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ABSTRACT

We present a new technique to localize multiple scattered
sources and estimate their angular spreads (ASs). We take
into account the partial stationarity of the channel and pro-
pose a two-stage approach to estimate the ASs and the
nominal angles of arrival (AoAs) of the sources. First, we
blindly estimate the channels over several data blocks reg-
ularly spaced by intervals larger than the coherence time
but each, short enough in length, to make time variations
negligible within the block duration. Second, for each
spatially scattered source, we separately process the cor-
responding sequence of quasi-independent channel real-
ization estimates as a new single-scattered-source obser-
vation over which we apply Taylor series expansions to
transform the estimation of the nominal AoAs and the ASs
of the corresponding scattered source into a simple local-
ization of two closely-spaced uncorrelated rays (i.e., point
sources). Rays’ locations allow accurate retrieval of the
AoAs and ASs. Simulations confirm the efficiency of the
proposed approach in the most adverse conditions.

1. INTRODUCTION

In mobile communication systems, the performance of
source localization algorithms are largely affected by the
multipath phenomenon. Indeed, for the uplink, the energy
transmitted by a single source (mobile terminal) arrives at
the receiver within a cluster of rays randomly distributed
around the nominal AoA due to the local scatterers. This
phenomenon has a negative impact on classical localiza-
tion algorithms [1]. In this context, the nominal AoA and
the AS (i.e., the standard deviation of the AoA of a locally
scattered source) are two key parameters in the design of
source localizers [2] and optimal detectors [3].

Recently, the case of narrow-band scattered sources
has been investigated in several works as [4]. Therein, in-
coherent distribution of sources has been assumed. This
hypothesis stems from the particular situation of a highly
varying channel in wireless communication systems. Un-
fortunately, this assumption is quite hard to satisfy in sev-
eral real-world cases. Indeed, the channel realizations are
closely related to the motion speed of the mobile termi-
nals or equivalently the scatterers within their vicinity.
Fast fading channels can be encountered with fast moving
sources. However, they appear as static for slowly moving
ones [5]-[7]. In addition, the channel stationarity assump-
tion (at least during the estimation process) has been long

exploited to develop blind and pilot signals-based chan-
nel estimation algorithms [8]-[10], [5], etc. In Section 4,
we empirically prove that this stationarity feature affects
the technique proposed in [4]. This fact accounts for the
relevance of the current work.

In this paper, we present a new two-stage algorithm
for the estimation of the nominal AoAs and the ASs of
locally scattered sources. First, we exploit the sources in-
dependence to estimate the channel realizations over sev-
eral data blocks. The channel is assumed as stationary
over each block. Second, we match the channel estimates
and exploit Taylor series expansions proposed in [4] to
transform the estimation of the AoA and the AS of every
source using a uniform linear array (ULA) of sensors into
a simpler task consisting in localizing two point sources
symmetrically positioned around the nominal AoA. The
resulting procedure takes advantage of the capabilities of
the channel estimation preprocessing-stage to accurately
estimate the required parameters even in adverse contexts.

2. PROBLEM STATEMENT AND ASSUMPTIONS

We suppose N narrow-band, stationary, ergodic, and inde-
pendent sources. Each source is scattered by a large num-
ber of scatterers within its vicinity to generate L wave-
fronts. This scenario is practical in the radiocommunica-
tions context where every source models a mobile termi-
nal surrounded by scatterers [7]. At instant t, the con-
sidered sources, represented by an N -dimensional vec-
tor s(t) = [s1(t) ... sN (t)]T , impinge on M sensors
yielding an M -dimensional observations vector x(t) =
[x1(t) ... xM (t)]T . The channel is then modelled as an
M ×N matrix B(t), and x(t) is expressed as:

x(t) = B(t) s(t) + n(t), (1)

where n(t) = [n1(t) ... nM (t)]T is an unknown noise
vector composed of M Gaussian i.i.d centered stationary
signals with variance σ2

n. The L wavefronts generated
from the qth source are impinging from different direc-
tions (θ̃ql)1≤l≤L, assumed to be symmetrically distributed
around the nominal AoA, θq , on the sensors array. Hence,
the qth channel matrix column is expressed as:

bq(t) =
L∑

l=1

γql(t)a
[
θq + θ̃ql(t)

]
, (2)

where a represents the nominal steering vector whose ex-
pression strongly depends on the geometry of the sen-
sors array. In this work, we consider only the case of
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a ULA of sensors. Hence, a is expressed as a(θ) =
[1 ej2π∆ sin(θ) ... ej2(M−1)π∆ sin(θ)]T where ∆ is the
sensors separation in wavelengths. The channel gains,
(γql)1≤l≤L, are commonly modelled as uncorrelated,
zero-mean complex Gaussian random variables. This cor-
responds to Rayleigh fading for a large number of scatter-
ers. Actually, γql and θ̃ql fully characterize the lth wave-
front generated from the qth source, and are the realiza-
tions of the stochastic processes γq and θ̃q , respectively.
We also assume as in [4] that θ̃q is centered and sym-
metrically distributed with low standard deviation. This
hypothesis is practical for macrocell environments in ra-
diocommunication systems [7].
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Fig. 1. An illustration of our processing strategy exploiting both
fast and slow channel variations.

In practice, the channel may be slowly varying due to
the low speed of the mobile terminal. Consequently, the
random variables θ̃q and γq are slowly varying. This fact
directly affects the estimation of the parameters σθq and
θq; ∀ q ∈ {1, ..., N}. In Figure 1, we see that within a
short data block, the ray’s magnitude can be assumed as
constant. Actually, the same slow variations behavior is
observed with the the other parameters characterizing the
ray. This special stationarity feature of the channel is com-
monly exploited in several works [5], [8]-[10], etc. How-
ever, the ray’s magnitude (consequently the channel) re-
markably changes between two distant-enough blocks. In
this work, we take advantage of both aspects of slow/fast
channel variations. Indeed, we first estimate the channel
over K short data blocks. Then, we combine all the esti-
mates to retrieve the ASs and the AoAs as explained be-
low.

3. CHANNEL PARAMETERS ESTIMATION

3.1. Preprocessing: blind channel identification

Since the sources are independent, we can use the blind
channel identification (through independent component
analysis) as a preprocessing step to estimate the ASs
and the AoAs. Hence, the performance of the proposed
method strongly depends on this stage. Precisely, a fast
convergent and accurate channel estimation algorithm is
required to have less computational complexity and ac-
ceptable accuracy with a limited number of snapshots.
This preprocessing has two main advantages: (i) It trans-
forms the general multi-source problem in hand into the
estimation of the AS and nominal AoA of every source

separately. (ii) In case of colored Gaussian noise, the
channel realizations can be estimated using fourth-order
statistics [8], rendering the estimation of the ASs and the
AoAs possible in the second stage even in colored noise,
in contrast to previous techniques.

Without loss of generality, we will consider a spatially
white Gaussian noise and use in our simulations in Sec-
tion 4 the algorithm proposed in [9, 10]. We run the blind
channel identification algorithm over each of the K blocks
(cf. Figure 1). The K channel matrix realizations are
blindly estimated up to some scale and permutation in-
determinacies for the K data blocks. In other words, if
we note B(k) as the kth channel matrix realization, its
estimate is expressed as:

B̂(k) = B(k)P(k)D(k) + E(k), (3)

where D(k) = diag[α1(k) ... αN (k)] is a diagonal matrix
composed of scalar indeterminacies, P(k) is a permuta-
tion matrix, and E(k) is an “error matrix” representing
the estimation residue of the preprocessing step.

3.2. Covariance matrix and practical considerations

Here, we suppose that the permutation indeterminacies are
solved. We will address this issue in the following subsec-
tion. The qth column of the channel matrix has K realiza-
tions [bq(k)]1≤k≤K whose estimates are:
b̂q(k) = αq(k)bq(k) + eq(k)

= αq(k)
∑L

l=1 γql(k)a
[
θq + θ̃ql(k)

]
+ eq(k),

(4)
where eq(k) is the column vector of E(k) defined in (3).
Notice here that (4) has the same form as the data model
that has been long considered in the literature to estimate
the AS and the nominal AoA [4]. In addition, the fun-
damental hypothesis of incoherently distributed sources
with fast channel realizations is now satisfied if the K data
blocks are enough spaced such that for q ∈ {1, ..., N},
[γql(k)]1≤k≤K models a sequence of realizations of a
random variable which is independent of [γql′(k)]1≤k≤K

∀ l, l′ ∈ {1, ..., L} such that l 6= l′. The scale indetermi-
nacies [αq(k)]1≤k≤K have no effect as it will be demon-
strated later. Therefore, we can successfully utilize the
same procedure presented in [4] to estimate the AS and
the nominal AoA of the qth source. It is also important to
point out that the estimation error, eq(k), is not necessar-
ily a spatially white process and could be correlated with
bq(k). Thus, one must take a special care in the channel
identification stage so that this estimation error is as low
as possible.

Finally, we consider the following covariance matrix
of the qth channel vector to estimate the qth AS and nom-
inal AoA: Rq = E{bqbH

q }. (5)

However, recall that only an estimate of bq is available in
(4). Hence, we will approximate Rq using:

R̂q =
1
K

K∑

k=1

b̂q(k)b̂H
q (k) (6)

which is a consistent estimator of Rq up to a scale factor,
E{|αq|2}, induced by the scale indeterminacies.



3.3. Channels matching

The point here is how to classify the estimated sources
(or equivalently the column vectors of the random channel
realizations’estimates) over the K data blocks. Two main
cases must be considered to perform this task.

Scenario 1: the sources are spatially very close such
that the wavefronts generated from a couple of sources
overlap. In this case, some properties of the sources
can be exploited. First, suppose that the sources are
correlated over time (at least between two consecutive
T -length data blocks). In this case, the calculation of
the estimated sources’ correlations for two consecutive
data blocks could be exploited to match the indepen-
dent components and solve the permutations indetermi-
nacies. This assumption can be further relaxed to the
temporal dependence. Indeed, knowing that the sources
are mutually independent, one can easily use some higher
order-statistics-based criteria (e.g., maximizing the cross-
cumulants). Other properties of the sources can also be
utilized depending on the considered application. For in-
stance, in the context of CDMA systems, one can take
advantage of the spreading codes to classify the channels.
For digital signals, a waveform matching of the estimated
sources could be exploited if the signals have different
waveforms.

Scenario 2: the sources’ angular separations are much
larger than the ASs such that the wavefronts generated
from at least two sources overlap. One can maximize the
normalized columns scalar product of every estimate of
the channel realization with a reference one (chosen ran-
domly) to identify the K-length realizations sequence for
every channel column vector. The solutions provided for
the previous case also apply here.

3.4. Approximative two-ray model

We briefly review the procedure that transforms the esti-
mation of the nominal AoA and the AS of a single source
(indexed by q) into the localization of two point sources
as in [4]. For low angular deviation values, the first or-
der Taylor series expansion can be used to express the qth
spatial frequency as:

2π∆ sin(θq + θ̃q) ≈ 2π∆sin(θq) + 2π∆θ̃q cos(θq)
, ωq + ω̃q,

(7)
where ω̃q is the spatial frequency deviation resulting from
the angular deviation. According to the previous represen-
tation, ω̃q and θ̃q have approximately the same probabil-
ity density function. Furthermore, we can easily establish
that the standard deviation of ω̃q is expressed as:

σωq = 2π∆cos(θq)σθq . (8)

Hence, determining θq and σθq amounts to estimating ωq

and σωq ∀ q ∈ {1, ..., N}. Now, using this first order
Taylor series, it can be established that Rq is expressed as
[3, 4]: Rq = Da(ωq)Ξ(σωq )Da

∗(ωq), (9)

where: Da(ωq) = diag[a(ωq)] (10)

and Ξ(σωq
) = Rq when ωq = 0. The (p, r)th entry of

Ξ(σωq
) is:

ξpr ≈ Φω̃q

[
(p− r)σωq

]
, (11)

with Φω̃q
being the characteristic function of ω̃q . This rep-

resentation was exploited in [3] to explicit the effect of
the angular spread on the coherence of the received sig-
nal. Nevertheless, it still requires the knowledge of the
distribution of the angular deviation. To circumvent this
limitation, a second order Taylor series expansion for a
was utilized in [4] to find that Rq can be approximated as:

Rq ≈ 1
2
A(ωq +σωq

, ωq−σωq
)AH(ωq +σωq

, ωq−σωq
),

(12)
where:
A(ωq +σωq , ωq−σωq ) =

[
a(ωq + σωq

) a(ωq − σωq
)
]
.

(13)
The approximation in (12) has two main advantages.

First, the resulting representation is independent of the an-
gular distribution and depends explicitly on the nominal
AoA and the AS only. Second, the originally complicated
angular spread estimation problem is transformed into a
simpler one consisting in recovering two AoAs. Thus,
a classical localization algorithm could be used to solve
this problem. In the sequel, we will use the algorithm
root-MUSIC [11] resulting in the so-called “spread root-
MUSIC” [4]. Notice also that the application of the lo-
calization algorithm to Ξ(σωq ) leads empirically to two
symmetrical values {λ(σωq),−λ(σωq)} where λ is posi-
tive function which has no analytical expression but can
be empirically determined. For low AS values, λ(σωq ) ≈
σωq [4]. This approximation will be used next.

4. SIMULATION RESULTS

In what follows, we consider L = 50 wavefronts of ev-
ery source such that for q ∈ {1, ..., N}, (γql)1≤l≤L are
centered, Gaussian, and i.i.d with E{|γql|2} = 1/L. The
angular deviations of these wavefronts are uniformly dis-
tributed i.e., θ̃q ∈ [−√3σθq ,

√
3σθq ]. The signals are

received over a ULA of M = 6 sensors with a half
wavelength elements separation. As a performance index,
we calculate the root mean squared error (RMSE) over
MC = 5.102 Monte-Carlo runs in all our simulations.

To prove the relevance of the proposed method, we
start by checking the effect of the channel partial station-
arity on the algorithm spread root-MUSIC. We consider
the case of a single scattered BPSK source, and vary the
stationarity window length of the channel. In other words,
we suppose that the channel [characterized by (γ1l)1≤l≤L

and (θ̃1l)1≤l≤L] is constant over Ts snapshots and es-
timate the AS and the nominal AoA. We suppose that
σθ1 = 3◦, θ1 = 0◦, SNR = 10 dB, and we estimate
the statistics over T = 5.102 snapshots. Figure 2 clearly
shows that the accuracy of this algorithm deteriorates as
Ts increases.

We consider a second scenario of two scattered
sources located at θ1 = 0◦ and θ2 = 5◦. The ASs of
both signals are σθ1 = σθ2 = 3◦ (i.e., adverse scenario
of two scattered sources with spatial overlap). We chose
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Fig. 2. RMSE[◦] vs. stationarity interval, Ts in number of
snapshots, at SNR= 10 dB and σθ1 = 3◦.

T = K = 102 so that we ensure an acceptable accuracy
in blindly estimating the channel matrix realizations, the
ASs, and the nominal AoAs. We suppose that the chan-
nel is constant over the T snapshots and take different
Gaussian realizations of the coefficients [γql(k)]1≤k≤K

for l ∈ {1, ..., L} and q ∈ {1, ..., N} as assumed in Sec-
tion 2. To solve the permutation indeterminacies in esti-
mating the channel, we suppose that the same signals are
retransmitted over the K blocks. We compare the pro-
posed approach to the direct one where we calculate the
statistics over the KT snapshots1 without taking into ac-
count the channel partial stationarity. In Figures 3 and
4, we plot the RMSE for the ASs and nominal AoAs
achieved by both approaches with respect to the SNR.
Clearly, the proposed two-stage approach outperforms the
direct one. Indeed, since |θ1 − θ2| <

√
3(σθ1 + σθ2),

the resulting wavefronts from both sources overlap and
transforming the original problem into the localization of
four rays is confusing since the rays can not be identified
and matched properly to estimate the ASs and the nomi-
nal AoAs. For the new method, we mitigate this problem
since every single channel vector random realizations are
first identified using the spatial independence and the tem-
poral correlation of the sources. After that, we exploit the
two-ray approximation for every channel column vector.

−10 −5 0 5 10 15 20 25 30
10

−1

10
0

10
1

10
2

SNR[dB]

RM
SE

(σ
θ 1,  σ

θ 2) [
 o  ]

Two−stage approach
One−stage approach
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1Other combinations of the observations from different data blocks
were considered. The one used here seemed to be the best in terms of
complexity and accuracy.

−10 −5 0 5 10 15 20 25 30
10

−1

10
0

10
1

10
2

SNR[dB]

RM
SE

(θ 1, θ
2) [

 o  ]

Two−stage approach
One−stage approach

Fig. 4. RMSE(θ1, θ2)[◦] vs. SNR[dB] at σθ1 = σθ2 = 3◦,
θ1 = 0◦, and θ2 = 5◦.

5. CONCLUSION

In this paper, a two-stage approach to estimate the ASs
and the nominal AoAs of scattered sources was proposed.
The first stage consists in channel identification while the
second determines the required spatial parameters sep-
arately from each channel estimate. Simulation results
demonstrate that this new method is suitable for accu-
rate localization and estimation of the ASs of the scattered
sources even in the most adverse conditions.
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