of the Doppler frequency can lead to significant 
improvements of receiver performance. We therefore pro- 
pose an estimator for the Doppler frequency derived from 
maximum likelihood (ML) theory, which to our knowledge 
has not been previously addressed. The estimator is very 
simple to implement in a digital environment, requiring only 
an FFT plus some simple post-processing. By simulation 
we show that the estimator provides good results. 

2. BACKGROUND 

We consider the Rayleigh fading channel and assume that 
there is no frequency offset. Rayleigh fading is caused by 
transmitter/receiver relative motion and multipath propa- 
gation. According to Jakes [l], the Rayleigh fading channel 
can be described by 

a ( t )  = a (  t ; W D , 4 1 , ’ “ , 4 L )  (2) 

where 41 are uniform random variables, Eo/T is the power 
of a@),  and WD = &TfD = 2.rrvfc/c is the Doppler fre- 
quency, with v the relative speed, e the speed of light, and 
fc the carrier frequency. 
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Figure 1. STAR performance in (a) slow Doppler, 
and (b) fast Doppler for various step-sizes. 
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The channel gain a ( t )  is the sum of independent waves 
with equal gains, independent phases, and different frequen- 
cies which are not equidistant. In practice, the number of 
waves, L,  is limited; however, Jakes [l] shows that even 
small L (e.g. L = 6) can provide a very good approxima- 
tion to the true Rayleigh fading case. 

The temporal correlation of the envelope of Eq. 2 is a 
Bessel function of order zero, and the power spectrum is 
the Doppler spectrum given by 

(3) 
1 

7 If1 I f D ,  
= Jm 

which is a function of the Doppler frequency only. Evi- 
dently, the knowledge of the of Doppler frequency gives all 
necessary information about the nature of the Rayleigh fad- 
ing. Note, how this spectrum is the sum of unevenly spaced 
frequency components of equal strength (compare with Eq. 
2). 

3. THEORY OF THE PROPOSED ML 
ESTIMATOR 

We consider the following sampled model: 

p k  = ak n k  (4) 
where = a(kT)  is the channel parameter (Eq. 2), T is 
the sampling time, n k  = 7~(kT) is noise (identification error) 
which is assumed as white with power U:, and p k  = P ( k T )  
is the noisy observation. In a receiver P k  can be identified 
by a pilot ( s ( t )  known in Eq. 1) or by tracking as is done in 
STAR [2]. With this model, the likelihood function is given 
hv: 

where K is the length of the observation interval, Q = 
( W D ,  $-,v,. . . , $ N )  is the unknown parameter vector, and 
C is an immaterjal constant. The ML estimate is the pa- 
rameter vector @ which optimizes the likelihood function. 
Joint optimization of the likelihood function with respect 
to the elements of ?I, is not straightforward because of the 
infinite number of unknown phases, $i. Even if we assume 
for instance L = 6, it requires joint optimization over an 
L + 1 = 7 dimensional space. In the following we therefore 
adopt the idea of [6] and average the likelihood function 
with respect to the phases. 

The likelihood function can be written in the alternative 
form 

where R denotes real part. The first two terms of the sum 
are constants equal to the total powers of Ck‘k and p k ,  respec- 
tively, and the last term is the cross correlation between ,& 
and a k .  Only the latter is decisive for the maximization; 
therefore, maximization of the likelihood function is equiv- 
alent to the maximization of 

where we can substitute Eq. 2 into Eq. 7 to obtain 

L 

= l - I X l .  
1=1 

All phases, $ j ,  are mutually uncorrelated and therefore 

L 

E41,.-,4L,{Al(Q)} = n E 4 , I ~ i )  (9) 
1=1 

where E,{.} is the average operator with respect to the 
parameters v. For one of the right hand side terms we find 

This integral cannot be solved. Therefore we linearize the 
argument by using the Taylor series of the exponential to 
arrive at  

because odd terms vanish as a result of the averaging. In 
Appendix A we show that the SNR of the second term is 
7.8dB better than the remainder. As a result, we neglect 
the higher order terms and arrive at  the simpler expression 

Taking the square, products between cos(.) and sin(.) vanish 
after the sum (in the limit K -+ 00) or as a result of the 
integration, leaving 

{p,“,p& COS2(4) cos(wklTcos(8i)) cos(wk2Tcos(&)) 

+ @flP& sin2(q$) sin(wk1T cos(&)) sin(wkzT cos(&)) 
+ PL,~:, cos2(+l) sin(wklTcos(6i)) sin(wk2Tcos(ei)) 

+ ,f$,pL, sin2(#i) cos(wk1T cos(&)) cos(wk2T cos(f4))) d$i,  

where the integration leaves a simple scaling by $ for all 
terms and we can therefore write 
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Figure 2. Implementation of Eq. 17. 

The latter term is recognized as the power of P k  at the 
frequency WD COS(&), that is S ~ ( W D  cos(&)). Generalizing 
the result, we get the averaged likelihood function (Eq. 9) 

L 

i i ( ~ D )  = ~2 n [ I+  c3 s ~ ( w D  cos(el))i, (15) 
1=1 

and as a final step we take the logarithm utilizing ln(l+z) 
z for z small (which is the case in the limit), to get the log- 
likelihood function (ignoring the immaterial constant): 

L 

AL ( W D )  = Sp (WD COS(&)) 
1=1 

The ML Doppler frequency estimate f~ can therefore be 
obtained from: 

where Sa(f ;  f e )  is the Rayleigh spectrum with fD = fe  (see 
Eq. 3). From Eq. 17, the ML estimate is found by comput- 
ing the spectrum of p ,  and sweeping fe over the continuous 
range of Doppler frequencies considered to find the largest 
scalar product between Sp(f) and Sa(f; fe). The fe which 
maximizes the scalar product is the Doppler frequency es- 
timate, f ~ .  

Since the continuous sweep of f e  is not possible in prac- 
tice, we provide a practical implementation of Eq. 17 in the 
following section. 

4. DIGITAL IMPLEMENTATION 

Fig. 2 illustrates a simplified model of an implementation of 
Eq. 17. The model consists of three major modules, spec- 
trum computation, filtering, and maximum search followed 
by interpolation. 

First, the input is processed in blocks and the DFT is 
computed using an N-point FFT. From the FFT the am- 
plitude spectrum or the power spectrum is computed. The 
raw spectrum is computed although a window function or 
other means may be used to reduce the variance. We also 
consider the case where the nominal value of the noise is 
known, which allows us to subtract the (expected) noise 
bias from the computed spectrum. 

The computed spectrum is applied to M + 1 filters each 
representing a different Doppler frequency spanning the 
range 0 to 1/(2T) (Ha = Sa or Ha = fi in Fig. 2). 
In the simulations the number of filters is equal to N/2  + 1 

Figure 3. Histogram of frequency estimation errors. 

unless otherwise is specified. Finally, the maximum filter 
output is determined and the estimate is refined by cubic 
interpolation over the maximum and its two neighbors. 

We denote versions which rely on the power spectra as 
Power Biased (PB) for the case where no knowledge of the 
noise power is assumed, and Power UnBiased (PUB) when 
the noise power is assumed known and subtracted from the 
computed spectrum. Similarly we use AB and AUB for the 
amplitude spectrum based versions. 

5. SIMULATION 

Fig. 3 shows-a histogram of the Doppler frequency estima- 
tion errors, fD - f D ,  when PB is used with SNR=OdB and 
N = 512. In each run, the Doppler frequency fD to be esti- 
mated is chosen randomly in [f;4T-l/(2M); fgT+1/(2M)] 
where f z T  = 0.25 is the nominal normalized frequency and 
A4 + 1 = N/2  + 1 is the number of filters. The main lobe of 
(a) resembles a normal distribution, which agrees with the 
fact that the estimation errors for ML estimators are nor- 
mal in the limit. However, the estimates are biased. The 
ML theory promises unbiased estimates in the limit only. 
Plots (b) and (c) show outliers which are estimates which 
fall outside the main lobe. This phenomenon is well known 
for single-tone frequency estimators as well [ 5 ] .  

In Fig. 4 the percentage of outliers for different N is 
depicted for the four versions a t  an SNR of -3dB and 
fgT = 0.25. The PB and PUB both have a quite high 
percentage of outliers at low N (4 - 7%) and are therefore 
useless for estimation. However, the probability of an out- 
lier is reduced significantly with larger N and already at 
N = 512 the probability is less than 0.2%. The AUB model 
performs better than the PUB and PB and offers an im- 
provement ranging from 2 - l 0 d B  over the versions based 
on the power spectra. In contrast, the AB is useless for all 
N a t  this level of interference! Therefore, the amplitude 
spectra approach is only lucrative provided that the noise 
power is known. The AB model will not be considered in 
what follows. Fig. 5 shows the Mean Square Error (MSE) 
of the estimation errors (outliers removed). Again, the PB 
and PUB have similar performance. The AUB method is 
slightly superior in this case as well. All methods have 
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Figure 4. Prob. of an outlier as a function of N .  
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Figure 5. MSE performance as a function of N .  

in common that the improvement is around 6dB when N 
is doubled' and therefore increasing N provides significant 
improvement. 

In the following we concentrate on the MSE performance, 
and all curves supplied have an outlier probability less than 
1%. 

Fig. 6 shows the MSE performance with f;4T = 0.25 and 
N = 512  as a function of the SNR. The performance of the 
PB and PUB versions is similar: at low SNR the MSE re- 
duces significantly with increasing SNR, but at good SNR 
the curves flatten out. This is also the case with the AUB 
model; however, this version provides a significantly better 
performance at good SNR where it flattens out around an 
MSE of - approximately 4dB better than the mod- 
els based on the power spectra. Unlike the estimation of 
a cisoid in noise [4] the MSE will approach zero as SNR 

~ ~~~ 

'The Cramer-Rao lower bound for the estimation of the lo- 
cation of a single tone in white noise [4] improves by 9 d B ;  but 
the observed tone-bandwidth is reduced by two each time N is 
doubled; however, in this case the bandwidth is constant which 
may account for the difference of 3dB. 
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Figure 6. MSE performance as a function of SNR. 
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Figure 7. MSE performance as a function of M .  

approaches infinity; here, however, the underlying process 
to be estimated is random itself and even in the absence 
of noise this randomness will introduce uncertainty, which 
explains the noise floor inherent in the figure. 

Clearly, the AUB version provides better performance 
than does the PB and PUB. However, it requires the knowl- 
edge of the noise power. If this value is not known accu- 
rately, one can use the PB scheme, which provides almost 
as good results. As an example (Fig. 6), if 1/T = lOkHz 
we can use N = 512 and obtain a standard deviation of 
only 20Hz with SNR= OdB using the PB scheme, which is 
acceptable in most cases. 

Finally, Fig. 7 shows the MSE performance as a function 
of the number of filters ( M )  used for the estimation with 
SNR= -3dB,  f;4T = 0.25, and N = 1024. As expected, 
the performance is better with A4 = N / 2  = 512. When M 
becomes less than N / 2  the performance suffers. However, 
reducing M by four exacts a penalty of about 2dB only, and 
hereafter the penalty increases by about 5dB each time A4 
is reduced by two. If complexity is of concern, one can 
reduce M significantly and still obtain useful estimates. 
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6. CONCLUSION 
We have proposed an estimator for the Doppler frequency 
based on the ML principle. Using the model of Jakes [l] to 
describe the Rayleigh fading, the frequency estimator is de- 
rived from the ML-theory using approximations which are 
very good at high SNR. Based on the derived ML estimator, 
a model suitable for digital implementation is presented and 
verified through simulations. The simulations reveal that 
implementation of the proposed ML-estimator can be sig- 
nificantly simplified with slight degradation in performance. 
The estimator can be used in mobile receivers which can 
take advantage of the available Doppler estimate to opti- 
mize their performance. It can be also used to improve the 
frequency offset estimate relative to current techniques [3]. 
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Appendix A - Letting R2m denote term number 2 m  in 
Eq. 11, we can express term 2m + 2 as 

(18) 
(s + n)’ 

( 2 m  + 2 ) ( 2 m  + 1)R2m R2m+2 = 

- (s2  + n2 + 2 s n )  - 
(2m + 2)(2m + 1) R2m 

where s is the signal component and n is the noise compo- 
nent of the argument of the exponential. Without loss of 
generality, we assume that the signal component is s = 1 
and the power of the noise, n, is u2. It can be shown that 
Rzm+2 and Rzm are uncorrelated and therefore the power 
of the signal component , P;m+2r and the power of the noise 
component, P2m+2 becomes 

1 
((2m + 2 ) ( 2 m  + l))Zp;m p.;,+z = 

and 

7u2 
((2m + 2 ) ( 2 m  + R;m+2 = 

respectively. Comparing (19) and (20) it becomes evident 
that the SNR of Rzm+2 is 7 times lower than Rzm. Sum- 
ming over all terms 4 , 6 , 8 .  . . the total SNR is 101og10(6) = 
7.8dB below the SNR of term 2. 
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