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Abstract— We extend application of a new scheme for efficient
use of pilot signals in wideband CDMA array-receivers from the
pilot-channel to the pilot-symbol case. The new scheme exploits
the pilot signals for the simple resolution of the sign ambiguity
arising in BPSK-decision-directed blind channel identification
and achieves significant spectrum efficiency gains and power or
overhead savings over the same array-receiver versions which
use pilots for conventional channel identification only. Both
analysis and simulations suggest that pilot-channel and pilot-
symbol array-receiver versions, either with conventional or new
pilot use, have similar performance at weak Doppler. They also
indicate increasing performance gains with increasing Doppler
due to the improved use of the pilot information. For a data rate
of 144 Kbps with 60 Kmph speed, simulations indicate efficiency
gains due to new pilot use of about 25 and 70% in the pilot-
channel and pilot-symbol cases, respectively.

I. INTRODUCTION

Optimum exploitation of the pilot signal in wideband
CDMA allows capacity gains by coherent detection with
power or overhead ratios small enough to reduce interference,
but large enough to enable accurate coherent channel identi-
fication [1]-[5]. Additional improvements can be achieved if
the pilot is just used to resolve the sign ambiguity in blind
channel estimation instead of its conventional use for total
channel estimation.

In [6] we reported on the analysis and evaluation of
both blind and pilot-channel assisted versions of STAR, the
spatio-temporal array-receiver [7],[8]. This work allowed us
to combine the advantages of these two receiver versions in a
hybrid structure that outperforms both in spectrum efficiency
while offering substantial savings in the pilot-channel power
[9]. Such gains stem from more efficient exploitation of a
much weaker pilot, no longer used to identify the channel
itself but to resolve the sign ambiguity associated with BPSK-
decision-directed blind identification. In [10] we extended
use of the hybrid version of STAR to the downlink using
pilot channels. Here we show that similar enhancements can
be achieved with more efficient use of pilot symbols. We
report results of extensive performance evaluation of blind,
pilot-channel, and pilot-symbol versions of STAR with both
conventional and new pilot use. Additionally, we provide
analytical results for optimum values of the channel update
step-size and misadjustment previously found by expensive
search [6].

II. FORMULATION AND BACKGROUND

A. Data Model

We denote by M the number of the uplink receiving
antennas at the base-station and consider a multipath Rayleigh
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Fig. 1. Pilot modes (data is in grey and pilot is in white).

fading environment with number of paths P and Doppler
frequency fD. After channel coding and interleaving of the
information data at the transmitter, the interleaved coded bits
are BPSK-modulated at the rate 1/Ts where Ts is the symbol
duration. The BPSK symbols, denoted as b

¯n, where n is the
symbol index, may be encoded differentially as bn = b

¯nbn−1.
Otherwise, we simply assign bn = b

¯n. In either case we spread
bn by a channel code and mark the corresponding data channel
with superscript δ. We only use differential encoding jointly
with a blind version of STAR (i.e., without a pilot). Otherwise,
we either code-multiplex the spread data with a pilot and mark
the pilot channel with superscript π or simply insert (i.e., time-
multiplex) pilot symbols in the data channel (see Fig. 1). The
two pilot structures give rise to pilot-channel and pilot-symbol
assisted versions of STAR.

After we despread the data channel at the receiver, we
form from the M × P diversity branches the MP × 1 data
observation vector as [9]:

Z
¯

δ
n = H

¯ ns
δ
n + N

¯
δ
n = H

¯ nψnbn + N
¯

δ
n , (1)

where sδ
n = ψnbn is the data signal component and ψ2

n is
the total received power. H

¯ n is the MP × 1 spatio-temporal
Rayleigh fading channel vector normalized to

√
M . N

¯
δ
n is a

space-time uncorrelated Gaussian noise vector with mean zero
and variance σ2

N after despreading of the data channel. The
resulting input SNR after despreading is SNRin = ψ2/σ2

N per
antenna element.

Similarly when a pilot-channel is used (see Fig. 1), we form
the MP × 1 pilot observation vector as [9]:

Z
¯

π
n = H

¯ ns
π
n + N

¯
π
n = H

¯ nξψn + N
¯

π
n , (2)

where ξ2 denotes the allocated pilot-to-data power ratio and
N
¯

π
n is a zero-mean space-time uncorrelated Gaussian noise

vector with the same variance as N
¯

δ
n (i.e., σ2

N ).
When a pilot-symbol is used (see Fig. 1), the data sequence

bn is simply assigned a constant “1” once every K symbols,
although insertion of pilot blocks is possible. Hence we have
bn′K = 1 and sπ

n′K = sδ
n′K = ψn′K . In this case, ξ2 = 1/K

denotes the allocated pilot-to-data overhead ratio.
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In the following, we investigate the five versions of STAR
summarized in Tab. 1. We give a brief overview of the first
three structures of STAR studied in [9] before we introduce
the two additional pilot-symbol assisted versions.

B. Rx1: Blind STAR

The blind version of STAR, denoted by Rx1 (see Tab. 1),
does not need a pilot. First, it uses the channel estimate Ĥ

¯ n

at iteration n to extract the data signal component by spatio-
temporal MRC [6],[9]:

ŝδ
n = Re

{
Ĥ
¯

H

n Z
¯

δ
n/M

}
. (3)

The data sequence bn is then estimated as b̂n = Sign
{
ŝδ

n

}
.

In a second step, Rx1 feeds back the estimate of the
data signal component ŝδ

n (or ψ̂nb̂n)1 in a decision feedback
identification (DFI) scheme to update the channel estimate as
follows [6],[9]:

Ĥ
¯ n+1 = Ĥ

¯ n + µ
(

Z
¯

δ
n − Ĥ

¯ nŝ
δ
n

)
ŝδ

n , (4)

where Ĥ
¯ n is the adaptive channel estimate and µ the adaptation

step-size.
The simple decision feedback identification (DFI) scheme

[6] of Eqs. (3) and (4) identifies the channel within a sign
ambiguity, say a = ±1, thereby giving Ĥ

¯ n � a H
¯ n,

ŝδ
n � a ψn bn, and b̂n = Sign

{
ŝδ

n

} � a bn. However,
differential decoding of the hard decisions b̂n resolves the sign
ambiguity in the BPSK symbol estimates b̂

¯n = b̂nb̂n−1 =
Sign

{
ŝδ

nŝ
δ
n−1

}
. These values can be passed on to the channel

decoder after deinterleaving. For better performance, Rx1
transmits instead the differential soft output ŝ

¯
δ
n = ŝδ

nŝ
δ
n−1.

C. Rx2: STAR with Conventional Pilot-Channel

The second version of STAR, denoted by Rx2 (see Tab.
1), uses a pilot-channel [3],[5] for conventional channel iden-
tification2. Rx2 also extracts the signal component estimate
ŝδ

n using Eq. (3). However, it exploits the fact that the pilot
signal is a known reference signal (a priori constant “1”) and
modifies the DFI scheme of Rx1 in Eqs. (3) and (4) as follows
[9]. Rx2 extracts the pilot signal component estimate:

ŝπ
n = Re

{
Ĥ
¯

H

n Z
¯

π
n/M

}
, (5)

then feeds it back3 to the following channel identification
procedure:

Ĥ
¯ n+1 = Ĥ

¯ n + µ
(

Z
¯

π
n − Ĥ

¯ nŝ
π
n

)
ŝπ

n . (6)

1For lack of space, the steps that estimate the received power ψ2
n for power

control and for decision feedback can be found in [9].
2 Note that conventional reference-assisted techniques estimate each diver-

sity finger with a multiple-tap low-pass filter [1]-[5]. With less computations
here, we identify each finger with an optimized single-tap adaptive-filter using
the DFI procedure of Eq. (6) in the pilot-channel case or Eq. (9) in the pilot-
symbol case.

3We actually feed back ξψ̂n (or |ŝπ
n|) with the a priori known positive sign

of the pilot. Note that the DFI step of Eq. (6) could be updated at a slower rate
if the pilot signal is transmitted in short bursts on the pilot channel. Extension
in this case is ad hoc.

pilot mode pilot use
Rx1 none none (i.e., blind without pilot)
Rx2 pilot-channel channel identification (i.e., conventional)
Rx3 pilot-channel ambiguity resolution (i.e., enhanced)
Rx4 pilot-symbol channel identification (i.e., conventional)
Rx5 pilot-symbol ambiguity resolution (i.e., enhanced)

Tab. 1. Description of the tested versions of STAR.

As a result, the DFI scheme identifies the channel without
ambiguity (i.e., a = 1). Hence, Rx2 estimates the BPSK
symbol estimates as b̂

¯n = b̂n = Sign
{
ŝδ

n

}
. These values

can be passed on to the channel decoder after deinterleaving.
For better performance, Rx2 transmits instead the soft output
ŝ
¯
δ
n = ŝδ

n.

D. Rx3: STAR with Enhanced Pilot-Channel

The third version of STAR, denoted by Rx3 (see Tab. 1),
is a hybrid of Rx1 and Rx2. Like Rx1, it applies the blind
DFI procedure of Eqs. (3) and (4) to estimate the channel
within a sign ambiguity denoted a. Like Rx2, its uses a pilot-
channel. However, with much weaker power it exploits the
pilot more efficiently to accurately estimate then resolve the
sign ambiguity of a [9]. Noticing that the pilot signal compo-
nent ŝπ

n � aψnξ carries a noisy value of a, Rx3 estimates it by
taking the sign of ŝπ

n after averaging over consecutive blocks
of A samples, giving for n ∈ {n′A, . . . , (n′ + 1)A− 1}:

s̄π
n =

A−1∑
i=0

ŝπ
n′A+i/A , (7)

ân = Sign {s̄π
n} . (8)

The averaging step above enables accurate estimation of a
with a much weaker pilot power [9]. Hence, Rx3 estimates
the BPSK symbol estimates as b̂

¯n = ânb̂n = Sign
{
ânŝ

δ
n

}
.

These values can be passed on to the channel decoder after
deinterleaving. For better performance, Rx3 transmits instead
the soft output ŝ

¯
δ
n = ânŝ

δ
n.

In [9] we showed both by analysis and simulations that Rx3
outperforms Rx2 in capacity and spectrum efficiency while
offering substantial savings in the pilot-channel power. Such
gains stem from more efficient exploitation of a much weaker
pilot, no longer used to identify the channel itself but to resolve
the sign ambiguity it carries with blind identification. The
question we address below is whether similar enhancements
can be achieved with more efficient use of pilot-symbols.

III. NEW PILOT-SYMBOL VERSIONS OF STAR

In the following, we introduce two additional pilot-symbol
assisted structures of STAR which are counterparts of pilot-
channel assisted versions Rx2 and Rx3, respectively. Later
we show by analysis and simulations that each of these two
additional pilot-symbol versions performs nearly as well as
its pilot-channel assisted counterpart. With either pilot-mode,
however, the new scheme allows substantial savings in power
or overhead and significant gains in spectrum efficiency over
the conventional one.
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A. Rx4: STAR with Conventional Pilot-Symbol

The fourth version of STAR, denoted by Rx4 (see Tab.
1), uses pilot symbols for conventional channel identification
[1],[2],[4],[5] (see footnote 2). Its DFI procedure is similar
to that of Rx1 and Rx3 in that it combines Eqs. (3) and (4).
However, it only feeds back the signal components containing
the pilot symbols inserted in the data sequence once every K
symbols:

Ĥ
¯ (n′+1)K = Ĥ

¯ n′K + µ
(

Z
¯

δ
n′K − Ĥ

¯ n′K ŝπ
n′K

)
ŝπ

n′K , (9)

where ŝπ
n′K = ψ̂n′K . Similarly to Rx2, the DFI scheme of

Rx4 identifies the channel without ambiguity (i.e., a = 1) and
allows estimation of b̂

¯n and s
¯
δ
n using the same hard and soft

decision rules, respectively.
Notice, however, that Rx4 updates the DFI procedure less

frequently than Rx2, namely at the pilot-symbol rate 1/KTs.
On the one hand, the channel subsampled at the DFI-update in-
stants appears to vary K times faster with a relative normalized
Doppler KfDTs. Channel identification errors are expected to
increase with faster time-variations [9]. On the other hand, the
power of the feedback signal in Rx4, |ŝπ

n′K |2 = ψ̂2
n′K , is K

times stronger than in Rx2 where |ŝπ
n|2 = ξ2ψ̂2

n = ψ̂2
n/K .

Channel identification errors are expected to decrease with
stronger feedback signals [9]. Later we show a non-trivial an-
alytical result that the corresponding loss and gain in channel
identification errors balance each other. The minimum channel
misadjustment achievable remains constant if we increase both
the relative Doppler and the feedback-signal’s power by the
same factor K . We actually show that Rx2 and Rx4 identify
the channel equally well.

B. Rx5: STAR with Enhanced Pilot-Symbol

Similarly to Rx3, the fifth version of STAR denoted by Rx5
(see Tab. 1) is a hybrid of Rx1 and Rx4. It applies the blind
DFI procedure of Eqs. (3) and (4) to estimate the channel
within a sign ambiguity denoted a. However, it uses a pilot-
symbol to estimate then resolve the sign ambiguity a. Assume
for simplicity that a block of A consecutive symbols contains
exactly Q pilot symbols (i.e., A = QK). Rx4 modifies Eqs.
(7) simply by averaging the pilot signal component estimate
over these Q symbols for n ∈ {n′A, . . . , (n′ + 1)A− 1}:

s̄π
n =

Q−1∑
i=0

ŝπ
n′A+Ki/Q . (10)

before taking its sign as in Eq. (8). Similarly to Rx3, Rx5
thereby resolves the sign ambiguity and hence estimates b̂

¯n

and s
¯
δ
n using the same hard and soft decision rules, respec-

tively.
Notice that Rx5 in Eq. (10) estimates the pilot-signal

component from K = A/Q fewer values than Rx3 in Eq.
(7). The variance of the residual noise present in s̄π

n is thereby
increased by factor K . However, bear in mind that the pilot-
signal power in Rx5 is K times stronger than in Rx3. The SNR
of s̄π

n before sign ambiguity estimation in Eq. (8) is therefore
the same for both receiver versions. Despite the differences
between Rx3 and Rx5, the sign-estimation step in Eq. (7) or

1. initialize capacity C = 0 .
2. start computation loop:

2.1. increment capacity C = C + 1,
2.2. noise variance is σ2

N = Cν2(1 + η2)/L,
2.3. misadjustment is β2(µ, σ2

N , fDTs),
2.4. compute BER:

2.4.1 compute data output SNR E[|sδ
n|2/|ŝδ

n − sδ
n|2]

SNRδ
out = SNRin × M/[1 + (P + SNRin)β2],

2.4.2 pδ
e = P ({b̂n �=bn}) = 1

2
erfc

(√
SNRδ

out

)
,

2.4.3 pe = P ({b̂
¯n �=b

¯n}) = 2 pδ
e (1 − pδ

e),
2.5. if pe ≤ Pe goto 2.1, else exit loop.

3. decrement capacity C = C − 1.

Fig. 2. Procedure computing capacity C1(Pe, µ) of Rx1 at a given fading
rate fDTs.

1. initialize capacity C = 0 .
2. start computation loop:

2.1. increment capacity C = C + 1,
2.2. if Rx2, noise variance is σ2

N = Cν2(1 + ξ2)(1 + η2)/L,
if Rx4, noise variance is σ2

N = Cν2(1 + η2)/L,
2.3. if Rx2, misadjustment is β2(µξ2, σ2

N/ξ2, fDTs),
if Rx4, misadjustment is β2(µξ2, σ2

N , fDTs/ξ2),
2.4. compute BER:

2.4.1 data output SNR E[|sδ
n|2/|ŝδ

n − sδ
n|2] is

SNRδ
out = SNRin × M/[1 + (P + SNRin)β2],

2.4.2 pe = P ({b̂
¯n �=b

¯n}) = 1
2

erfc
(√

SNRδ
out

)
,

2.5. if pe ≤ Pe goto 2.1, else exit loop.
3. decrement capacity C = C − 1.

Fig. 3. Procedure computing capacity C2(Pe, µ, ξ2) of Rx2 or
C4(Pe, µ, ξ2) of Rx4 at a given fading rate fDTs.

(10) results in the same sign estimation error. Hence we easily
show in the following analysis section that Rx3 and Rx5 have
equivalent performance.

IV. NEW ANALYTICAL RESULTS

In [9], we proposed simple computation procedures to eval-
uate and optimize the uplink capacity C in terms of the number
of users per cell for Rx1, Rx2, and Rx3. These procedures are
shown in Figs. 2, 3 and 4. Here, we derive two additional
computation procedures for the pilot-symbol assisted versions
of STAR, namely Rx4 and Rx5. For lack of space, we
show these procedures on the same figures as Rx2 and Rx4,
respectively. As a brief reminder of some of the parameters
that appear in these procedures, L denotes the processing gain,
η2 takes into account the outcell-to-incell interference ratio, ν2

takes into account the effect of time-delay mismatch between
shaping pulses, the speech or data transmission activity factor
denoted as pTx, and the outage probability [11], and β2 denotes
the channel identification misadjustment or mean square error
(i.e., E[‖Ĥ

¯ n − H
¯ n‖2]/MP ) [6],[9].

For a specified maximum BER value before channel de-
coding, say Pe (i.e., quality of service), these procedures
allow optimization of the capacity C(Pe, µ, ξ

2) with respect
to the step-size µ and the pilot-to-data power ratio ξ2 (for
details see [6],[9]). In the case of pilot-symbols, the pilot-to-
data overhead ratio ξ2 must be optimized by maximizing the
spectrum efficiency defined as:

E(Pe, µ, ξ
2) =

C pTx rc

L
, (11)

2528



1. initialize capacity C = 0 .
2. start computation loop:

2.1. increment capacity C = C + 1,
2.2. if Rx3, noise variance is σ2

N = Cν2(1 + ξ2)(1 + η2)/L,
if Rx5, noise variance is σ2

N = Cν2(1 + η2)/L,
2.3. misadjustment is β2(µ, σ2

N , fDTs),
2.4. compute BER:

2.4.1 data output SNR E[|sδ
n|2/|ŝδ

n − sδ
n|2] is

SNRδ
out = SNRin × M/[1 + (P + SNRin)β2],

2.4.2 if Rx3, pilot output SNR E[|sπ
n|2/|ŝπ

n − sπ
n|2] is

SNRπ
out = ξ2SNRδ

out,
if Rx5, pilot output SNR is

SNRπ
out = SNRδ

out,
2.4.3 pδ

e = P ({b̂n �=bn}) = 1
2

erfc
(√

SNRδ
out

)
,

2.4.4 if Rx3, pσ
e =P ({ân �=a})= 1

2
erfc

(√
A SNRπ

out

)
,

if Rx5, pσ
e = 1

2
erfc

(√
A ξ2 SNRπ

out

)
,

2.4.5 pe = P ({b̂
¯n �=b

¯n}) = pσ
e (1 − pδ

e) + pδ
e (1 − pσ

e ),
2.5. if pe ≤ Pe goto 2.1, else exit loop.

3. decrement capacity C = C − 1.

Fig. 4. Procedure computing capacity C3(Pe, µ, ξ2) of Rx3 or
C5(Pe, µ, ξ2) of Rx5 at a given fading rate fDTs.

for the pilot-channel versions and:

E(Pe, µ, ξ
2) =

C (1 − ξ2) pTx rc

L
� C pTx rc

(1 + ξ2)L
, (12)

for the pilot-symbol versions (assuming ξ2  1 in low-to-
medium normalized Doppler fDTs, see simulations in section
V-B). pTx is the speech/data transmission activity factor and rc

is the channel coding rate. In contrast to pilot-channel versions
where maximization of capacity over ξ2 optimizes efficiency,
increase in the pilot overhead ratio ξ2 will always improve
identification and capacity while reducing efficiency. Optimum
values to find for ξ2 are hence those which directly maximize
efficiency.

For lack of space, we do not provide optimum performance
results by analytical computation. They match closely those
obtained by simulations in the next section. We provide instead
new interesting analytical results that establish an equivalence
in performance between the two pilot-channel versions of
STAR and their two pilot-symbol counterparts, respectively.

In previous work we only suggested minimization of the
misadjustment β2 by search over the optimal step-size within
given bounds [9]. Here we provide non-trivial analytical
expressions both for the optimal step-size and the resulting
minimum misadjustment and time constant (not necessarily
the smallest) as (see details in [13]):

µopt � 2
[
(πfDTs) /

(√
Pψ2σN

)]2/3

, (13)

β2
min =

3
2

[
(πfDTs) /

(√
PSNRin

)]2/3

, (14)

τopt � 1
4

[√
P/

(
πfDTs

√
SNRin

)] 2
3

. (15)

As shown in Fig. 5-a, theoretical values for misadjustment
derived from Eq. (14) show a very good fit to those obtained
by simulations. In Fig. Fig. 5-b, theoretical values for optimal
step-size in Eq. (13) also match very well with the values
obtained by search then validated by simulations in [6]. They
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−30
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−20

−15
(a)

SNR
in

 [dB]

β2 m
in

 [d
B

]

experimental
theoretical

−4 −2 0 2 4 6 8 10 12 14
10

−2

10
−1

(b)

SNR
in

 in dB

µ op
t

by search
theoretical

Fig. 5. (a): minimum misadjustment in dB vs. SNR in dB with optimum
step-size µopt of Eq. (13), (b): optimum step-size µopt vs. SNR in dB (for
the low-rate/low-speed setup of section V-A with M = 4 antennas).

reduce computational complexity and allow huge savings in
processing time.

To the best of our knowledge, these expressions (which
apply to both blind and reference-assisted receivers [6]) are
the first to provide practical means for optimal tuning of
adaptive channel identification and for prediction of step-size,
misadjustment and convergence time in a multipath Rayleigh
fading environment.

Furthermore, the new analytical results suggest that pilot-
channel and pilot-symbol versions of STAR, with either con-
ventional or enhanced pilot use, require the same optimum
step-size and convergence time and result in the same mis-
adjustment when operating with the same pilot power and
overhead fractions, respectively. The proof is easy to establish
with simple updates of the theoretical expressions of Eqs. (13)
to (15) (see details in [13]).

Here we simply validate this result at the link-level by
comparing the BER (i.e., P ({b̂

¯n �= b
¯n})). Curves in Fig. 6

first indicate that more efficient exploitation of pilot channels
or symbols for only phase-ambiguity resolution outperforms
their conventional use for channel-identification. The receiver
versions with enhanced pilot use (i.e., Rx3 and Rx5) perform
practically the same with 1 or 5% fractions of the pilot power
or overhead thereby showing that long-term averaging in Eqs.
(7) and (10) indeed significantly reduces phase ambiguity
estimation errors in Eq. (8) from very weak pilot signals.
On the other hand, the receiver versions with conventional
pilot use (i.e., Rx2 and Rx4) see their performance drop when
the pilot power or overhead fraction is reduced by half from
10 to 5%. Simulations actually indicate that Rx2 and Rx4
with 10% fraction perform worse than Rx3 and Rx5 with 1%
fraction only. The curves in Fig. 6 also suggest that pilot-
channel and pilot-symbol versions, with either conventional
or enhanced pilot use, perform similarly thereby confirming
our analytical assertions at the link-level. Below we extend
the scope of our assertions to the system-level with focus on
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Fig. 6. BER vs. SNR in dB for different versions of STAR (see Tab. 1)
with optimum step-size µopt of Eq. (13) (for the low-rate/low-speed setup of
section V-A with M = 4 antennas).

spectrum efficiency.
The expression for misadjustment in Eq. (14) suggests that

multiplying the noise variance σ2
N or the normalized Doppler

fDTs by factor 1/ξ2 in computation step 2.3 of Fig. 3 yields
the same misadjustment β2

min for Rx2 and Rx4, respectively.
Taking into account the fact that expressions for σ2

N in step 2.2
must be equated for Rx2 and Rx4 in order to achieve the same
target BER Pe in step 2.4, we should find after optimization:

C2(Pe, µopt, ξ
2
opt)(1 + ξ2

opt) � C4(Pe, µopt, ξ
2
opt) . (16)

Hence exploiting Eqs. (11) and (12) we show that:

E2(Pe, µopt, ξ
2
opt) � E4(Pe, µopt, ξ

2
opt) . (17)

With the same optimal parameters, analysis suggests that
Rx2 and Rx4 achieve the same maximum spectrum efficiency
performance at low-to-medium Doppler (where approximation
in Eq. (12) holds).

This equivalence is easier to establish for the versions of
STAR with enhanced pilot use. In step 2.4.2 of Fig. 4, SNRπ

out
in Rx3 is weaker than in Rx5 by factor ξ2. However, this factor
is considered in Rx5 when computing the error probability
pσ

e over a in step 2.4.4 of Fig. 4. Similarly from step 2.2 of
Fig. 4, we find C3(Pe, µopt, ξ

2
opt)(1+ ξ2

opt) � C5(Pe, µopt, ξ
2
opt)

and hence show that E3(Pe, µopt, ξ
2
opt) � E5(Pe, µopt, ξ

2
opt) after

optimization.
A similar conclusion regarding the equivalence between

conventional pilot-channel and pilot-symbol reference-assisted
receivers was reached in [5] at the link-level based on ex-
pressions for misadjustment of channel estimation with low-
pass filtering (see footnote 2). Here we establish an equiva-
lence between pilot-channel and pilot-symbol receivers in both
cases of conventional pilot use for channel identification and
enhanced pilot use for sign ambiguity resolution in terms of
misadjustment, optimum step-size, time-constant, and required
SNR (or BER) at the link-level; and in terms of spectrum
efficiency at the system-level (in the low-to-medium Doppler
case) as validated next by simulations.

(a): 144 Kbps @ 10−5 - 1 Kmph → f0
DT 0

s

Rx1 Rx2 Rx3 Rx4 Rx5
µopt 0.001 0.006 0.001 0.050 0.001

ξ2
opt [%] 0 2.5 0.6 1.0 1.0

SNRreq [dB] 0.71 -2.30 -2.49 -2.47 -2.66
C [users/cell] 5 12 13 13 14
E [bps/Hz/2] 0.078 0.188 0.203 0.201 0.217

(b): 9.6 Kbps @ 10−3 - 1 Kmph → 15 × f0
DT 0

s

Rx1 Rx2 Rx3 Rx4 Rx5
µopt 0.005 0.032 0.008 0.040 0.004

ξ2
opt [%] 0 10.0 1.0 4.2 1.0

SNRreq [dB] -0.94 -3.16 -3.47 -3.31 -3.51
C [users/cell] 448 711 819 732 843
E [bps/Hz/2] 0.197 0.312 0.356 0.308 0.366

(c): 144 Kbps @ 10−5 - 60 Kmph → 60 × f0
DT 0

s

Rx1 Rx2 Rx3 Rx4 Rx5
µopt 0.010 0.079 0.079 0.126 0.063

ξ2
opt [%] 0 39.8 0.6 33.3 8.3

SNRreq [dB] 4.03 1.29 1.08 1.13 1.20
C [users/cell] 1 4 5 4 5
E [bps/Hz/2] 0.016 0.063 0.078 0.042 0.072

(d): 9.6 Kbps @ 10−3 - 60 Kmph → 60 × 15 × f0
DT 0

s

Rx1 Rx2 Rx3 Rx4 Rx5
µopt 0.126 0.126 0.126 0.200 0.167

ξ2
opt [%] 0 63.1 63.1 33.3 16.7

SNRreq [dB] 0.71 -1.34 0.28 -2.28 0.57
C [users/cell] 288 375 251 382 308
E [bps/Hz/2] 0.127 0.165 0.110 0.112 0.113

Tab. 2. Receivers’ performance results with two receive antennas in
5 MHz bandwidth for (a): data calls with slow mobility, (b): voice
calls with slow mobility, (c): data calls with high mobility, (d): voice
calls with high mobility (spectrum efficiency, lower @ 10−5 than
@ 10−3, is per antenna).

V. SYSTEM-LEVEL PERFORMANCE EVALUATION

A. Simulation Setup

We consider a wideband CDMA system with 5 MHz
bandwidth, M = 2 receive antennas and P = 3 equal-
power paths. The mobile has two possible speeds of 1 and
60 Kmph corresponding, respectively, to Doppler shifts fD of
about 1.8 and 105.6 Hz at a carrier frequency of 1.9 GHz.
Power control (PC) requests an incremental change of ±0.25
dB in transmitted power every 0.625 ms with a delay of 0.625
ms and an error of 10% over the PC bit command. The user
information is encoded using a convolutional code with rate
rc = 1/2 and constraint length of 9. We consider a data rate
of 144 Kbps with processing gain L = 16 and a voice rate
of 9.6 Kbps with processing gain L = 256. The target BER
after channel decoding is 10−5 and 10−3 for the 144 and 9.6
Kbps rates, respectively, while the activity factor pTx is 100%
and 45%, respectively. We use the simulation tool proposed
in [11] to optimize spectrum efficiency by grid search over µ
and ξ2, a time consuming task.

B. Simulation Results

Simulations again indicate that more efficient exploitation of
pilot channels or symbols for only sign-ambiguity resolution
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outperforms their conventional use for channel-identification
(i.e., Rx3 > Rx2 and Rx5 > Rx4) for a range of normalized
Doppler values shown in Tab. 2. They also suggest that pilot-
channel and pilot-symbol versions, with either conventional
or new pilot use, perform nearly the same at low-to-medium
Doppler, thereby confirming again our analysis assertions (i.e.,
Rx2 � Rx4 and Rx3 � Rx5).

For low and medium Doppler in Tabs. 2-a and 2-b, effi-
ciency gains due to new pilot use are in the range of 10% and
15-20%, respectively. In the pilot-channel case, pilot power
savings which prolong battery life are in the range of 75% for
low Doppler and 90% for medium Doppler. For high Doppler
in Tab. 2-c, efficiency gains due to the improved use of the
pilot jump to 25 and 70% in the pilot-channel and pilot-symbol
cases, respectively, while power savings jump up to about 98%
in the pilot-channel case. In the pilot-symbol case, overhead
savings with no other benefits than those already accounted
for in spectrum efficiency gains jump from 0% at low Doppler
(see Tab. 2-a) to about 75% at both medium and high Doppler
(see Tabs. 2-b and 2-c).

Asymptotically, all pilot-aided versions of STAR perform
the same with perfect channel estimation [6]. As channel
estimation conditions worsen from low to high Doppler, gains
in spectrum efficiency of Rx3 and Rx5 over Rx2 and Rx4,
respectively, increase as well as do savings in pilot power or
overhead. At the same time, the gap in performance between
Rx2 and Rx4 and between Rx3 and Rx5 widens, thereby
showing the limitations of the previous analytical results (i.e.,
Rx2 � Rx4 and Rx3 � Rx5).

In the very high range of fDTs in Tab. 2-d, i.e., about 1000
times the low reference range f0

DT 0
s in Tab. 2-a, predictions

no longer hold. Here, the conventional pilot-channel version
Rx2 performs best. The conventional pilot-symbol version Rx4
sees even higher Doppler with slower identification update
at the pilot-symbol rate and hence performs worse. Use of
pilots for sign ambiguity resolution suffers from more severe
sign error propagation due to more frequent ambiguity hops
when tracking faster channels. Hence Rx5 and Rx3 perform
nearly as well as Rx4 and worse than Rx2. Limiting the
impact of sign ambiguity hops in Rx3 and Rx5 is an issue we
intend to address in the future. Finally, it is worth noting that
the less complex blind version Rx1 shows relatively stronger
robustness to faster channel time-variations [6],[9] and falls
second in performance.

VI. DISCUSSION AND CONCLUSIONS

For a wide range of normalized Doppler values both in
the low to high range, both analysis and simulations indicate
that exploitation of pilots in CDMA array-receivers for simple
sign-ambiguity resolution only allows significant efficiency
gains as well as power or overhead savings over the same
array-receiver versions which use pilots for conventional chan-
nel identification only. They also suggest that pilot-channel and
pilot-symbol array-receiver versions, either with conventional
or new pilot-use, have equivalent performance.

Pilot-symbol versions are, however, more sensitive to very
high values of the normalized Doppler. Besides, they need

more careful design of pilot insertion schemes before inter-
leaving (e.g., S-Random). On the other hand, pilot-channels
may require additional despreading operations with a higher
computational cost. They also need more careful design of
interference suppression constraints in a multiuser detection
framework [12].

Standards already provide recommendations for conven-
tional use of pilots for both the uplink and the downlink.
However, the more efficient use of pilots suggested here for en-
hanced performance of wideband CDMA array-receivers, be-
yond the minor modifications required, is standard-compliant.
It applies to the uplink with BPSK, but can be easily extended
to the downlink [10] and/or to higher-order modulations [13].
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