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ABSTRACT
This paper investigates the capacity of log-normal fading
channels with receiver channel state information. We pro-
vide a closed-form expression for the ergodic capacity of the
log-normal fading channel. Since the developed expression
involves an infinite series, we show that the error that results
from the truncation of this series is insignificant. Relying on
the fact that the sum of log-normal Random Variables (RV)
is well approximated by another log-normal RV, we further
apply the obtained results to find the capacity of correlated
log-normal fading channels with Maximum Ratio Combin-
ing and Equal Gain Combining. The analytical expressions
obtained match perfectly the capacity given by simulations.

Categories and Subject Descriptors: J.2 [Physical Sci-
ences and Engineering]: Mathematics and statistics; G.3
[Probability and Statistics]: Distribution functions.

General Terms: Performance, Theory.

Keywords: Channel capacity, log normal distributions, max-
imum ratio combining and equal gain combining.

1. INTRODUCTION
Capacity of fading channels has received (and is still re-

ceiving) an extensive interest. This concern is motivated by
the need for a valuable tool to assess the achievable perfor-
mance of communication links over fading channels. This
interest mainly started at the beginning of the nineties with
the seminal work of Lee [1], in which he derived the ca-
pacity of a Rayleigh fading channel. Since then, additional
results are rapidly becoming available. In [2], the author
extended the results presented in [1] by deriving the capac-
ity of Rayleigh fading channels under MRC diversity. In [3]
and in [4], the authors derived the capacity of Rayleigh fad-
ing channels under different diversity schemes and different
rate adaptation and transmit power configurations. Other
fading channels like Rician, Hoyt, Nakagami and Weibull
fading channels were studied in [5], [6] and [7].
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Although a huge amount of research has addressed the ca-
pacity of different kind of fading channels, the results on
the capacity of log-normal fading channels are rather scarce.
This dearth does not imply that the study of the log-normal
capacity is less interesting. Indeed, in different cases, wire-
less channels are modeled as log-normal. This holds par-
ticularly for slowly varying channels like indoor channels.
Indeed, both the small and the large scale effects are com-
pounded, and consequently the log-normal fading accurately
describes the distribution of the channel path gain. In ad-
dition, if spatial diversity is used at the receiver, then the
effects of the multipath will be mitigated and the perfor-
mance of the communication system will be only affected
by the log-normal shadowing. Last but not least, the log-
normal distribution is found to be the best fit to characterize
Ultra Wideband (UWB) channels [8]. Therefore a closed-
form expression of the capacity of the log-normal channel
is of great use in order to assess the ultimate performance
that one can achieve in such environments. Upper and lower
bounds for the capacity were developed in [9], but as we will
see later, these bounds are loose for low SNR. Here, we will
provide a closed-form expression for the ergodic capacity of
the log-normal channel with channel state information at
the receiver. Since the developed expression contains an in-
finite series, we also study the error that results from the
truncation of this series. Relying on the fact that the sum
of log-normal Random Variables (RV) is well approximated
by another log-normal RV, we further apply the obtained
results to find the capacity of correlated log-normal fading
channels with Maximum Ratio Combining and Equal Gain
Combining.

The remainder of the paper is organized as follows. In
Section 2, we derive the capacity of the log-normal channel.
Section 3 extends the obtained results to approximate the
capacity of maximum ratio combining and equal gain com-
bining in a correlated environment and section 4 concludes
the paper.

2. THE CAPACITY OF THE LOG-NORMAL
CHANNEL

The ergodic capacity of a fading channel is known to be
given by [10]

E[C] =

∫ +∞

0

log2(1 + γ)fγ(γ)dγ, (1)

where fγ(γ) denotes the probability density function (pdf)
of the fading process.
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For a log-normal fading channel, the pdf is given by

fγ(γ) =
ξ

σ
√

2πγ
e
− (ξ ln γ−µ)2

2σ2 , (2)

where ξ = 10
ln(10)

= 4.3429, σ is the logarithmic standard

deviation expressed in dB and µ = ΓdB − σ2

2ξ
1 is the log-

arithmic mean of the log-normal RV also expressed in dB.
ΓdB = ξ ln(Γ) denotes the average Signal to Noise Ratio
(SNR) in dB.
The ergodic capacity of the log-normal channel is therefore
given by:

E[C] =
ξ

σ
√

2π ln(2)

∫ +∞

0

ln(1 + γ)

γ
e
− (ξ ln γ−µ)2

2σ2 dγ, (3)

2.1 First result
The capacity can be written as

E[C] =
e
− µ2

2σ2

2 ln(2)

[
K∑

k=1

(−1)k+1

k
erfcx(

σk

ξ
√

2
+

µ√
2σ

)

+

K∑

k=1

(−1)k+1

k
erfcx(

σk

ξ
√

2
− µ√

2σ
)

]
+ RK

+
µ

2ξ ln(2)
erfc(− µ√

2σ
) +

σe
− µ2

2σ2

ξ
√

2π ln(2)
, (4)

where K is a sufficiently large integer, erfcx(x) is a built-in
MATLAB function called the scaled complementary error
function and is given by:

erfcx(x) = ex2
erfc(x) (5)

=
2ex2

√
π

∫ +∞

x

e−t2dt, (6)

and RK will be given by one of the two expressions bellow:

• If µ 6= 0,

RK
∼= σe

− µ2

2σ2

µ
√

2π ln(2)
(−1)K

[
β(K + 1− ξµ

σ2
)

− β(K + 1 +
ξµ

σ2
)

]
, (7)

where β(·) is given by (8.372) in [11] as:

β(x) =

+∞∑

k=0

(−1)k

k + x
=

1

2

(
ψ

(
x + 1

2

)
− ψ

(x

2

))
, (8)

where ψ(·) is the Digamma function.

• If µ = 0,

RK
∼= ξ

√
2

σ
√

π ln(2)

[
π2

12
−

K∑

k=1

(−1)k+1

k2

]
. (9)

1Note that the fading process is normalized, i.e., E[γ] =

e
µ
ξ

+ σ2

2ξ2 = Γ.

Proof
By letting u = ln(γ) in (3), the capacity can be rewritten as

E[C] =
ξ

σ
√

2π ln(2)

∫ +∞

−∞
ln(1 + eu)e

− (ξu−µ)2

2σ2 du. (10)

With some manipulations we obtain that:

E[C] =
ξ

σ
√

2π ln(2)

[∫ +∞

0

ln(1 + e−u)e
− (ξu+µ)2

2σ2 du

+

∫ +∞

0

ln(1 + eu)e
− (ξu−µ)2

2σ2 du

]
. (11)

Noticing that ln(1 + eu) = u + ln(1 + e−u) and making this
change in the second integral, we obtain:

E[C] =
ξ

σ
√

2π ln(2)

[∫ +∞

0

ln(1 + e−u)e
− (ξu+µ)2

2σ2 du

+

∫ +∞

0

ln(1 + e−u)e
− (ξu−µ)2

2σ2 du

+

∫ +∞

0

ue
− (ξu−µ)2

2σ2 du

]
. (12)

The last term in this equation can be easily expressed as
follows:

∫ +∞

0

ue
− (ξu−µ)2

2σ2 du =
σ2

ξ2
e
−µ2

2σ2 + µ
σ

ξ2

√
π

2
erfc(− µ√

2σ
).

(13)
Let us now introduce the following series expansion, which
holds for 0 ≤ x ≤ 1 ((1.512) in [11]),

ln(1 + x) =

+∞∑

k=1

(−1)k+1 xk

k
. (14)

Since 0 ≤ e−u ≤ 1 for u ≥ 0, then

ln(1 + e−u) =

+∞∑

k=1

(−1)k+1 e−ku

k
. (15)

Consequently by injecting this identity in E[C], the capacity
becomes2:

E[C] =
ξ

σ
√

2π ln(2)

[
+∞∑

k=1

(−1)k+1

k

∫ +∞

0

e−kγe
− (ξγ+µ)2

2σ2 dγ

+

+∞∑

k=1

(−1)k+1

k

∫ +∞

0

e−kγe
− (ξγ−µ)2

2σ2 dγ

+
σ2

ξ2
e
−µ2

2σ2 +
µσ

ξ2

√
π

2
erfc(− µ√

2σ
)

]
. (16)

We can prove that:

∫ +∞

0

e−kγe
− (ξγ±µ)2

2σ2 dγ = e
− µ2

2σ2

√
πσ2

2ξ2
erfcx(

σk

ξ
√

2
± µ√

2σ
).

(17)

2It can be easily shown that the sum and the integral can
be interchanged.
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Consequently, the capacity of a log-normal fading channel
will be given by3

E[C] =
e
− µ2

2σ2

2 ln(2)

[
+∞∑

k=1

(−1)k+1

k
erfcx(

σk

ξ
√

2
+

µ√
2σ

)

+

+∞∑

k=1

(−1)k+1

k
erfcx(

σk

ξ
√

2
− µ√

2σ
)

]

+
µ

2ξ ln(2)
erfc(− µ√

2σ
) +

σe
− µ2

2σ2

ξ
√

2π ln(2)
. (18)

This expression can be also rewritten as

E[C] = CK + RK , (19)

where CK is the truncated series plus the last two terms and
RK is the rest of the series and is given by:

RK =
e
− µ2

2σ2

2 ln(2)

[
+∞∑

k=K+1

(−1)k+1

k
erfcx(

σk

ξ
√

2
+

µ√
2σ

)

+

+∞∑

k=K+1

(−1)k+1

k
erfcx(

σk

ξ
√

2
− µ√

2σ
)

]
. (20)

For K sufficiently large, we have the following approxima-
tion:

erfcx(k) ∼= 1

k
√

π
, k ≥ K + 1. (21)

Using this identity, we obtain that

RK
∼= e

− µ2

2σ2 ξ

σ
√

2π ln(2)

[
+∞∑

k=K+1

(−1)k+1

k(k + ξµ
σ2 )

+

+∞∑

k=K+1

(−1)k+1

k(k − ξµ
σ2 )

]
.

(22)
If µ 6= 0, in order to obtain (7), we use the fact that

+∞∑

k=K+1

(−1)k+1

k(k ± ξµ
σ2 )

= ±σ2

ξµ

+∞∑

k=K+1

(−1)k+1

k

∓ σ2

ξµ
(−1)Kβ(K ± ξµ

σ2
+ 1). (23)

If µ = 0, we obtain (9) using the fact that

+∞∑

k=K+1

(−1)k+1

k2
=

π2

12
−

K∑

k=1

(−1)k+1

k2
. (24)

2.2 Second result
We can prove that RK can be bounded as follows

|RK | < ξ
√

2e
− µ2

2σ2

√
πσ ln(2)(K + 1 + ξµ

σ2 )(K + 1− ξµ
σ2 )

. (25)

This result suggests that for a relatively large value of K,
RK can be neglected in (4).
This observation is better illustrated by Fig. 1 showing
the truncation error. This error is defined by the ratio of
the right hand side of the inequality to the capacity E[C].
Clearly, it is possible to do a truncation in (18) without
undermining the accuracy of the formula.

3We should note here that Schwartz and Yeh [12] obtained
a similar expression in the context of approximating the dis-
tribution of the sum of log-normal random variables.
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Figure 1: The truncation error as a function of K
(σ = 5).

Proof
Starting from

|RK | <
e
− µ2

2σ2

2 ln(2)

[∣∣∣∣∣
+∞∑

k=K+1

(−1)k+1

k
erfcx(

σk

ξ
√

2
+

µ√
2σ

)

∣∣∣∣∣

+

∣∣∣∣∣
+∞∑

k=K+1

(−1)k+1

k
erfcx(

σk

ξ
√

2
− µ√

2σ
)

∣∣∣∣∣

]
, (26)

we prove (25) by noting that the two series that intervene

in (18) are alternating series. Indeed,

{
erfcx( σk

ξ
√

2
± µ√

2σ
)

k

}

k
are sequences of positive decreasing terms that converge to
0 when k → ∞. Hence, the two sums in the right hand
side of the last inequality are the remainders of two alter-
nating series. However, for an alternating series we have the
following result

∣∣∣∣∣
+∞∑

k=K+1

(−1)k+1ak

∣∣∣∣∣ < aK+1. (27)

Therefore applying this inequality gives

|RK | <
e
− µ2

2σ2

2(K + 1) ln(2)

[
erfcx(

σ(K + 1)

ξ
√

2
+

µ√
2σ

)

+ erfcx(
σ(K + 1)

ξ
√

2
− µ√

2σ
)

]
. (28)

And finally, by using the approximation given by (21), and
after some simplification, we obtain (25).
Fig. 2 shows the capacity versus ΓdB for a log-normal RV
with σ = 5 dB and K = 10. This figure depicts clearly
the adequacy between the results obtained by simulations
and those generated by the developed formula. This figure
depicts also the bounds obtained in [9], which are given by
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E[C]up=
1

log(2)

(
µ
ξ

+ exp(−µ
ξ

+ σ2

2ξ2 )
)

,

E[C]low= 1
log(2)

(
µ
ξ

+ Q(µ
σ
)− exp(µ

ξ
+ σ2

2ξ2 )Q(µ
σ

+ σ
ξ
)
)

,

where Q(·) is the gaussian integral function and can be re-
lated to the complementary error function as follows

Q(x) =
1

2
erfc

(
x√
2

)
. (29)

These bounds are loose for low SNR; the upper bound highly
overestimates the capacity whereas the lower bound under-
estimates it. However, our formula accurately characterizes
the capacity for all SNR values.
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Figure 2: Capacity in log-normal fading (σ = 5) for
the SISO channel.

3. CAPACITY WITH MRC AND EGC
The instantaneous received SNR at the output of an M-

branch maximum ratio combiner and equal gain combiner
are, respectively, given by

{
γmrc =

∑M
m=1 γm,

γegc = 1
M

(
∑M

m=1

√
γm)2.

Exact expressions for the probability density functions of the
RVs γmrc and γegc are unfortunately unknown. Notice how-
ever, that these RVs consist of a sum of log-normal RVs4.
We can therefore hinge on the log-normal approximation
which states that the sum of log-normal Random Variables
(RV) can be well approximated by another log-normal RV.
Consequently γmrc and γegc are viewed as log-normal RVs
thereby allowing us to use the previously established results
for the SISO channel.
The logarithmic mean and logarithmic variance of the log-
normal approximations of γmrc and γegc can be estimated

4Since the square, the square root as well as the multiplica-
tion by a constant of a log-normal RV is a log-normal RV,
γegc can be also seen as a sum of log-normal RVs.

by various methods. Here, we use the well known Fenton-
Wilkinson (F-W) [13] method because it provides a closed-
form expression of the parameters of the log-normal RV and
because of its simplicity. However, it should be noted that
the F-W method performs badly for large standard devia-
tions. In such cases, other methods should be used instead.
Among these methods, we refer the interested reader to the
method in [14] which seems to provide good results even for
high standard deviations.
Without loss of generality, we assume in the following that
the different diversity branches experience identical fading,
i.e., each branch has an average SNR equal to Γ and stan-
dard deviation equal to σ. We assume also that the branches
can be correlated and that the correlation factor ρ, is con-
stant for each pair of branches. We have therefore the fol-
lowing expressions





µmrc = ξ ln(MΓ)− σ2
mrc
2ξ

,

σ2
mrc = ξ2 ln

(
(M−1)e

ρ σ2

ξ2
+e

σ2

ξ2

M

)
,

and 



µegc = ξ ln

(
Γ + Γ(M − 1)e

(ρ−1) σ2

4ξ2

)
− σ2

egc

2ξ
,

σ2
egc = 4ξ2 ln

(
(M−1)e

ρ σ2

4ξ2
+e

σ2

4ξ2

M

)
.

The capacity for MRC and EGC is obtained therefore by
substituting these values in (4).
Fig. 3 shows the capacity in a log-normal channel with
maximum ratio combining and equal gain combining. It is
observed that the capacity given by the analytical formula
match perfectly the capacity given by the simulation. Also
as expected the capacity increases as the number of anten-
nas increases.
Fig. 4 and 5 show the impact of the correlation on the ca-
pacity of MRC and EGC. As one should expect the capacity
decreases as the correlation factor increases.
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Figure 3: Capacity in log-normal fading (σ = 5) for
SISO, MRC and EGC (ρ = 0 and K = 10).
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Figure 4: Capacity in log-normal fading (σ = 5) of
MRC for correlated branches.

4. CONCLUSION
In this paper we have provided a closed-form expression

of the ergodic capacity of log-normal fading channels with
receiver channel state information. Since the sum of log-
normal Random Variables (RV) is well approximated by an-
other log-normal RV, the developed formula can be used
as well to evaluate the capacity of uncorrelated/correlated
log-normal channels with Maximum Ratio Combining and
Equal Gain Combining. The analytical expressions obtained
match perfectly the capacity given by simulations.
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