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Abstract-The location of people, mobile terminals and 

equipments is highly desirable for operational and safety 

enhancements in the mining industry. In an indoor environment 

such a mine, the multipath caused by reflections, diffraction and 

diffusion on the rough sidewall surfaces, and the non-line of sight 

(NLOS) due to the blockage of the shortest path between 

transmitter and receiver are the main sources of range 

measurement errors. Due to the harsh mining environment, 

unreliable measurements of location metrics such as RSS, AOA 

and TOAlTDOA result in the deterioration of the positioning 

performance. Hence, alternatives to the traditional parametric 

geolocation techniques have to be considered. In this paper, we 

present a novel method for mobile station location using 

wideband channel measurement results applied to an artificial 

neural network (ANN). The proposed system, the Wide Band 

Neural Network-Locate (WBNN-Locate), learns off-line the 

location 'signatures' from the extracted location-dependent 

features of the measured channel impulse responses data for 

LOS and NLOS situations. It then matches on-line the 

observation received from a mobile station against the learned 

set of 'signatures' to accurately locate its position. The location 

accuracy of the proposed system, applied in an underground 

mine, has been found to be 2 meters for 90% and 80% of trained 

and untrained data, respectively. Moreover, the proposed system 

may also be applicable to any other indoor situation and 

particularly in confined environments with characteristics 

similar to those of a mine (e.g. rough sidewalls surface). 

Index terms-Geolocation in mines, Channel impulse response 
fingerprinting technique, Artificial neural network. 

I. INTRODUCTION 
A problem of growing importance in indoor environments 

is the location of people, mobile terminals and equipments. In 
underground mines, geolocation with good performance is 
essential in order to improve operational efficiency, workers' 
safety and remote control of mobile equipments. Since indoor 
radio channels suffer from extremely serious multipath and 
non-line of sight (NLOS) conditions, traditional parametric 
indoor geolocation techniques (RSS, AOA TOAfTDOA) or 
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their combinations (TDOA with RSS) fail to provide adequate 
location accuracy. For these techniques, all the paths used for 
triangulation must have a line of sight (LOS) to ensure an 
acceptable accuracy, a condition that is not always met in an 
indoor environment. An improvement of the accuracy may be 
obtained by using the location fingerprinting technique in 
which the effect of multipath is used as constructive 
information. 

This paper provides a novel method for mobile station 
location using a fingerprinting technique based on wideband 
channel measurement results in conjunction with an artificial 
neural network (ANN). In section 2, we discuss the various 
wireless fingerprinting geolocation techniques used in outdoor 
and indoor environments. In section 3, we present our 
proposed system (WBNN-Locate) and give the position 
location results by applying the measured indoor data to an 
artificial neural network. Finally, we close this paper with a 
conclusion in section 4. For the studied underground mine, 
results show a distance location accuracy of 2 meters for 90% 
and 80% of trained and untrained patterns, respectively. 

II. WIRELESS FINGERPRINTING GEOLOCATION 
TECHNIQUES 

A. Fingerprinting geolocation techniques 

The process of geolocation based on the received signals' 
fingerprint is composed of two phases: a phase of data 
collection (off-line phase) and a phase of locating a user in 
real-time (real-time phase). The first phase consists of 
recording a set of fingerprints (in a database) as a function of 
the user's location, covering the entire zone of interest. During 
the second phase, a fingerprint or a 'signature' pattern is 
measured and compared with the recorded fingerprints of the 
database. A pattern-matching algorithm is then used to 
identify the closest recorded fingerprint to the measured one 
and hence to infer the corresponding user's location (Fig. 1). 



To constitute a fingerprint or a 'signature pattern', several 
types of information [1] can be used such as received signal 
strengths (RSS), angular power profile (APP) and power delay 
profile (PDP) corresponding to the channel impulse response 
(CIR). For high location accuracy, the estimated set of 
fingerprint information must be unique (no aliasing in the 
signature patterns) and reproducible. Moreover, several types 
of pattern-matching algorithms may be employed which have 
the objective to give the position of the mobile station with the 
weakest location error. Among the commonly used 
algorithms, one can find algorithms based on the measure of 
proximity, on the cross correlation of signals and on artificial 
neural networks. Due to physical constraints of indoor 
environments, the database containing the set of fingerprint 
information may not contain all the necessary fingerprints to 
cover the entire zone of interest. Hence, the pattern-matching 
algorithm must be robust and respect the generalization 
property against perturbations and lack of fingerprint data, 
respectively. 
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Figure l .  Process of geolocation using received signal's fingerprint, 
a) off-line phase, b) real-time phase. 

B. Wireless geolocation systems using the fingerprinting 

technique 

Several geolocation systems, using the fingerprinting 
technique, have been recently deployed in outdoor and indoor 
environments. The main differences between these systems 
are the types of fingerprint information and pattern-matching 
algorithms. RSS-type of information has been used in [2], [3], 
[4] while APP and CIR-types of information have been used 
in [5] and [6], [7], respectively. In these systems, algorithms 
based on the measure of proximity [2], [3], [5], [7], on the 
cross correlation of signals [4], [6] and on artificial neural 
networks [4] have been employed as the pattern-matching 
algorithm. As a measure of performance, the median 

0-7803-8521-7/04/$20.00 © 2004 IEEE 3590 

resolution of the location estimation for these indoor and 
outdoor geolocation systems, is reported to be in the range of 
2 to 3 meters and 20 to 150 meters, respectively. 

Channel impulse responses have the advantage of being 
reproducible and unique, especially when the localization is 
performed on a continuous basis (user tracking). Moreover, 
the use of an artificial neural network (ANN) as the pattern­
matching is essential since an ANN is robust against noise and 
interference, has a good generalization property and the 
localization process, during the real-time phase, is almost 
instantaneous [1], [4]. Consequently, it has been decided to 
choose location-dependent parameters extracted from the CIR 
in conjunction with an ANN for the geolocation of mobile 
units in the considered underground mine. 

III. GEOLOCATION IN A MINE USING THE 
FINGERPRINTING TECHNIQUE 

A. Collection offingerprint information (CIR) 

Wideband measurements were conducted in an 
underground gallery of a former gold mine, the laboratory 
mine 'CANMET' in Val d'Or, 700 kilometers north of 
Montreal, Quebec Province, Canada. Located at a 40-meter 
underground level, the gallery stretches over a length of 75 
meters with a width and height both of approximately 5 
meters. Figure 2 illustrates the map of the gallery with all its 
under-adjacent galleries. Due to the curvature of the gallery, 
the existence of a non-line of sight propagation is noted. 

SL:��y:l:"''1irH'' 
Level40rn 

Figure 2. Map of the underground gallery. 

A central frequency of 2.4 GHz has been used throughout 
the measurements in order to have a compatibility with 
WLAN systems, which may be used for data, voice and video 
communications as well as for radiolocation purposes. The 
complex CIR (wideband measurements) has been obtained 
using the frequency channel sounding technique [8]. The 
inverse Fourier transform (1FT) has been applied to the 



measured complex transfer function of the channel in order to 
obtain its impulse response with an estimated time resolution 
of about 8 nanoseconds. For fingerprinting radiolocation 
purposes, the experimental procedures [9] given in this article 
are different from those encountered in previous works. As 
shown in figure 2, the receiver was stationed at a predefined 
referential (x=O, y=O). The transmitter was moved to different 
locations within the underground gallery by varying its 
position of 0.5 meter widthwise (6 positions distant of 0.5 
meter for the gallery width of 5 meters) and 1 meter 
lengthwise (70 positions distant of 1 meter for the gallery 
length of 70 meters). Some other extra intermediate positions 
have also been used for the LOS and NLOS cases giving a 
total of 490 location measurements (Fig. 2). During the 
measurements, transmit and receive antennas were both 
mounted on carts at a height of 1.9 meters simulating an 
antenna placed on the helmet of a miner. 

The time domain magnitude of the complex impulse 
response was obtained at all 490 measurement locations and 

the mean excess delay ('tm), the rms delay spread ('trrns), the 

maximum excess delay ('tmax), the total received power (P), 
the number of multipath components (N), the power of the 

first path (PI) and the arrival time (delay) of the first path ('tl) 
of the channel have been computed at all 490 measurement 
locations by using a predefined threshold of 20 dB for the 
multipath noise floor. The first five parameters characterized 
the time-spread nature of the indoor channel and the last two 
parameters emphasized the difference between LOS and 
NLOS situations. Then, these seven relevant parameters 
(instead of the magnitude of the impulse response), defining 
the location-dependent features, have been used as the input 
for the ANN (positioning algorithm). The choice of these 
parameters was based on the necessity to have a good 
reflection of the user's location 'signature' (good location­
dependent features of the channel impulse measurements) 
without having an excessive ANN input vector size to avoid 
the over-fitting of the ANN during its training phase. 

B. ANN-based pattern-matching algorithm 

A trained artificial neural network can perform complex 
tasks such as classification, optimization, control and function 
approximation. The pattern-matching algorithm of the 
proposed geolocation system can be viewed as a function 
approximation problem (nonlinear regression) consisting of a 
nonlinear mapping from a set of input variables containing 

information about the relevant parameters of the CIR ('tm, 'trm" 
'tmax, P, N, PI, 'tl) onto two output variables representing the 
two dimensional location (x, y) of the mobile station. 

The feed-forward artificial neural networks that can be 
used as a function approximation are of two types, Multi­
Layer Perceptron (MLP) networks and Radial Basis Function 
(REF) networks. A generalized regression neural network 
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(GRNN), which is an REF-type network with a slightly 
different output layer, and an MLP type network have been 
tested for the proposed geolocation system. The MLP network 
showed a higher location error, compared to the GRNN, 
during the memorization of the data set. However, it showed a 
lower location error during the generalization phase of the 
network. Since the generalization property of the system was 
of greater importance, the MLP-type network has been chosen 
for the pattern-matching algorithm used in the proposed 
geolocation system. 

During the off-line phase, the MLP network is trained to 
form a set of fingerprints as a function of user's location and 
acts as a function's approximation (nonlinear regression). 
Each fingerprint is applied to the input of the network and 
corresponds to the seven channel's relevant parameters 
extracted from the CIR data received by the fixed station. This 
phase, where the weights and biases are iteratively adjusted to 
minimize the network performance function, is equivalent to 
the formation of the database seen with other fingerprinting 
systems. During the real-time phase, the aforementioned 
relevant parameters from a specific mobile station (extracted 
from the measured CIR) are applied to the input of the 
artificial neural network (acting as a pattern-matching 
algorithm). The output of the ANN gives the estimated value 
of the user's location (Fig. 3). 
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Figure 3. Operation of the proposed system, a) learning phase (off-line 

phase), b) recalling phase (real-time phase). 

It has to be noted that when the size of an ANN is 
increased, the number of internal parameters (weights and 
biases) increases inducing more local and global minima in 
the error surface, and making the finding of a global or a 
nearly-global minimum by the local minimization algorithm 
easier [10]. However, when the size of the ANN is large 
(number of internal parameters is large for the selected 
training set), an over-fitting problem occurs. It means that the 
error on the training set is driven to a very small value, but 
when new data is presented to the network, the error is large. 
This is a case where the network has memorized (look-up 
table) the training set, but it has not learned to generalize to 
new situations [10]. Hence, to have a network with a good 



generalization property, the size of the network must be 
chosen just large enough to provide an adequate fit. 

In order to have a good generalization property, the used 
MLP architecture consisted of seven inputs corresponding to 
the channel's relevant parameters, one hidden layer and an 
output layer with two neurons corresponding to (x, y) location 
of the user (Fig. 4). A differentiable tan-sigmoid type of 
transfer function has been associated for neurons in the hidden 
layers and a linear one for the output layer. 

The simulation results, obtained with the Neural Network 
Toolbox of Matlab [10], showed that ten neurons 
corresponding to the hidden layer are adequate to achieve the 
required regression. Special attention has been given to the 
ANN's over-fitting problem to respect the generalization 
property. With seven inputs, two output neurons and ten 
hidden neurons, the total adjustable number of weights and 
biases was equal to 102 ( [7*10]+[10*2] for the weights, and 
[10]+[2] for the biases). This is almost four times smaller than 
the total number of the training set, which is equal to 367 and 
corresponds to the 75% of the measured wideband data. As a 
rule of thumb, to have a good generalization property and to 
avoid the memorization of the network, the number of the 
patterns in the training set has to be around four times the 
number of the internal adjustable ANN parameters. Hence, the 
use of ten hidden neurons was justified. 
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Figure 4. Proposed pattern-matching ANN. 

C. Location estimation results 

The proposed neural network architecture has been 
designed using the Neural Network Toolbox of Matlab [10]. 
In the learning phase, the seven relevant parameters of the 
CIR and the measured true mobile station positions have been 
used as the input and as the target of the ANN, respectively. 
From the 490 measured data, 367 patterns have been 
employed to train the network. For the recalling phase, as a 
first step, the same 367 patterns have been applied to the 
pattern-matching neural network to obtain the location of the 
mobile station (validation of the memorization property). The 
location errors as well as their cumulative density functions 
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(CDF) have been computed for analysis purposes. The plots of 
the corresponding location errors and CDFs of location errors 
are given in figures 5 and 6. It has to be noted that the 
localization error has been calculated as the difference 
between the exact position of the user and the winning 
position estimate given by the localization algoritlun, and 
hence represents the RMS position location error. 

For the training set of data, it can be seen (fig. 5) that the 
location error in x varies between -2.9 meters and 4.6 meters, 
the location error in y varies between -1.8 meters and 1.7 
meters and the maximum error in Euclidean distance, between 
the estimated and the true positions, is equal to 4.6 meters. 

Number of mobile station's positions 

Figure 5. Location errors in x, y and d, with inputs corresponding to the 
training set of data defined by the number of positions of the mobile station. 
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CDFs of location errors in x, y and d, with inputs corresponding 
to the training set data defined. 

Moreover, it can be seen, from figure 6, that a distance 
location accuracy of 2 meters is found for 90% of the trained 
patterns. An improvement of the location accuracy is feasible 
at the cost of the generalization property. 

As a second step, the remaining 123 non-trained patterns 
have been applied to the network to verify the generalization 



property of the proposed geolocation system. The location 
errors as well as their cumulative density functions (CDFs) 
have been computed and plotted (Figs. 7 and 8). 
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Figure 7. Location errors in x, y and d, with inputs corresponding to the 
untrained set of data defined by the number of positions of the mobile station. 
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Figure 8. CDFs of location errors in x, y and d, with inputs corresponding 
to the untrained set of data. 

For the untrained set of data, it can be seen (Fig. 7) that the 
location error in x varies between -3.8 meters and 4.8 meters, 
the location error in y varies between -2.6 meters and 2.7 
meters and the maximum error in Euclidean distance, between 
the estimated and the true positions, is equal to 4.8 meters. 
Moreover, the accuracy of the position estimate depends on 
the resolution of the map, which in turn depends on the 
distance threshold used in the map building process. After 
localization has been achieved, the theoretical error between 
the actual and estimated position (localization error) should 
therefore vary between zero and the distance threshold. Since 
the size of the grid used in the indoor wideband measurements 
was 0.5 meter widthwise and I meter lengthwise, the 
geolocation accuracy that one may expect with the proposed 
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fingerprinting technique, should be between 0 and 1.12 meters 
(distance threshold) in terms of the Euclidean distance. 

It can be seen, from figure 8, that the location accuracy 
corresponding to the distance threshold is achieved for 40% of 
all the untrained patterns. 

IV. CONCLUSIONS 
This paper has shown that a fingerprinting technique using 

the CIR information is a novel approach for geolocation in 
mines or other confined environments with rough sidewall 
surfaces. The technique exhibits superior reproducibility 
properties compared to other two fingerprint information 
(RSS and APP) based techniques. 

The use of an artificial neural network as a pattern­
matching algorithm for the proposed system is a new 
approach that has the advantage of giving a robust response 
with a generalization property. Moreover, since the training of 
the ANN is off-line, there are no convergence and stability 
problems that some control (real-time) applications encounter. 
The transposition of the system from two to three dimensions 
is easy (addition of a third neuron in the ANN's output layer 
corresponding to the z position of the user) and constitutes an 
advantage of the ANN. 

The proposed fingerprinting technique used for the 
geolocation of the studied mine, gave an accurate mobile­
station location. The results showed that a distance location 
accuracy of 2 meters has been found for 90% and 80% of the 
trained and untrained patterns, respectively. This location 
accuracy, which may be enhanced at the cost of the 
generalization property, is smaller compared to the one 
reported in the literature for indoor geolocation using 
fingerprinting techniques. 

On the other hand, the fingerprinting technique needs the 
digital map of the environment and is not well suited for 
dynamic areas. Preliminary measurements in mine showed 
that the influence of low human activity is negligible on the 
wideband measurement results at the specific frequency of 
operation. However, heavy machinery or vehicles may 
considerably change the properties of the channel, requiring 
an update of the database's information (a new training of the 
neural network). 

As indicated previously, this novel method may also be 
applicable to any other indoor applications (shopping centers, 
campuses, office buildings). In addition, some advanced 
simulation programs may be used to generate impulse 
responses as a function of user's location (for the training set 
of data of the neural network) instead of getting these impulse 
responses via wideband measurements. This approach will 
reduce the database generation time for the proposed 
geolocation system and would facilitate the proposed system's 
implementation. 



Finally, for an effective implementation of the proposed 
system, one may employ different radio access technologies 
such as WLAN, impulse radio (UWB) or mobile radio. 
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