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1. ABSTRACT

In this paper, we derive a performance comparison between two
training-based schemes for MIMO semi-blind channel estimation.
The two schemes are the conventional superimposed training sche-
me and the more recently proposed data-dependent superimposed
pilot scheme. For both schemes, a closed-form for the outage prob-
ability and a lower bound of the bit error rate are given. We also
determine for the data-dependant superimposed training scheme
the optimal allocation of power between pilot and data. Once the
optimal data and training power are set, we prove analytically that
the optimum data-dependent superimposed scheme always outer-
performs the conventional superimposed training scheme.

Key words: semi-blind channel estimation, superimposed trai-
ning sequence, MIMO systems performance, linear receiver.

2. INTRODUCTION

The use of Multiple-Input Multiple-Output (MIMO) antenna sys-
tems enables high data rates without any increase in bandwidth or
power consumption. However, the good performance of MIMO
systems requires a priori knowledge of the channel at the receiver.
In many practical systems, the receiver estimates the channel by
time division multiplexing pilot symbols with the data. Although
high quality of channel estimation could be achieved especially
when using a large number of pilot symbols [1], this method may
entail a waste of the available bandwidth. An alternative method is
the conventional superimposed training. It consists in transmitting
pilots and data at the same time. However, since during channel
estimation, data symbols act as an input source of noise, channel
estimation is affected. In [2], M. Ghogho et al propose to intro-
duce a distorsion to the data symbols, prior to adding the known
pilot. By this way, it is shown that the channel estimation per-
formance is by far enhanced. This technique is referred to as the
data-dependent superimposed training.

In this paper, we propose to derive an analytical performance
comparison between the conventional and the data-dependent su-
perimposed training schemes. We show that the conventional su-
perimposed training scheme outperforms the conventional one both
in terms of bit error rate and outage probability. We also prove that
in data-dependent superimposed training, a suboptimum allocation
of power between pilots and data could deteriorate the bit error rate
performance, and propose an optimal power allocation scheme.

The remainder of this paper is as follows: In the next section,
we introduce the system model. After that, we review the channel
estimation process for the conventional and the data-dependent su-
perimposed training. Then, we derive a lower bound of the bit er-

ror rate and a closed-form for the outage probability. After that, we
determine the optimal allocation of power for the data-dependent
superimposed training scheme. We prove that with this optimal al-
location, the data-dependent superimposed training scheme is al-
ways more performant than the conventional scheme. Finally, sim-
ulation results are then provided to validate the analytical deriva-
tion.

Notation: Subscripts H and # denote hermitian and pseudo-
inverse operators. The statistical expectation and the Kronecker
product are denoted by E and ⊗. The (K × K) identity matrix is
denoted by IK , and the (Q × Q) matrix of all ones by 1Q. The

(i,j)th entry of a matrix A is denoted by Ai,j .

3. SYSTEM MODEL

In this paper, we consider a MIMO wireless system operating over
K transmit antennas and M receive antennas with M ≥ K. The
channel is modeled as a spatially uncorrelated frequency fl at fad-
ing channel that is time invariant over a single block. We denote
by N the block length. At the receiver, the received signal for each
block could be expressed as:

Y = HS + V,

where the (K × N ) and (M × N ) matrices S and Y are the
transmitted and received matrix blocks. H is the (M ×K) channel
matrix to be estimated with independent and identically distributed
(iid) gaussian variables with zero mean and variance 1

K
, and V is

(M × N ) additive noise matrix whose entries are iid zero mean
with variance σv

2.

4. CHANNEL ESTIMATION

4.1. Conventional superimposed training

In the conventional superimposed training (ST) scheme, a known
training sequence P is added to the data matrix W, that is S =
W + P

The received signal is given by:

Y = H(P + W) + V,

where the entries of W are assumed to be iid with variance σ2
w.

Therefore, the total power σ2
T verifi es:

σ
2
T = σ

2
w + σ

2
P ,

where σ2
P denotes the training power.
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The receiver estimates the channel by treating HW as an ad-
ditive noise term. Hence the least squares channel matrix estimate
is given by:

bH = YP
H (PP

H)
−1

= H + HWP
H (PP

H)
−1

+ VP
H (PP

H)
−1

.

Let ∆H = H − bH denote the channel estimation error ma-
trix. Thus the mean square error (MSE) is given by:

MSE = tr
`
E

ˆ
∆H∆H

H
˜´

= tr
“`

PP
H
´−1

” `
σ

2
wtr(HH

H) + Mσ
2
v

´
. (1)

It is shown in [1], [2] that the training matrix which minimizes
the MSE subject to a fi xed power σ2

P must verify:

PP
H = Nσ

2
P IK .

Thus, the expression for the MSE becomes:

MSE =
K

Nσ2
P

`
σ

2
wtr(HH

H) + Mσ
2
v

´
.

Note that the estimation errors always exist even if the additive
noise is not present. This is particularly due to the presence of the
unknown data that acts like an extra source of noise during the
channel estimation step.

4.2. Data-dependent superimposed training

In [2], M. Ghogho and A. Swami propose to introduce a linear
distorsion to the data matrix at the transmitter so as to ensure that
the estimation error is independent from the unkown data. They
suggest to add a perturbation matrix to the data matrix that is given
by:

E = −WJ,

where J = 1
Q
1Q ⊗ IK and Q = N

K
.

The received signal at each block is therefore given by:

Y = HW(IN − J) + HP + V

Hence, the total power is split between pilots and data as follows:

σ
2
T = σ

2
w|{z}

data power

− σ2
w

Q|{z}
distorsion power

+ σ
2
P ′ .|{z}

training power

The design of the training matrix should meet the following con-
ditions:


PP

H = Nσ2
P ′IK

P
H
P = Nσ2

P ′J.

It is easy to verify that under these conditions the training ma-
trix P is orthogonal to the matrix IN − J, (that is (IN − J)PH

= 0). Therefore, when mutiplying the received signal on the right
side by P

H, the obtained result is independent from the unkown
data.

The channel least square estimate is then given by:

bH = YP
H (PP

H)
−1

= H + VP
H (PP

H)
−1

.

Thus the mean square error has the following expression:

MSE = Mσ
2
vtr

“`
PP

H
´−1

”

=
KMσ2

v

Nσ2
P ′

. (2)

5. DATA DETECTION

5.1. Conventional superimposed training

For the conventional superimposed training, the zero forcing esti-
mate of the transmitted data matrix writes as:

cW =
“

bH
”# “

Y − bHP

”

=
“

bH
”#

H (W + P) +
“

bH
”#

V − P. (3)

Assuming that the channel estimation error is small, the pseudo-
inverse of the estimated matrix can be approximated by the linear
part of the Taylor expansion as:

“
bH

”#

= H
# − H

# (∆H)H# (4)

where ∆H denotes the channel estimation error matrix.
Substituting (4) into (3), the zero forcing estimate of the trans-

mitted matrix can be further expressed as:

cW =
“
IK − H

#∆H

”
(W + P)+

“
IK − H

#∆H

”
H

#
V−P.

Hence, the effective post-processing noise ∆W = cW − W

could be written as:

∆W = −W +
`
IK − H

#∆H
´
(W + P)

+
`
IK − H

#∆H
´
H

#
V − P.

Assuming that the channel estimation error is uncorrelated
with noise and data, we fi nd that:1

E (∆W∆W
H)=

“
σ4

wK

σ2

P

+ Kσ2
w +

σ2

vσ2

w

σ2

P

tr (HH
H)

−1
”
IK

+
“

Kσ2

wσ2

v

σ2

P

+ Kσ2
v + Nσ2

v +
σ4

v

σ2

P

tr (HH
H)

−1
”

(HH
H)

−1
.

(5)
Assuming that the noise level is low, and that the probability

that tr (HH
H)

−1 being large is very small [3], (5) becomes:

E
`
∆W∆W

H
´ ∼=

„
σ4

wK

σ2
P

+ Kσ
2
w

«
IK

+

„
Kσ2

wσ2
v

σ2
P

+ Kσ
2
v + Nσ

2
v

« `
H

H
H

´−1
.

(6)

1We omit all the proofs in this paper due to space limitation



5.2. Data-dependent superimposed training

Performing the same approximations as in the previous section,
we fi nd similarly that the variance of the effective post-processing
noise in the data-dependent pilot scheme is:

E (∆W∆W
H) =

Nσ2

w

Q
IK

+

„
(N + K)σ2

v +
K(Q−1)σ2

wσ2

v

Qσ2

P ′

«
(HH

H)
−1

.

6. PERFORMANCE ANALYSIS

6.1. A lower bound for the bit error rate

6.1.1. Conventional superimposed training

According to (6), the post-processing SNR on the kth stream can
be expressed as:

γk =
1

αc + βc

ˆ
(HHH)−1˜

kk

where

• αc = K
N

+
Kσ2

w

Nσ2

P

,

• βc =
(K+N)σ2

v

Nσ2
w

+
Kσ2

v

Nσ2

P

.

As the diagonal elements of (HH
H)

−1 are always positive,
the SNR at the kth branch could be maximized by:

γk ≤ 1

βc

ˆ
(HHH)−1˜

kk

= γc.

From [4] and [5], we know that 1
K

h
(HH

H)
−1

i
kk

is a chisqua-

re distributed random variable with 2(M−K+1) degrees of free-

dom. Thus, the probability density function of
h
(HH

H)
−1

i
kk

can

be expressed as:

f(x) =
KM−K+1xM−Ke−Kx

(M − K)!
,

and consequently, the probability density function of γc is:

fγ(x) =
KM−K+1βM−K+1

c

(M − K)!
x

M−K
e
−Kxβc .

This expression leads to the BER value:

BERc =

Z ∞

0

Q(
√

2x)fγ(x)dx

∼= 1

2

"
1 − µc

M−KX

k=0

C
k
2k

„
(1 − µ2

c)

4

«k
#

(7)

where µc =
q

1
K+βc

.

6.1.2. Data-dependent superimposed training

Following the same reasoning as in the previous section, we fi nd
that the post-processing SNR on the kth stream can be expressed
as:

γk =
1

αd + βd

ˆ
(HHH)−1˜

kk

≤ 1

βd

ˆ
(HHH)−1˜

kk

where αd = 1
Q

= K
N

and βd =
σ2

v

σ2
w

(1 + K
N

) +
(N−K)σ2

v

N2σ2

P ′

.

In the same way, the lower bound of the BER is:

BERd
∼= 1

2

"
1 − µd

M−KX

k=0

C
k
2k

„
(1 − µ2

d)

4

«k
#

where µd =
q

1
K+βd

.

6.2. Optimization over the power allocation for the data-depen-
dent superimposed training scheme

The power allocation between pilots and data has a great impact
on the bit error rate performance. On the one hand, to achieve
high quality channel estimate, a high portion of power needs to be
spent for training transmission, which leaves little power to data.
On the other hand, if too little power is given to training, the chan-
nel estimation will be poor which also affects the bit error rate
performance. In this section, we give the values of data and train-
ing power portions that minimize the bit error rate for the data-
dependent superimposed training scheme. As αd do not depend
on the data power σ2

w or the training power σ2
P ′ , minimizing βd

as a function of σ2
w and σ2

P ′ under the constraint of constant total
power leads to maximizing the SNR at each channel realization,
and thus the bit error rate. The optimal values of σ2

w and σ2
P ′ are

given by:

8
<
:

σ2
w =

σ2

T (N2+KN)−σ2

T N
√

N+K

N2−N−K2+K

σ2
P ′ =

σ2

T (N
√

N+K−KN−N+K2+K)
N2−N−K2+K

.

In the conventional superimposed training scheme, the values
of σ2

w and σ2
P that minimize βc may not be optimal in the sense

that they do no necessarily minimize the bit error rate.

6.3. BER performance of the optimum data-dependent super-
imposed training scheme compared to the conventional one

In this section, we prove that the data-dependent superimposed
training scheme with optimal allocation of data and training power
always outperforms the conventional superimposed training scheme.
In fact, we show that for any possible values of data and training
power, the SNR of the conventional superimposed training scheme
is always lower than that of the optimum data-dependent superim-
posed training scheme. Actually, we prove the following:

∀σ2
w ∈ [0, σ2

T ] such that σ2
w + σ2

P = σ2
T and

σ2
w(1 − 1

Q
) + σ2

P ′ = σ2
T , we have βc > βd and αc > αd.

In fact, expressing βc and βd in terms of the total and data power
leads to:



βc(σ
2
w) =

(K + N)σ2
v

σ2
w

+
Kσ2

v

N(σ2
T − σ2

w)

βd(σ2
w) =

(K + N)σ2
v

σ2
w

+
(N − K)σ2

v

N2(σ2
T − σ2

w(1 − 1
Q

))
. (8)

After simplifi cation, βd − βc writes as:

βd − βc =
(N − K − KN)σ2

v(σ2
T − σ2

w) − KNσ2

wσ2

v

Q

N2(σ2
T − (1 − 1

Q
)σ2

w)(σ2
T − σ2

w)

which is an increasing function of σ2
w.

As βd(0) − βc(0) < 0 and βd(σ2
T ) − βc(σ

2
T ) < 0, we con-

clude that for any value of σ2
w ∈ [0, σ2

T ] , we have βc(σ
2
w) >

βd(σ2
w).

Since αc > αd, we conclude that the data-dependent super-
imposed training scheme outperforms the conventional one when
having the same data power. Therefore, the optimum data-dependent
superimposed training scheme always outperforms the conventional
one.

6.4. Closed-form for outage probability

Outage probability is defi ned as the probability that the post-pro-
cessing SNR falls below some specifi ed threshold:

Pout(γth) = Prob [0 ≤ γ ≤ γth] .

We could prove through simple calculations that the probability
density function of the SNR is:

fγ(x) =
βM−K+1

s xM−KKM−K+1

(M − K)!(1 − αsx)M−K+2
e

−Kβsx
1−αsx 1{0≤x≤ 1

αs
}

where ’s’ is equal to ’c’ to refer to a conventional superimposed
training scheme or ’d’ to refer to a data-dependent superimposed
training scheme.

After straighforward calculations, we found that:

Pout(γth) =

8
<
:

Γ(M−K+1,
Kβsγth
1−αsγth

)

(M−K)!
if 0 ≤ γth ≤ 1

αs

1 if γth ≥ 1
αs

where Γ is the lower incomplete gamma function given by:

Γ(a, x) =

Z x

0

t
a−1

e
−tdt.

We note that the outage probability reaches the upper limit when
γth tends to 1

αs
. As αc > αd, we could deduce that the out-

age probability of a conventional superimposed training scheme
reaches its limit before that of the superimposed data-dependent
training scheme.

7. SIMULATION RESULTS

In this section, we assess through simulations that the data-dependent
superimposed training scheme outperforms the conventional su-
perimposed training one in terms of bit error rate and outage prob-
ability. We prove also that setting arbitrarily the amount of power

allocated to data and training can affect drastically the performance
of the data-dependent superimposed training scheme.

In all our simulations, we set M = 4, K = 2, N = 500 and

σ2
T = 1. The SNR is defi ned as SNR ,

σ2

T

σ2
v

.

7.1. Bit error rate

7.1.1. Bit error rate performance

Fig. 1 investigates the performance in terms of bit error rate for
the two schemes with BPSK modulation.
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Fig. 1. BER performance of the conventional and the data-dependent
superimposed training schemes.

In the legend, ’suboptimum conventional’ corresponds to a
conventional scheme having the same power as the optimum data
dependent scheme.

In order to set the optimal power parameters for the conven-
tional scheme, we measure, for each SNR value, the bit error rate
for a range of power values between 0.05-0.99.

For each SNR value, we keep the amount of data power that
optimizes the bit error rate performance.

We note that, when having optimal allocation of power, the
conventional and the data-dependent scheme have almost the same
performance.

7.1.2. Bit error rate degradation due to a suboptimum allocation
of power

Fig. 2 compares in terms of bit error rate performance the opti-
mum data-dependent superimposed training scheme with its sub-
optimum counterparts.

Comparing the suboptimum scheme having σ2
w = 0.3 and the

optimum one, we could conclude that the optimum allocation of
power could allow a considerable gain in SNR.
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Fig. 2. Bit error rate degradation due to a suboptimum power allocation.

7.2. Outage probability

The performance in terms of outage probability is investigated in
Fig. 3.

We note that the outage probability of the conventional super-
imposed training scheme reaches its upper limit before that of the
data-dependent superimposed training scheme.
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Fig. 3. Outage probability for the conventional and data-dependent super-
imposed training schemes.

8. CONCLUSION

In this paper, we analytically investigate the performance of the
conventional and the data-dependent superimposed training schemes
over uncorrelated Rayleigh fl at fading channels. We derive for the
two schemes a lower bound of the bit error rate and a closed-form
for the outage probability. We prove that the data-dependent super-
imposed training scheme always outerperforms the conventional
one. We also determine the optimal allocation of power between
data and training for the data-dependent superimposed scheme.
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