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ABSTRACT
We estimate the angular spread (AS) and the nominal angle
of arrival (AoA) of a locally scattered source using a uniform
linear array (ULA) of sensors. First, we use Taylor series
expansions to transform this problem into the localization of
two point sources as it has been proposed in the literature.
Based on the resulting approximate form of the covariance
matrix, we directly retrieve analytical expressions for the AS
and the nominal AoA. Compared with earlier works, the pro-
posed method does not require the knowledge of the angular
distribution of the scattered source. Furthermore, it accurately
determines the required parameters in a computationally very
simple manner as illustrated by simulations.

1. INTRODUCTION

Local scattering models have recently attracted an increas-
ing interest during the past few years. Such models are of
particular interest in suburban areas and macro-cell environ-
ments where the scattering is caused by the scatterers around
the mobile terminals while the base stations are usually de-
ployed far from scattering [1]. In these environments, the en-
ergy transmitted by a single source (mobile terminal) reaches
the receiver within a cluster of rays whose distribution de-
pends on the spatial properties of the wireless channel. The
nominal AoA and the AS (defined as the standard deviation
of the angular deviation around the nominal AoA of a scat-
tered source) of a given source are critical parameters in the
design of SDMA systems [1], localization algorithms [2], and
optimal detectors [3] in this context.

In [1] and references therein, it has been specified that the
AS values encountered in macro-cell environments are typ-
ically lower than ten degrees. This fact is desirable since it
justifies the recourse to Taylor series expansions to alleviate
the complexity of estimating channel parameters. In contrast
to the highly complex approaches such as the maximum like-
lihood [4, 5], and covariance matching [6], a notable simpli-
fication has been provided in [7]. Therein, the estimation of
the AS and the nominal AoA of a scattered source has been
transformed into the localization of two rays symmetrically
positioned around the nominal AoA. Subsequently, a classi-
cal localization algorithm has been used to estimate both “vir-
tual” AoAs and deduce the required parameters. The focus in

[7] has been on root-MUSIC [8] which was shown to achieve
better accuracy with relatively low computational complexity
compared to some other classical point-source localization al-
gorithms. Nevertheless, it is has been previously found that
the performance of such algorithm deteriorates as the angular
separation between the sources of interest decreases [9]. This
fact becomes more significant when few sensors are deployed.
Hence, the utilization of this algorithm to localize both rays in
this context is somehow inappropriate in practical situations
where the receiving end is equipped with few sensors due to
space or cost constraints.

This work is motivated by the need to develop a low-
complexity and accurate technique that estimates the channel
parameters in practical situations of a locally scattered source
with a limited number of sensors. To this end, we take advan-
tage of the approximative form of the observations’ covari-
ance matrix proposed in [7] using the Taylor series expansions
to retrieve new simple and accurate closed-form estimators of
the nominal AoA and the AS. Numerical examples show the
efficiency of the proposed approach.

2. PROBLEM STATEMENT AND ASSUMPTIONS

We assume a stationary, ergodic, and narrow-band source s(t)
scattered by a large number of local scatterers generating L
wavefronts. A ULA composed of M sensors is deployed at
the receiver to collect the L replicas of the transmitted signal.
The observation vector, x(t), is then:

x(t) = s(t)
L∑

l=1

γl(t)a[θ + θ̃l(t)] + b(t) (1)

� s(t)h(t) + b(t)

where b(t) � [b1(t) ... bM (t)]T is an unknown noise vector
composed of M white Gaussian i.i.d centered stationary sig-
nals with variance σ2

b . γl is a random variable representing
the channel gain associated with the lth ray. θ̃l is the angu-
lar deviation of the lth ray with respect to (w.r.t) the nominal
AoA θ. For a ULA of sensors, the entries of a are:

am(θ) = ej2(m−1)πκ sin(θ);∀ 1 ≤ m ≤ M. (2)

In the sequel, we will omit the time index, t, and use the
notation ω � 2πκ sin(θ) where κ is the sensors separation in
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wavelengths. The angular deviation is described by a random
variable θ̃ whose discrete realizations are θ̃l in the aforemen-
tioned data model. This random variable is assumed to have
a symmetrical distribution [7], centered, and with a standard
deviation σθ. Our aim is to estimate σθ and θ. by processing
the entries of the following covariance matrix:

Rx � E{xxH} = R + σ2
b I (3)

where R � σ2
sRh, Rh � E{hhH}, σ2

s denotes the source
power, and σ2

b is the noise power.

3. APPROXIMATIONS

To have an insight on the angular spread effect on source lo-
calizers or detectors in the context of macrocell environments,
a common trend has been to consider Taylor series expan-
sions. This trend is motivated by the fact that the ASs en-
countered in these environments have typically small values.
Specifically, first-order Taylor series expansion has been used
to express the nth spatial frequency as [2, 3, 7]:

2πκ sin(θ + θ̃) ≈ 2πκ sin(θ) + 2πκθ̃ cos(θ)
� ω + ω̃,

(4)

where ω̃ is the spatial frequency deviation resulting from the
angular deviation. According to the previous representation,
ω̃ and θ̃ have approximately the same probability density func-
tion up to a scale factor. One can also establish as in [7] that
the standard deviation of ω̃ corresponding to the nth source is
expressed as:

σω = 2πκ cos(θ)σθ. (5)

Hence, determining θ and σθ amounts to estimating ω and
σω ∀ n ∈ {1, ..., N}. Now, using this first-order Taylor series
expansion, it can be established that Rh is expressed as:

Rh ≈ a(ω)aH(ω) � Ξ(σω) (6)

where � denotes the Schur-Hadamard product, and Ξ(σω) =
Rh when ω = 0. Letting ζχ denote the characteristic function
of a given random variable χ, the (p, r)th entry of Ξ(σω) is
expressed as:

[Ξ(σω)]pr ≈ ζω̃ [(p − r)σω] , (7)

with ζω̃ being the characteristic function of ω̃. In [7], a second-
order Taylor series expansion of a and an approximation of
order O

(
E{ω̃4}) were utilized jointly with the source inco-

herent distribution to approximate Rh as:

Rh ≈ 1
2
A(ω + σω, ω − σω)AH(ω + σω, ω − σω), (8)

where

A(ω + σω, ω − σω) = [a(ω + σω) a(ω − σω)] , (9)

leading to:

R ≈ σ2
s

2
A(ω + σω, ω − σω)AH(ω + σω, ω − σω). (10)

The approximation in (8)-(10) is notable. Indeed, the re-
sulting representation is independent of the angular distribu-
tion. Rather, it explicitly depends on the nominal AoA and the
AS only. More importantly, the originally complicated angu-
lar spread estimation problem is transformed into a simpler
task consisting in recovering two AoAs. Then, a point source
localization algorithm could be used to solve this problem.
In [7], it has been stated that the application of this local-
ization algorithm to Ξ(σω) leads to two symmetrical values
{λ(σω),−λ(σω)} where λ is a monotonous positive function
which has no analytical expression, but can be determined us-
ing a lookup table. However, one can empirically notice that
for low σω values, λ(σω) ≈ σω (cf. Figure 1). For the sake
of clarity, this assumption will be made in the sequel.

In [7], the focus has been on root-MUSIC to estimate
both AoAs leading to the so-called “spread root-MUSIC.”
Though it has been stated that this algorithm is better per-
forming than some other classical point-source localization
techniques, one should note that the performance of the for-
mer deteriorates as the angular separation between a couple
of uncorrelated sources of interest (to localize separately) de-
creases especially in adverse conditions: few sensors, low
SNR, and closely-spaced sources. This behavior is due to the
fact that the subspace decomposition is no longer easy to per-
form (the steering matrix is almost rank deficient and/or the
noise level is high) [9]. Such situations can be encountered in
real-world systems where the aim is to estimate small values
of the AS (or equivalently the AoAs of both closely-spaced
virtual rays) using a limited number of sensors due to space
or cost constraints. In the following, we propose new simple
and accurate estimators of both parameters.

4. PARAMETERS ESTIMATION

The proposed closed-form estimators are based on the ex-
plicit expression of the sub-diagonal elements of the approx-
imation of R in (9)-(10) that will be denoted dm with m ∈
{0, ...,M−1} in the sequel. Before going further, some prac-
tical considerations must be pointed out.

4.1. Practical considerations

In practice R is not available. Rather, we estimate this ma-
trix using a finite number, T , of samples of the observed sig-
nals. Let X = [x(1) x(2) ... x(T )] denote the M × T matrix
representing the available observations data block. Then, the
covariance matrix Rx is approximated as:

R̂x =
1
T

XXH . (11)

According to approximation (9)-(10), the signal subspace is
two-dimensional. Hence one can estimate the noise power,
σ2

b , by averaging over the M − 2 smallest eigenvalues of R̂x.
Using (3), one can estimate R as:

R̂ = R̂x − σ̂2
b I (12)
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where σ̂2
b is the estimate of σ2

b . In addition, R has an al-
most Toeplitz structure. Hence, to obtain better estimates of
its subdiagonal elements, denoted dm, m ∈ {0, ...,M − 1} in
the sequel, one has to average over the sub-diagonal elements
of R̂. In other words dm is estimated as:

d̂m =
1

M − m

M−m∑
k=1

R̂(k + m, k). (13)

4.2. New Closed-Form Estimators

Using (9)-(10), for m ∈ {0, ...,M − 1}, dm is expressed as:

dm = 2σ2
sejmω cos(mσω) = d0e

jmω cos(mσω). (14)

Then, using the following least square fitting:

ω̂, σ̂ω = arg max
ω, σω

|d̂m − dm|2 (15)

for m ∈ {1, ...,M − 1}, we deduce a new expression for ω̂
and σ̂ω as:

ω̂ =
1
m

angle(d̂m) ± 2pπ

m
, (16)

σ̂ω =
1
m

arccos

(
d̂m

d̂0

e−jmω̂

)
, (17)

where p ∈ {0, ..., �m
2 �} and �.� is the integer part operator.

Remark 1 One should note that ω̂ can be determined with-
out resorting to the approximation (8)-(9), but up to a po-
tential π−phase indetermination. Indeed, the entries of the
matrix Ξ(σω) (which are the Fourier transforms of the dis-
tribution of the angular deviation) defined in (6)-(7) are real
valued since the angular deviation has a symmetrical distri-
bution. Nevertheless, thanks to the approximation (8)-(9), we
can confirm that the π−phase indetermination does not ap-
pear for low σω values [cf. the following condition in (18)].

Remark 2 Estimator (17) requires a prior knowledge of
the range of σω. Indeed, using (17), we suppose that:

σω ≤ π

2m
. (18)

Note that this condition is satisfied for real-world applications
where the AS keeps relatively low values (e.g., in macrocell
environments) and the number of sensors is limited due to
cost or space constraints. Furthermore, one can always start
with the lowest values of m where the condition (18) is not
that restrictive.

5. SIMULATION RESULTS

Along our simulations, we will use the root mean squared

error (RMSE) RMSE(ϕ) =
√

1
MC

∑MC
m=1

∣∣ϕ − ϕ̂(m)
∣∣2, as a

performance index, where ϕ is the parameter to estimate, and
ϕ̂(m) is its estimate at the mth Monte-Carlo run (1 ≤ m ≤
MC). In all of the investigated scenarios, we take MC =
5.102. We compare the proposed method with “spread root-
MUSIC”, where root-MUSIC is employed to determine the

two symmetrical AoAs. We implement the data model (1)
with a ULA of 3 sensors, a BPSK source located at θ = 0◦, a
Gaussian distributed angular deviation with σθ as a standard
deviation, L = 50 randomly generated replicas of the source
signal, and complex Gaussian centered i.i.d random variables
(γl)1≤l≤L such that E{|γl|2} = 1/L.
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Fig. 1. λ(σω) vs. σω .
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Fig. 2. RMSE vs. σθ at SNR= 10 dB: (a) RMSE(θ), (b)
RMSE(σθ).

In Fig. 2, we plot the variations of the RMSE w.r.t σθ for
an SNR = 10 dB and T = 2.102. Notice first how the perfor-
mance of spread root-MUSIC deteriorates for low AS values.
This fact is due to the inability of root-MUSIC to separate
two closely-spaced point sources with a limited number of
sensors. In contrast, our new method achieves good accuracy
(using the first, m = 1, or the second, m = 2, subdiagonal).
In Fig. 3, we check the effect of the SNR on the RMSE for
σθ = 3◦ and T = 2.102. We see again the same behavior of
performance collapse for spread root-MUSIC at low SNR val-
ues. On the other hand, the proposed closed-form expressions
keep a regular behavior and by far outperform spread root-
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Fig. 3. RMSE vs. SNR at σθ = 3◦: (a) RMSE(θ), (b) RMSE( σθ ).

MUSIC especially at relatively low SNR values. In Fig. 4, we
plot the variations of the RMSE w.r.t the number of snapshots,
T , for σθ = 3◦ and SNR = 10 dB. We clearly see that the
new technique outperforms spread root-MUSIC. As an exam-
ple, the latter requires only T = 20 snapshots to outperform
spread root-MUSIC with T = 2.102 snapshots. This fact
accounts, once again, for the low-computational complexity
required by the proposed approach to perform accurately. Fi-
nally, it must be stated that the selection of the highest value
of m provides more accurate estimates of the AS. To estimate
the nominal AoA, both subdiagonal orders seem to achieve
the same accuracy for low AS values. As the AS increases,
the first subdiagonal seems to provide the best accuracy (cf.
Fig. 2).

6. CONCLUSION

We proposed new simple and accurate closed-form estimators
of the AS and the nominal AoA of a locally scattered source.
Using the Taylor series expansions (for the spatial frequency
and the steering vector, respectively), we transformed the es-
timation of these parameters into the localization of two point
sources as it has been suggested in [7]. Next, we used a least
square fitting of the entries of the approximate expression of
the covariance matrix to derive new estimators for both pa-
rameters. The proposed approach is computationally simple
and achieves high accuracy even with few sensors and snap-
shots as demonstrated by simulations.
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Fig. 4. RMSE vs. T at SNR = 10 dB, σθ = 3◦: (a) RMSE(θ) [◦],
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