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Abstract—This paper focuses on the problem of angular spread
(AS) estimation at the base station in a macro-cellular system
when a Line-Of-Sight (LOS) component is potentially present.
We will limit our study to low-complexity methods prone to
practical implementation. The paper demonstrates the limitations
of the well-known low complexity AS estimation method, Spread
Root-MUSIC. As supported by simulations, it introduces a
lower complexity ”Look-Up Table” (LUT) based approach that
compares advantageously with Spread Root-MUSIC from the
point of view of complexity and performance.

I. INTRODUCTION

There exist several smart antenna techniques such as beam-
forming, antenna diversity and spatial multiplexing. Future
smart antenna structures will switch from one technique to
another according to the channel parameters [1]. One of the
most important parameters is the multipath AS.

In the last two decades, many estimators have been devel-
oped to estimate the mean Angle of Arrival (AoA) and AS.
Maximum Likelihood [4] and covariance matching [2] estima-
tors are considered the most robust ones and give consistent
estimates. But they also require high dimensional non-linear
optimization. This is why lower complexity estimators such as
Spread Root-MUSIC have been developed. The latter treats the
non-LOS with small AS scenarios and is still quite complex.

We present here a new low complexity AS estimator in
the presence of a LOS. First, our algorithm estimates the
LOS component, i.e. the Rician factor K and the AoA of the
LOS. The first parameter is estimated using the second and
fourth order moments of the received signal. The method then
deduces the correlation coefficient of the diffuse component.
Then LUTs that express the AS and mean AoA as a function
of the correlation coefficients of the diffuse component are
used.

The paper is organized as follows. In the next section, the
data model is presented and Spread Root-MUSIC is described.
In the third section, we expose the new AS estimator in
the presence of a LOS. In the fourth section, we study the
performance of the new algorithm compared to Spread Root-
MUSIC adapted to the presence of a LOS.

II. DATA MODEL AND BACKGROUND

A. Data model

In our model, we consider the following assumptions:

1) Only the uplink (mobile to base station) transmission is
considered.

2) The mobile has a single isotropic antenna surrounded by
scatterers. The base station is located high enough not
to be shadowed by local scatterers.

3) The SIMO (Single Input Multiple Output) model is
considered.

4) The base station and the mobile are far enough from one
another so as to create a near planar wavefront over the
antenna-array surface.

5) The channel is composed of an infinite number of
multipaths, continuously distributed in time (delay of
arrival) and space.

We consider the estimation of the AS and the mean
AoA from estimates over time of the time-varying channel
coefficients associated with a single time-differentiable path
at the multiple elements of an antenna array. Our model
can therefore be associated with a narrowband channel, or
with a given time-differentiable path of a wideband channel.
Of course, in a wideband channel scenario, the potential
presence of a LOS would only be considered for the first
time-differentiable path, and knowledge of a zero K-factor
could be assumed for the rest of the paths.

In our model we consider the following expression of the
Rician channel coefficient at antenna element1 k [5]:

xk(t) =
√

Ω
K+1ak(t)

+
√

KΩ
K+1exp (j2πFd cos(γ)t + j2πd0k sin(θ0k)) , (1)

where ak is the channel coefficient of the diffuse component
(Rayleigh channel), Ω is the power of the received signal,
K is the Rician K-factor, Fd and γ are, respectively, the
Doppler frequency and Doppler angle. d0k is the distance
between the antenna reference 0 and the antenna element k
and θ0k is the AoA of the LOS, as shown in Fig. 1. Indeed,
in our model we consider a symmetry in the scatterers where
the mean AoA corresponds to the AoA of the LOS.

1The described model is valid for 2-D arbitrary arrays.
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Fig. 1. Two antenna elements of an antenna array at the base station.

Let Xk be:

Xk = [xk(0) · · ·xk(N − 1)]. (2)

The correlation coefficient of the Rician channel coefficients
is:

RTkl
=

E[XkXH
l ]√

E[|Xk|2]E[|Xl|2]
, (3)

where (.)H is the transconjugate operator.

So the correlation matrix would be:

RT =
1

K + 1
R︸︷︷︸

Diffuse comp.

+
K

K + 1
ej2πM︸ ︷︷ ︸

LOS comp.

, (4)

where M is a square matrix defined by: Mkl = d0k sin(θ0k)−
d0l sin(θ0l) and R is the correlation matrix of the diffuse
component (Rayleigh model) defined by:

Rkl =

∫ θm+π

θm−π

f(θ, θkl, σ)exp
(
−j2πdkl

fc

c
sin θ

)
dθ, (5)

where the function, f(θ, θkl, σkl) is the power density
function with respect to the azimuth angle of arrival θ. θkl

is the mean AoA or nominal direction of arrival and σ is
the angular spread or the standard deviation of the angular
distribution. fc is the carrier frequency, c is the speed of light
and dkl is the inter-element spacing.

If we consider the diffuse component and we assume small
AS (σ < σthreshold), the correlation coefficient R would be:

• For a Gaussian distribution

Rkl ≈
∫ ∞

−∞

1√
2πσ

exp

(
−(θ − θkl)

2

2σ2
− j

2π

λ
dkl sin θ

)
dθ.

(6)
With small standard deviation σ, sin θ can be linearized
around θm (mean of θkl) in the following way: sin θ =
sin θm + (θ − θm) cos θm, yielding:

Rkl ≈ exp

(
−2π2σ2 d2

kl

λ2
cos2 θkl

)
exp
(
−j2π

dkl

λ
sin θkl

)
.

(7)
• For a Laplacian distribution

Rkl ≈ 1

1 + 2π2σ2
d2

kl
λ2 cos2 θkl

exp
(
−j2π

dkl

λ
sin θkl

)
. (8)

In this paper, we consider only Gaussian and Laplacian
angular distributions, the most popular ones in the literature.
But our approach is still valid for other angular distributions.

B. Spread Root-MUSIC

Spread Root-MUSIC [3] is a derivative of the Root-MUSIC
algorithm. We consider R̂c, the estimated covariance ma-
trix with: R̂ckl

= 1
N

∑N−1
n=0 xk(n)xH

l (n). The Spread Root-
MUSIC algorithm is then:

{ν̂1, ν̂2} = Root − MUSIC(R̂c, nb.sources = 2) (9)

ω̂ =
ν̂1 + ν̂2

2
(10)

σ̂ω = λ−1
K

( |ν̂1 − ν̂2|
2

)
(11)

θ̂m = arcsin

(
ω̂

2π∆

)
(12)

σ̂R =
σ̂ω

2πd cos θ̂m

(13)

where σ̂R is the AS of the Rician fading channel and λK is
the function defined by:

{λK(σω),−λK(σω)} = Root−MUSIC (Rc(θm = 0,K), 2) .
(14)

Indeed, when the angular distribution is symmetrical around
the mean AoA θm = 0, and one uses Root-MUSIC with a
“two point sources” assumption, Root-MUSIC gives a pair
of estimates symmetrically placed on both sides of the array
normal. There is no closed-form expression for the function
λK . But it can be precalculated and the inverse function
is easily interpolated from the tabulated values. Since the
covariance depends on the factor K, we need a LUT for each
value of K as shown in Fig. 2. In our simulations, a LUT was
computed for every value of K with a resolution of 0.1.
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Fig. 2. Function λK of Root-MUSIC for a 7-element ULA and a normally
distributed AS.
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As you can notice, Spread Root-MUSIC can not estimate
an AS higher than a certain limit. The maximum amplitude of
the AS parameter that can be estimated decreases as the K-
factor increases. In practice, Spread Root-MUSIC requires the
K-factor estimate and the a priori knowledge of the angular
distribution of the received signal to select the appropriate
LUT.

III. NEW ANGULAR SPREAD ESTIMATOR

Our approach is to estimate the LOS part of the correlation
coefficient RT . Then the diffuse part R is deduced and the
AS is extracted from LUT. The latter expresses the desired
parameter as a function of the magnitude and the phase of
the correlation coefficient R. One can argue that the same
principle can be applied for the case of a Rician channel. In
other terms, the AS is directly estimated by means of LUT
expressing the AS as a function of the correlation coefficient
(4). In this case, a huge number of LUTs is needed, one
for each angular distribution and each factor K. Besides,
we are not sure to find a one-to-one transformation that
associates one correlation coefficient to a unique AS. This is
why our approach is to estimate the LOS part of the correlation
coefficient and remove it, to use the same LUT as in the non-
LOS case. In this section, we first estimate the LOS part. Then
the AS estimation from the diffuse component R is described.

A. LOS and diffuse component estimation

As described in (4), the LOS part depends on the AoA of
the LOS which is associated to the mean AoA as:

θ̂kl = arcsin(
−� R̂Tkl

2π dkl

λ

), (15)

where {(k, l)} are such that dkl ≈ λ
2 . The final mean AoA

estimate θ̂m is the mean of θ̂kl over all antenna elements pairs.
To determine the LOS component, we also need to estimate

the Rician K-factor. Many K-factor estimators have been
developed. In [7], the K estimator is based on statistics of
the instantaneous frequency (IF) of the received signal. In [8],
Maximum Likelihood estimators that only use samples of both
the fading envelope and the fading phase are derived. In [9], a
general class of moment-based estimators which use the signal
envelope is proposed. A K estimator that relies on the in-phase
and quadrature phase (KIQ) components of the received signal
is introduced there as well.

We choose to use the closed-form presented in [9] which is
easily implemented. This estimator uses the second and fourth
order moments of the received signal to estimate K:

K24 =
−2µ2

2 + µ4 − µ2

√
2µ2

2 − µ4

µ2
2 − µ4

, (16)

where µ2 = E[|X|2] and µ4 = E[|X|4] are, respectively, the
second-order and fourth-order moments of the received signal.
The K24 estimator presents high RMSE when the factor K is
important. In practice, only channel coefficient estimates are
available to compute the moments, so that a noise term must

be added to (1). We denote by SNR the signal-to-noise ratio
of the channel coefficient estimates. To reduce the noise effect,
we consider that a SNR estimate is available, and we use the
following expressions of the moments estimates at antenna
element l:

µ̂
(l)
2 =

1
N

N−1∑
n=0

|xl(n)|2
(

ˆSNR

ˆSNR + 1

)
, (17)

and

µ̂
(l)
4 =

1
N

N−1∑
n=0

|xl(n)|4 k̂a
ˆSNR

2

k̂a
ˆSNR

2
+ 4 ˆSNR + 2

, (18)

where k̂a is the estimated kurtosis of the Rician channel and
is computed as follows:

k̂(l)
a =

( ˆSNR + 1)2
∑N−1

n=0
|xl(n)|4(∑N−1

n=0
|xl(n)|2

)2 − 4 ˆSNR − 2

ˆSNR
2 . (19)

We consider then a SNR estimate ( ˆSNR) with a Gaussian
error estimation:

ˆSNR(dB) = SNR(dB) + ε, (20)

where ε is normally distributed with zero mean, i.e. N(0, σ2
ε ).

Since SNR estimators can often operate over long durations,
they exhibit low power estimation errors. Therefore, we choose
σ2

ε = 0, 1 and 2.
The final K-factor estimate is the mean of K̂

(l)
24 over all

antenna elements l. With those estimates of the second and
fourth-order moments of the received signal, as shown in
Fig. 3, we obtain lower Normalized Root Mean Square Error
(NRMSE) for the K24 estimator.

0 2 4 6 8 10
10

−2

10
−1

10
0

K

N
R

M
S

E

known SNR

estimated SNR with σε
2=1

estimated SNR with σε
2=2

unknown SNR

Fig. 3. NRMSE in K estimation.

Since we consider a SNR estimate for the computation of
the moments of the received signal, we do the same for the
correlation coefficient. The estimated correlation coefficient
(for k �= l) of the Rician fading is :
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R̂Tkl
=

∑N−1
n=0 xk(n)xH

l (n)√∑N−1
n=0 |xk(n)|2∑N−1

n=0 |xl(n)|2
(

ˆSNR
ˆSNR+1

) . (21)

Once the factor K and the AoA of the LOS are estimated,
we deduce the correlation coefficient R:

R̂ = (K̂ + 1)

(
R̂T − K̂

K̂ + 1
exp(j2πM̂)

)
. (22)

B. AS estimation in a LOS scenario

The idea is to find a one-to-one transformation that ex-
presses the AS as a function of the correlation matrix R. As
you can notice, it is difficult to extract a simple one-to-one
transformation. But if we assume small AS (σ < σthreshold),
simple closed-forms can be deduced from (7) and (8). The
final expressions for the AS would be:

• Gaussian distribution

σ ≈
√−2ln|Rkl|
2π dkl

λ cos θkl

. (23)

• Laplacian distribution

σ ≈
√

2
|Rkl| − 2

2π dkl

λ cos θkl

. (24)

In the presence of larger AS, there is no one-to-one
transformation that determines the AS from the correlation
coefficients of the diffuse component only. But if one knows a
priori the angular distribution type (Gaussian, Laplacian, etc.)
and ensures that the AS and mean AoA vary in predefined
ranges, such transformation exists2. For example, for the
Gaussian distribution the mean AoA could vary in [-90,90]
degrees while the AS should be inferior to 55 degrees.
Since the AS is typically lower than ten degrees [11], both
conditions are satisfied in a macro-cellular system that uses
3 sectors. For each distribution type, a LUT can therefore be
computed off-line. The LUT expresses the AS and mean AoA
as a function of the magnitude and phase of the correlation
coefficient R.

Analysis of (23) and (24) shows that when the amplitude of
the correlation coefficient is close to one or zero, the impact
of a correlation coefficient amplitude estimation error on AS
estimation increases. To overcome this limitation, we consider
distant antenna elements while at the same time making
sure to only use a correlation coefficient with magnitude not
close to zero (say higher than 0.05). Since our purpose is
to exploit a correlation coefficient magnitude not close to
one, we consider inter-elements spacing dkl > λ. This does
not imply that we consider all elements spaced by distance
higher than λ. In fact, the chosen distant pairs depend on
the array itself. If the array presents several elements (say

2The one-to-one transformation is possible, when the inter-elements dis-
tance is small (d � λ

2
).

more than 10), we choose the pairs distant by at least 3λ.
But when the array is composed by few elements (say 5),
in this case we choose the ones spaced by dkl > λ. So
the procedure would be as follows. We first consider the
closest pairs, with inter-element spacing d ≈ λ

2 . For each pair,
from the LUT and the estimated correlation coefficient of the
diffuse component, we extract the associated AS (σ̃(c)

kl ). Then,
a preliminary AS estimate (σ̃(c) = mean(σ̃(c)

kl )) is obtained.
If the preliminary AS is higher than a certain threshold which
depends on the angular distribution and the factor K, the
final AS estimation is σ̂ = σ̃(c). Otherwise, the algorithm
considers the correlation coefficient associated with distant
elements pairs. As mentioned before, correlation coefficients
with module higher than 0.05 are used to obtain AS estimates
σ̃

(d)
kl thanks to the closed-forms (23) and (24). So the final AS

estimation would be the mean of the σ̃
(d)
kl . The total AS of the

Rician fading channel would be:

σ̂R =
σ̂

K̂ + 1
. (25)

Fig. 4 provides a summary of the new AS estimator in the
presence of a LOS.

K̂ =
−2µ2

2+µ4−µ2
√

2µ2
2−µ4

µ2
2−µ4

θ̂kl = arcsin(
−� R̂Tkl

2π
dkl
λ

)

θ̂m = mean(θ̂kl)

R = (K̂ + 1)
(
RT − K̂

K̂+1
exp(j2πM̂)

)
Dkl =

{
1 if dkl ≈ λ

2
0 otherwise

Bkl =

{
1 if dkl > λ
0 otherwise

R
(c)
kl = RklDkl

R
(d)
kl = RklBkl[
σ̃

(c)
kl , θ̂kl

]
= LUT (|Rd

kl|, θR
(c)
kl

)

σ̃(c) = mean({σ̃(c)
kl })

E = {(k, l)/|R(d)
kl | > 0.05}

If cardinal(E) < 1 & σ̃(c) > σthreshold

σ̂ = σ̃(c)

Else

σ̃
(d)
kl = g(θ̂m, |R(d)

kl |)/(k, l) ∈ E
The function g refers to (23) or (24)

σ̂ = mean({σ̃(d)
kl })

End
σ̂R = σ̂

K̂+1

Fig. 4. New estimator algorithm in the presence of a LOS.

IV. NUMERICAL RESULTS

To study the performance of the new estimator, we compare
it with Spread Root-MUSIC [3], which is the natural choice
for our comparative study because it is the most well-known
approach with relatively low complexity. We illustrate the
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performance of the new AS estimator by means of Monte-
Carlo simulations. We consider the ULA configuration with 7
elements and inter-elements spacing d = λ

2 .
We assume here that the channel coefficients are obtained

through an appropriate channel estimation algorithm, and
that the resulting time-varying channel coefficient estimates
can be adequately modeled by the sum of the true time-
varying channel coefficients with additive white Gaussian
noise (AWGN). The accuracy of the channel estimation pro-
cedure is then controlled by the variance of the AWGN
component. In our simulations, for the diffuse component, we
used a non-selective frequency (flat) Rayleigh channel. We
also considered the Rayleigh channel simulator described in
[6]. The azimuth angular spread distribution for the incoming
multipath signals will be of Gaussian or Laplacian type. The
carrier frequency was set to 1.9 GHz, which results in a
wavelength λ of 15.79 cm. The mobile speed was set to about
80 Km/h (22.2 m/s), which results in a Doppler frequency fd

of 140.74 Hz. The sampling interval was set to Ts = 1
1500ms.

The SNR of the estimated channel coefficients is 15 dB.
To study the effect of the K̂24 estimation error and the

variance σ2
ε of the estimated ˆSNR on the AS estimation,

we consider several scenarios, illustrated in Fig. 5 (a,b). In
the first one, we assume the a priori knowledge of the K-
factor, i.e. we use the true value of K to estimate the diffuse
component. In the second case, we consider the true value
of the SNR. In the last two cases, an estimated ˆSNR with
variance σ2

ε = 1, 2 is used. As one can notice in Fig. 5 (b), the
AS NRMSE obtained with Spread Root-MUSIC for relatively
small true AS values (3 degrees here) can be smaller when
the SNR is assumed unknown than when the SNR is known
or estimated. This behavior is only visible for small AS
values and is due to the resulting K estimates having high
NRMSE when the SNR is assumed unknown, which translates
into the frequent use of rapidly saturating λK functions (see
fig. 2.), and therefore frequently selected artificially low AS
estimates. These artificially low AS estimates turn out to be
beneficial from the AS NRMSE point of view when the AS
is indeed small. When we vary the AS for a fixed K-factor
(K = 3, θm = −10o), the NRMSE given by the new estimator
decreases when the AS increases. As shown in Fig. 7, the new
estimator gives lower NRMSE than Spread Root-MUSIC for
high AS (σ > 3).

As shown in Fig. 6, for the mean AoA estimation, our
estimator presents better estimates in all tested scenarios
(different AS and mean AoA). Concerning the AS estimation,
whether we assume the a priori knowledge of the SNR or use
an estimate with variance σ2

ε = 1, 2, the new estimator offers
close estimates to the case when we consider the true value
of K. As expected, in the case of unknown SNR, the new
estimator presents high NRMSE. As mentioned before, this
is due to the important estimation error exhibited by the K24

estimator. For Spread Root-MUSIC, the K-factor estimation
does not affect much the performance of Spread Root-MUSIC.
In Fig. 5 (c,d), we compare both estimators. For large AS,

the new estimator offers lower NRMSE than Spread Root-

MUSIC. But for small AS, our estimator presents slightly
higher NRMSE. Still, while Spread Root-MUSIC requires
the eigen-decomposition of the covariance matrix and finding
the roots of a polynomial, our method uses only a LUT,
simple closed-forms and some logical operations. Moreover,
due to the definition itself of the function λK [3], Spread
Root-MUSIC can not estimate an AS greater than a certain
limit. Indeed, for a large AS Spread Root-MUSIC shows high
NRMSE.

V. CONCLUSION AND DISCUSSION

In this paper, we presented a new low-complexity AS
estimator in Rician fading. The new method estimates the
AS by estimating the correlation coefficient of the diffuse
component then uses LUT to extract the desired parameters.
To decrease the impact of the factor K estimation error on
the AS estimation, we normalized the correlation coefficient
and the moments of the received signal by using an estimated
SNR. We compared the new method with Spread Root-
MUSIC. Simulations showed that the new technique gives
lower NRMSE in the presence of large AS while being of
lower computational complexity. These results are obtained
whith the a priori knowledge of the angular distribution of
the received signal. Presently, we are working on extending the
new method to cases for which the type of angular distribution
is unknown.
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Fig. 5. NRMSE in AS estimates of the Rician fading channel.
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Fig. 7. NRMSE in AS estimates of the Rician fading channel.
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