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ABSTRACT
We propose a new simple and accurate approach to localize
two equipowered plane-wave sources (i.e., harmonics) using a
uniform linear array (ULA) of sensors. We exploit the partic-
ular form of the covariance matrix jointly with a least square
fitting (LSF) to derive new simple closed-form expressions
for the directions of arrival (or harmonics in general). Simu-
lation results demonstrate that resorting to this new method,
mainly in the case of very low angular separation, and even
with a limited number of sensors, leads to highly accurate re-
sults while requiring low computational complexity.

1. INTRODUCTION

Direction of arrival (DOA) estimation has attracted a lot
of researchers’ interest over the last few decades in several
fields including radar detection, radiocommunications, satel-
lite communications, etc. This fact is due to its inherent goal
which consists in localizing spatially distributed sources by
processing their mixtures at the receiving antenna array.

So far, numerous DOA estimation techniques have been
developed. To illustrate, maximum-likelihood, covariance-
matching, and asymptotically minimum variance-based al-
gorithms have been proposed in [1, 2, 3], respectively. De-
spite their accuracy, these techniques generally require mul-
tidimensional non-linear optimizations leading to high com-
putational complexity. Another well known trend has been
to exploit the orthogonality between the noise and signal
(plus noise) subspaces such as MUSIC [4] and its deriva-
tives mainly root-MUSIC [5, 6] and a recently proposed root-
MUSIC-like technique for non-circular sources [7, 8]. Com-
pared to the former techniques, such approaches generally
require low time and computational effort. Moreover, they
do not require some restrictive assumptions on the observed
signal such as their Gaussian or independence and identical
distribution (i.i.d.) [2, 3]. Nevertheless, in the case of very
closely-spaced sources, the performance of these methods
deteriorates especially in adverse conditions [low signal-to-
noise-ratio (SNR) and few sensors].

Figs. 2 and 3 illustrate this fact when the root-MUSIC
and root-MUSIC-like (for non-circular sources) algorithms
are used to localize two closely-spaced point sources. No-
tice, in addition, that the increase of the number of sensors

enhances the accuracy of these techniques. Complete details
of these results are provided in Section 5. This inevitable in-
creased complexity may be prohibitive for the design of the
receivers. Clearly, there is a need to develop a new method to
deal with very low resolution problems without necessitating
a large number of sensors neither high computational load or
restrictive conditions (e.g., Gaussian or i.i.d. observations) to
operate at very low SNR as in real-world practical applica-
tions.

In this paper, we present a new technique to localize two
equipowered and closely-spaced point sources using a ULA
of sensors. We use a LSF of the particular form of the ob-
servations’ covariance matrix to establish new analytical ex-
pressions for the mean value of both spatial harmonics and
their separation. Next, we deduce both DOAs in an optimal
fashion. The resulting approach is simple and accurate even
in adverse conditions (low SNR with few sensors deployed at
the receiver).

We would like to emphasize that our special focus on this
so called two-input multiple-output (TIMO) data model is
motivated by the fact that it is practical in several situations
where it is convenient to have less antennas at the transmit-
ting end due to cost or space constraints or when antenna se-
lection is performed [9]. Furthermore, the high accuracy of
the proposed approach even with few sensors, as it will be
shown in Section 5, accounts for its suitability to deal with
several practical situations, among them: (i) CDMA signa-
ture codes duplication by implementing the proposed local-
ization technique on the base station, the number of signa-
ture codes allocated to a single mobile terminal equipped with
two closely-spaced multiplexing antenna elements could be
doubled (combining both spatial signatures and the allocated
signature codes) when scattering is negligible. (ii) Angular
spread estimation for low angular spreads, it has been shown
that estimating the angular spread and the nominal DOA of a
single source amounts to the estimation of two closely-spaced
DOAs with the same average power [10]. The current method
is well suited for this application. (iii) Satellites interference
cancellation thanks to its high accuracy, the proposed tech-
nique could be used to localize two interfering satellites with
as low as 2o angular separation (e.g., geostationary satellites)
and, consequently, minimize their interference.
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2. PROBLEM STATEMENT AND ASSUMPTIONS

We assume N stationary ergodic sources represented by an
N -dimensional vector s(t) � [s1(t) ... sN (t)]T and mixed
by an M × N (M > N ) channel matrix A to yield an M -
dimensional vector of observations x(t) � [x1(t) ... xM (t)]T

at time t:
x(t) = A s(t) + b(t), (1)

where b(t) � [b1(t) ... bM (t)]T is an unknown noise vec-
tor composed of M Gaussian i.i.d centered stationary signals
with variance σ2

b . In the general DOA estimation scheme,
the N sources are assumed to be narrow-band and impinging
from different DOAs, (θl)1≤l≤N , on an antenna array com-
posed of M sensors. In this work, we consider a ULA. Thus,
the entries of the channel matrix, termed as steering matrix in
this context, are expressed as:

akn = ej(k−1)ωn ;∀ 1 ≤ k ≤ M, 1 ≤ n ≤ N, (2)

where ωn � 2πκ sin(θn), and κ is the sensors separation in
wavelengths (κ = 1

2 , generally). Source localization consists
in recovering the N DOAs by solely processing the observa-
tions x(t). In the sequel, we will omit the time index t for the
sake of clarity. We also stress that only the case of N = 2
is considered in this work1. Furthermore, we assume that the
two sources are totally uncorrelated, and equi-powered (with
σ2

sI2 as a covariance matrix). This assumption holds in sev-
eral practical situations, in particular, those mentioned in Sec-
tion 1.

3. HARMONICS ESTIMATION USING THE
PARTICULAR FORM OF THE COVARIANCE

MATRIX

The theoretical covariance matrix of the resulting observa-
tions is given as:

Rx � E
{
xxH

}
= σ2

sAAH + σ2
b IM . (3)

Then,
R � Rx − σ2

b IM = σ2
sAAH . (4)

In practice, R is unavailable, but can be estimated using a
finite number, T , of samples as:

R̂ =
1
T

T∑
t=1

x(t)xH(t) − σ̂2
b IM , (5)

where σ̂2
b is the estimate of σ2

b obtained by averaging over
the (M − 2) smallest eigenvalues of the matrix R̂x =
1
T

∑T
t=1 x(t)xH(t). Our new technique in localizing both

equipowered sources is based on the explicit expression of
the entries of R and the decomposition of ω1 and ω2 as:{

ω1 = ω − δω

ω2 = ω + δω
(6)

1We are currently investigating the general case M × N .

where ω denotes the mean harmonic:

ω =
ω1 + ω2

2
, (7)

and 2δω is the harmonics separation:

2δω = |ω1 − ω2|. (8)

Consequently, finding ω1 and ω2 amounts to finding ω and δω.
Here, we mainly focus on estimating ω and δω. Using (7) and
(8), the entry of the mth subdiagonal of R, dm, is expressed
as:

dm = 2σ2
s cos(mδω)ejmω. (9)

To have better estimates of (dm)0≤m≤M−1, we exploit
the Toeplitz structure of R by averaging over the M − m
entries of the mth subdiagonals of R̂. In other words, for
m ∈ {0, ...,M − 1}, dm is estimated as:

d̂m =
1

M − m

M−m∑
k=1

R̂(k + m, k). (10)

To estimate δω and ω, we use the following LSF of dm,
1 ≤ m ≤ M − 1:

ω̂(m), δ̂(m)
ω = arg min

ω, δω

Jm(ω, δω) (11)

where
Jm(ω, δω) � |d̂m − dm|2. (12)

By setting the derivatives of Jm(ω, δω) with respect to
(w.r.t.) ω and δω to zero and selecting the appropriate val-
ues (minimizing Jm), the above LSF leads to the following
estimators:

ω̂(m) =
1
m

arg(d̂m) ± 2pπ

m
, (13)

and

δ̂(m)
ω =

1
m

arccos

[
�
(

d̂m

d̂0

e−jmω

)]
. (14)

In (13), arg(.) and �(.) stand for the angle and real part, re-
spectively, m ∈ {1, ...,M − 1}, p ∈ {0, ..., �m

2 �}, and �.� is
the integer part operator. The superscript (m) is utilized for
both estimators to specify that d̂m is utilized in (13) and (14).

Remark 1 The indetermination ± 2pπ
m in (13) does not

appear for ω̂(1). If d̂m, m > 1, is utilized in (13), a set
of 2�m

2 � + 1 possible values can be found for ω̂(m). To
solve this indetermination, one has to use ω̂(1) as a refer-
ence value and chose the optimal estimator minimizing the
distance

∣∣ω̂(m) − ω̂(1)
∣∣.

Remark 2 The estimator (14) requires a prior knowledge
of the range of δω . Indeed, using (14), we suppose that:

δω ≤ π

2m
. (15)



This condition is not restrictive as one can start by using the
lowest values of m (first subdiagonals of R̂) to have a prior
knowledge about the range of δω then use the first obtained
results as reference values before proceeding with the largest
values of m. Finally, it is important to point out that the exist-
ing localization techniques are well performing for relatively
high angular separations. This fact justifies our special fo-
cus on small angular (or equivalently harmonics) separations
satisfying:

δω <
π

2(M − 1)
. (16)

4. PERFORMANCE ANALYSIS

To gain some insights on the asymptotic performance of the
proposed estimators, we assume as in [2] that the observations
in (1) are circularly symmetric Gaussian i.i.d. This assump-
tion leads to the following proposition.

Proposition 1 Under the assumption of circularly symmetric
Gaussian i.i.d. observations defined in (1), we have:

lim
T→+∞

TE
{(

ω̂(m) − ω
)2
}

=
tan2(mδω)

2m2
(17)

lim
T→+∞

TE
{(

δ̂(m)
ω − δω

)2
}

=
S(m,δω)
(M−m)2 + cos2(mδω)

m2 sin2(mδω)
(18)

where

S(m, δω) =
M−m∑
p,q=1

cos [2(p − q)δω] . (19)

Cf. Appendix A for proof.
The variations of the asymptotical variances given in (17)

and (18) are depicted in Fig. 1 for the case M = 6. No-
tice that the variance of ω̂(m) is increasing w.r.t. m and δω

when the condition (16) is satisfied. Hence, using the first
subdiagonal of the covariance matrix leads to more accurate
estimates of the central harmonic. In contrast, the asymp-
totical variance in (17) is decreasing w.r.t. m and δω . No-
tice in addition that though the above asymptotical variances
have been derived under the condition of circular Gaussian
and i.i.d. observations, an extensive empirical investigation
showed us that these monotonous variations are also observed
when the above condition on the observations is not satisfied.
From this, we derive our strategy in localizing both sources.
Indeed, after calculating R̂, we use its first subdiagonal to cal-
culate the central harmonic as in (7) (i.e., for m = 1) and the
last subdiagonal to calculate the harmonics separation as in
(14) (i.e., for m = M − 1). Then, we estimate ω1 and ω2 as:{

ω̂1 = ω̂(1) − δ̂
(M−1)
ω

ω̂2 = ω̂(1) + δ̂
(M−1)
ω

. (20)

Both DOAs are deduced as θ̂n = arcsin
(

ω̂n

2κπ

)
, n ∈ {1, 2}.

5. SIMULATION RESULTS

Along our simulations, we will use the root mean squared
error (RMSE) as a performance index:

RMSE(θ1, θ2) =

√√√√ 1
2M

M∑
ı=1

2∑
n=1

∣∣∣θn − θ̂
(ı)
n

∣∣∣2, (21)

where
(
θ̂
(ı)
n

)
1≤n≤2

are the estimates of (θn)1≤l≤2 at the ıth

Monte-Carlo run (1 ≤ ı ≤ M), respectively. In all of the
investigated scenarios, we take M = 5.102. To have a bet-
ter insight into the results, the RMSE and the CRLB values
will be presented in degrees. We consider the scenario of two
uncorrelated BPSK sources located at θ1 and θ2 as in [7, 8]
(without loss of generality, θ1 ≤ θ2) with a ULA of 3 and
6 sensors. To estimate the required statistics as in (5), we
use T = 2.102 samples of the observations of the two BPSK
sources. We compare the proposed algorithm to root-MUSIC
and one of its recently proposed variations (root-MUSIC-like)
[7] for non-circular and uncorrelated sources (which is the
case of the considered BPSK sources). The efficiency of the
latter has been proved in [8] for this particular case. We
also plot the square-root of the CRLB provided in [11] which
is given in the investigated case of two equipowered BPSK
sources with a ULA of sensors as:

CRLB(θn) ≈
√

3σ2
b

2M(M2 − 1)Tσ2
sπ2κ2 cos2(θn)

. (22)

In Figs. 2 and 3, we plot RMSE(θ1, θ2) variations w.r.t.
the angular separations, ∆θ = θ2 − θ1, (at SNR = 10 dB)
and the SNR (at ∆θ = 3◦), respectively, for 3 and 6 sensors.
In both figures we notice that root-MUSIC’s accuracy dete-
riorates when the signals are closely spaced or the SNR de-
creases. This fact is due to its inherent behavior that has been
demonstrated in some earlier works [1, 6] where its variance
is shown to take large values when the steering matrix is al-
most rank deficient (closely-spaced sources and/or low SNR).
The root-MUSIC-like algorithm takes advantage of the non-
circularity of the sources to provide more accurate results than
the latter. However, its performance degrades in adverse con-
ditions. In contrast, the proposed approach exhibits a regular
behavior even with 3 sensors only and outperforms both al-
gorithms. As one example, for an accuracy RMSE(θ1, θ2)
≈ 0.4◦, we clearly see in Fig. 3 that the latter requires SNR
≈ 14 and 3 dB when 3 and 6 sensors are deployed, while
root-MUSIC requires SNR ≈ 30 and 14 dB, and the root-
MUSIC-like requires SNR ≈ 25 and 8 dB, respectively. This
fact illustrates the tremendous SNR gains achieved by the pro-
posed method and the compactness it offers since it requires
just 3 sensors to be as accurate as root-MUSIC operating with
6 sensors. Notice also that RMSE(θ1, θ2) achieved by the
new method is lower bounded when the SNR is high. How-



ever, one should note that this is not actually a serious limi-
tation since this lower bound is acceptable (≈ 0.1◦) and ap-
pears only for very high SNR values rarely encountered in
real-world practical applications (cf. Section 1).

6. CONCLUSION

In this paper, a new approach to localize two closely-spaced
and equipowered plane-wave sources was presented. Based
on a least square fitting of second order statistics of the ob-
servations, we established new closed form estimators for the
mean value of the harmonics and their separation. Then, we
deduced the angles of arrival of both sources in an optimal
fashion (minimum asymptotical variance). The obtained re-
sults suggest that this new approach may be of great interest in
several practical applications including satellites localization,
CDMA signature codes duplication, angular spread estima-
tion, etc.
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Fig. 1. Asymptotic variances of (a) δ̂ω and (b) ω̂ w.r.t. δω and m at
M = 6 [cf. (23) and (24)].

A. APPENDIX: PROOF OF PROPOSITION 1

We derive the above results by proceeding as in [12] where the focus
has been on the localization of a locally scattered source. Let ξm =
|dm| = d0 cos(mδω). Then, following [12], we can prove that:

lim
T→+∞

TE

{(
ω̂(m) − ω

)2
}

=
lim

T→+∞
TE

{(
∂Jm
∂ω

)2}
[

lim
T→+∞

∂2Jm
∂ω2

]2 , (23)

and

lim
T→+∞

TE

{(
δ̂(m)

ω − δω

)2
}

=
lim

T→+∞
TE{( ∂Jm

∂δω
)2}[

lim
T→+∞

∂2Jm
∂δ2

ω

]2 . (24)
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Fig. 2. Performance of the proposed method compared to root-
MUSIC and root-MUSIC-like algorithms w.r.t. ∆θ, at SNR = 10
dB using: (a) 3 sensors, and (b) 6 sensors.

The above derivatives are evaluated at the actual param-
eters. Next, it can be shown using (12) that ∂Jm

∂ω
=

−2mξm�{d̂me−jmω}, ∂2Jm
∂ω2 = 2m2ξm�{d̂me−jmω},

∂Jm
∂δω

= −2md0 sin(mδω)
[
ξm −�(d̂me−jmω)

]
, and

∂2Jm
∂δ2

ω
= 2m2d2

0 sin2(mδω) − 2m2ξm

[
ξm −�(d̂me−jmω)

]
.

Using the i.i.d. property of the observations it can be shown that
lim

T→+∞
∂2Jm
∂ω2 = 2m2ξ2

m, and lim
T→+∞

∂2Jm
∂δ2

ω
= 2m2d2

0 sin2(mδω).

To calculate the numerators in (23) and (24), we use the
circular Gaussian and i.i.d. property of the observations
jointly with the fact that for a given complex variable χ,
�2(χ) = 1

2

[|χ|2 + �(χ2)
]

and �2(χ) = 1
2

[|χ|2 −�(χ2)
]
.

Here, �(.) denotes the imaginary part. After some te-
dious calculations, we find that lim

T→+∞
TE

{
( ∂Jm

∂ω
)2
}

=
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Fig. 3. Performance of the proposed method compared to root-
MUSIC and root-MUSIC-like algorithms w.r.t. SNR, at ∆θ = 3◦

using: (a) 3 sensors, and (b) 6 sensors.

2m2d2
0ξ

2
m sin2(mδω) and lim

T→+∞
TE{( ∂Jm

∂δω
)2} =

4m2d4
0 sin2(mδω)

[
cos2(mδω) + S(m,δω)

(M−m)2

]
, where S(m, δω)

is as defined in (19). Injecting these limits in (23) and (24), we
obtain (17) and (18).


