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ABSTRACT
In this paper we propose a new reduced-bias SNR estimator
for BPSK modulation over AWGN channels derived from the
maximum likelihood (ML) approach. This estimator holds
for both the blind and pilot-assisted cases. Simulation results
demonstrate the superiority of the new SNR estimator over
previous estimators at low SNR, where they usually exhibit
a high estimation bias. At high SNR, the new estimator re-
mains comparable in accuracy to the best existing techniques.

1. INTRODUCTION

Signal-to-noise ratio (SNR) is an important measure in sev-
eral communication systems. The SNR measurement can be
needed in various applications such as power control, adap-
tive modulation and coding and cell hand-off. Several SNR
estimation techniques have been proposed for AWGN chan-
nels. The SNR estimators can be classified as data-aided
(DA) and non data-aided (NDA). DA estimators assume the
knowledge of the transmitted data or that the transmitted data
can be reconstructed from the received data and used by the
estimator as if it was perfectly reconstructed. On the other
hand, NDA estimators assume that the data remain unknown
to the receiver. A DA estimator that makes use of the per-
fect knowledge of the transmitted sequence is designated by
TxDA (i.e., pilot-assisted). A DA estimator that uses an es-
timate of the transmitted data sequence from receiver deci-
sions is designated by RxDA (i.e., blind). The NDA and
RxDA estimators have the advantage of not reducing the band-
width efficiency of the communication system, contrary to
the TxDA estimators, and hence are more interesting. A
comparison of many of these estimators was performed in
[1]. From all estimators studied there, the ML RxDA [2]
and the M2M4 [4] estimators emerge as best candidates. ML
RxDA is the best estimator at high SNR but is outperformed
by M2M4 at low SNR due to the bias caused by receiver
decision errors.

In this paper we propose a simple method that reduces the
bias of the ML RxDA estimator observed at low SNR. The
resulting reduced-bias version of the ML RxDA estimator
outperforms the M2M4 at low SNR and remains as accurate
as the classical ML RxDA estimator at high SNR.

Since most practical communication systems use some
form of synchronization and/or training sequences that are
known to the receiver, we modify our new algorithm so that
it can exploit the presence of both pilot and data symbols.

Simulation results demonstrate the superiority of the new
SNR estimator over previous estimators at low SNR, where
they usually exhibit a high estimation bias. At high SNR, the
new estimator remains comparable in accuracy to the best
existing techniques.

2. SYSTEM MODEL AND PROBLEM STATEMENT

We consider the same system model as in [1],[2], that defines
the received signal as follows:

yi = Aai + wi, (1)

where i = 1, 2, ...N is the time index in the observation in-
terval, yi is the received signal, A is the signal amplitude
assumed positive and constant over the observation interval,
ai is the transmitted BPSK signal and wi is a realization of
a zero mean white Gaussian random process of variance σ 2.
The SNR of the received symbol is given by:

ρ =
A2

σ2
. (2)

We assume here that the transmitted symbols ai are deter-
ministic realizations. Hence, the probability density function
(PDF) for the received sample at time index n is expressed
as follows:

f(yn) =
1√

2πσ2
e−

(yn−Aan)2

2σ2 . (3)

Hence, the probability density function of a received vector
(y1, y2, ..., yN ) can be expressed as:

fN(y1, y2, ..., yN ) =
N∏

i=1

f(yi). (4)

In [2], Gagliardi and Thomas introduce the ML SNR esti-
mator for BPSK modulated signals over a real AWGN chan-
nel. The ML estimator is expressed as:



ρ̂ = ̂(A2/σ2) = (Â)
2
/σ̂2, (5)

where Â and σ̂2 are the solutions of the likelihood equations:

∂logfN

∂A
= 0,

∂logfN

∂σ2
= 0. (6)

The respective solutions are then found to be:

Â =
1
N

N∑
i=1

yiai, (7)

σ̂2 =
1
N

N∑
i=1

y2
i − (Â)2. (8)

Hence, if we use an estimate of the transmitted signal âi, we
have the classical ML RxDA SNR estimator expressed as:

ρ̂ =
( 1

N

∑N
i=1 yiâi)2

1
N

∑N
i=1 y2

i − ( 1
N

∑N
i=1 yiâi)2

. (9)

Note in this case that âi is sign(yi) where sign is the signum
function. Hence, Â may be expressed as:

Â =
1
N

N∑
i=1

|yi|. (10)

In [1], it was shown that the ML RxDA estimator performs
equally well at high SNR as the ML TxDA, which relies on
pilot data. When the SNR is not high enough to reduce re-
ceiver errors, the RxDA estimate exhibits a large bias.

While an exact expression for the bias of TxDA SNR es-
timator was derived in [2], the calculation of the bias for the
RxDA SNR estimator remains challenging. To circumvent
this difficulty, we will focus only on the bias in the estimate
Â. Indeed, from (10), one notices that Â is a sum of N
random variables |yi|. Hence, E(Â) = E( 1

N

∑N
i=1 |yi|) =

E(|yi|). Here, E{.} denotes the expectation. As seen in (3),
the random variable yi is Gaussian with mean Aai and vari-
ance σ2. Therefore |yi| is the absolute value of a Gaussian-
distributed variable. The pdf of |y i| is:

f|yi|(y) =

{
1
σ

(
φ(y−Aai

σ ) + φ(y+Aai

σ )
)

, y > 0
0, y ≤ 0

(11)

where φ is the standard normal probability density function.
Given the distribution of |yi|, the expectation is:

E{Â} = E{|yi|} = A

(√
2
π

e−
1
2 ρ

√
ρ

+ erf(
√

ρ

2
)

)
, (12)

where erf{.} is the error function.
As expected, Â is a biased estimator of A. From (12),

one can note that the bias in Â tends to zero as ρ increases.
On the other hand, at low SNR, the bias may be large enough
to significantly distort the SNR estimation. The poor perfor-
mance of the classical ML RxDA estimator at low SNR is
explained by the presence of this bias.

3. REDUCED-BIAS DA ML-BASED ESTIMATOR

In this section, we introduce a new algorithm to compensate
the bias of the RxDA estimator introduced in the previous
section.

It is interesting to note that Â is biased by the factor

(
√

2
π

e− 1
2 ρ

√
ρ +erf(

√
ρ
2 )). To reduce this bias, one could use the

estimator ρ̂ to evaluate it then compensate for it. Accordingly
we calculate the estimates Â and ρ̂ by using the classical

RxDA, then reduce the bias by dividing Â by (
√

2
π

e− 1
2 ρ̂

√
ρ̂

+

erf(
√

ρ̂
2 )), giving a new estimate Â1:

Â1 =
Â(√

2
π

e− 1
2 ρ̂

√
ρ̂

+ erf(
√

ρ̂
2 )
) . (13)

At last, we calculate the new SNR estimator as:

ρ̂1 =
(Â1)2

1
N

∑N
i=1 y2

i − (Â1)2
. (14)

In fact, this method could be implemented iteratively where
in each iteration we estimate the SNR and use it to compen-
sate the bias in (12).

While most SNR estimators use either data or pilot sym-
bols, an SNR estimator exploiting jointly pilot and data sym-
bols can be derived.

In [3], a maximum likelihood based SNR estimator for
BPSK using both pilot and data symbols was introduced. Us-
ing the same model as before, the received signal is expressed
as:

yi = Aai + wi, (15)

where i = 1, 2, ..., P +M is now the time index in the obser-
vation interval, i = 1, 2, ..., P corresponds to pilot symbols
and i = P + 1, P + 2, ..., P + M corresponds to the data
symbols.

The approximate ML-based estimator is derived from the
received samples (both data and pilot) giving:

ρ̂ =
Â2

1
P+M

∑P+M
i=1 y2

i − Â2
, (16)



where Â = 1
P+M (

∑P
i=1 yiai +

∑P+M
i=P+1 |yi|)

It can be shown that:

E{Â} =
A

P + M

(
P + M

[√
2
π

e−
1
2 ρ

√
ρ

+ erf

(√
ρ

2

)])
.

(17)
The expression above is close to the one found in (12).

Our reduced-bias ML estimator is calculated using the fol-
lowing algorithm.

Input y1, ..., yP+M

Input I {number of iterations}

Initialization

calculate A0 = 1
P+M (

∑P
i=1 yiai +

∑P+M
i=P+1 |yi|)

calculate ε2 = 1
P+M

∑P+M
i=1 y2

i

calculate ρ̂0 = A2
0

ε2−A2
0

for iteration k = 1..I

Ak = A0/
(

P
N+M + M

P+M

[√
2
π

e
− 1

2 ρ̂k−1√
ρ̂k−1

+erf

(�
ρ̂k−1

2

)])
ρ̂k = A2

k/(ε2 − A2
k)

End

Output ρ̂I

Obviously this algorithm holds without modification for the
blind case described earlier, i.e., P = 0.

4. SIMULATION RESULTS AND COMPARISONS

In the following section, Monte Carlo computer simulations
are performed over 10000 runs to show the performance of
the proposed algorithm. For comparison, we provide the
performance of M2M4, the classical ML RxDA estimator
and the approximate maximum likelihood estimator [3] ex-
pressed in (16). We will therefore use the classical CRB [5]
as a reference.

Note that all ML-based estimators generate estimates that
are in fact biased estimates by a factor of N−3

N [1]. A reduced-
bias (RB) ML-based SNR estimator can be derived as fol-
lows:

ρ̂ML−RB =
N − 3

N
ρ̂ML. (18)

In our simulations, the reduced-bias versions are used for all
ML- based estimators.
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Fig. 1. True SNR normalized mean squared error of the new
estimator in the blind case.
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Fig. 2. Normalized bias of the new algorithm in the blind
case.

We start by looking at the performance of the new al-
gorithm as a function of the number of iterations. For the
sake of simplicity, we only consider for now the blind case
(P = 0 and M = 100). In Fig. 1, we present the normalized
mean squared error (NMSE) as a function of the number of
iterations at different SNR levels.

At 0 dB, we report a quick saturation in performance im-
provement beyond the 6 th iteration (i.e., I = 6). Notice that
for each SNR value, we find an optimal number of itera-
tions. As we will see, this is hardly surprising since there
is a bias/variance tradeoff requiring an optimal number of it-
erations for each SNR value. Therefore, in practice, we can
change the number of iterations dynamically depending on
the range of SNR.

In Fig. 2, we exhibit the normalized bias of the new es-
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Fig. 3. The normalized variance of the new estimator in the
blind case.
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Fig. 4. True SNR normalized mean squared error of the esti-
mators in the blind case with I = 10.

timator as a function of the number of iterations. It is shown
that the new algorithm converges relatively rapidly. At 0 dB,
the bias is reduced by factor 10. This factor is about 40 at 5
dB.

In Fig. 3, we plot the normalized variance for different
SNR values versus the number of iterations I . We notice
that the new algorithm reduces the bias at the expense of an
increase in variance, thereby leading to a bias-variance trade-
off. In fact, the choice of the number of iterations depends
on the design criteria involving variance and bias. In many
cases the objective may be simply to reduce the bias with a
higher number of iterations, less so at higher SNR. Overall,
the new algorithm offers flexibility to accommodate various
applications with different criteria.

Fig. 4 shows the NMSE as a function of SNR for the
estimators in the blind case (P = 0 and M = 100).

As expected, the classical ML RxDA estimator performs
poorly at low SNR (due to errors in symbol decision) but
offers an acceptable performance at high SNR reaching the
CRB. The M2M4 estimator is better than the RxDA estima-
tor at low SNR, but not at hight SNR. The newly proposed
estimator outperforms both techniques at low SNR with only
I = 10 iterations, providing an efficient estimation over a
much wider range of SNR.
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Fig. 5. Normalized bias of the estimators in the blind case
with number of iterations for the new estimator (I = 10).
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Fig. 6. True SNR normalized mean squared error of the es-
timators in the pilot-assisted case with number of iterations
for the new estimator (I = 3).

Fig. 5 compares the bias of the new estimator, the M2M4

and the classical RxDA estimators. One sees that our algo-
rithm outperforms the M2M4 in terms of bias.

In Fig. 6, we plot the NMSE for the pilot-assisted case
(P = 32, M = 112 and I = 3 iterations) compared to the
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Fig. 7. Normalized bias of the estimators in the pilot-assisted
case with number of iterations for the new estimator (I = 3).

NMSE of the estimator proposed in [3]. It shows that our
estimator outperforms the estimator in [3] over a large range
of practical SNR values. The superiority of our algorithm is
obvious at low SNR.

Lastly, in Fig. 7 we examine the bias in the pilot-assisted
case compared to the bias of the estimator proposed in [3].
Our estimator performs better at low SNR. As an example,
for SNR= 0 dB, we have a bias gain of about 6 dB.

5. CONCLUSION

A new SNR estimator for BPSK signals is proposed. The al-
gorithm is a data-aided ML-based estimator with bias com-
pensation. Simulations exhibit a performance gain over other
previously proposed techniques. Either using data only or
combining data and pilot symbols, the new estimator offers
efficient performance gain over a wider range of SNR values.
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