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ABSTRACT

We propose a new method for noise reduction using a microphone
array. The method takes advantage of the spatial diversity inherent to
microphone arrays and optimizes certain criteria, namely, the output
signal to noise ratio (SNR) or the mean squared error (MSE), subject
to the constraint of spatial prediction that relates the noise free sig-
nals captured by the microphones. Simulation results demonstrate
that resorting to this new method leads to high rate of noise reduc-
tion and low signal distortion.

Index Terms— Noise reduction, microphone array, spatial pre-
diction, speech distortion, Wiener filter.

1. INTRODUCTION

Noise reduction has become an active area of research after the pio-
neering work of Schroeder [1]. This fact is due to its various appli-
cations including hand-free communications, hearing aids, telecon-
ferencing, etc. [2].

So far, several noise reduction techniques have been proposed.
The first and most popular ones were developed in the case of a sin-
gle microphone and in the presence of an additive noise only. These
techniques have been classified into three main classes [3]: spectral
substraction, statistical-model-based, and subspace-decomposition-
based. Unfortunately, noise reduction comes at the price of signifi-
cant speech distortion in these techniques [4] because of the utiliza-
tion of a single microphone. Microphone arrays have, however, the-
oretically the potential to reduce the noise while keeping the speech
signal undistorted. Several works have been also carried out to en-
hance speech signals (dereverberation and denoising) using micro-
phone arrays as in [5]. However, the resulting complexity therein
is prohibitive. Beamforming techniques [6, 7] such as the general-
ized side lobe canceller (GSC) [8] have also the potential to perform
this task by steering the array beam toward the direction of arrival of
the source. But, these techniques are sensitive to reverberation and
calibration errors [2]. Actually, reverberation itself remains a com-
plicated task and one would rather focus on denoising only. In [9],
for example, Doclo and Moonen generalized the single microphone
noise reduction subspace-based techniques to the multichannel case
by utilizing the so-called generalized singular value decomposition
(GSVD). In [10], this multichannel GSVD-based technique has been
incorporated in a GSC-type structure to reduce its complexity. In all
of these techniques, a very important feature which is the spatial pre-
dictability of the speech signal captured by the microphone array has
not been considered.

The very basic idea of the proposed approach is to take into ac-
count the spatial predictability of the speech components perceived
by the microphones for the design of a denoising filter. Indeed, the
utilization of multiple microphones renders the speech signal spa-
tially predictable. In other words, in theory any of the noise free

speech components received by one microphone can be obtained by
interpolating any of the other noise free signals captured by another
microphone. In this paper, we mathematically formulate this aspect
and deduce two optimal filters that can achieve noise reduction with
low speech distortion. Namely, these two filters consist in output
SNR maximization and MSE minimization under the constraint of
speech spatial predictability.

2. PROBLEM STATEMENT AND ASSUMPTIONS

Let s(t) denote a speech signal impinging on an array of N micro-
phones with an arbitrary geometry. The resulting observations are
given by:

yn(t) = s(t) ∗ gn + vn(t)

= xn(t) + vn(t); n = 1, 2, · · · , N, (1)

where ∗ is the convolution operator, gn is the channel impulse re-
sponse encountered by the source when impinging on the nth mi-
crophone, xn(t) = s(t) ∗ gn is the noise free speech component,
and vn(t) is the noise at microphone n [the noise can be colored and
is uncorrelated with s(t)]. We assume that all the noise components
and s(t) are zero-mean random processes and that all the involved
entities are real valued.

The objective of this work is to recover one of the speech signal
components, say x1(t) without loss of generality, the best way we
can by either maximizing the output SNR or minimizing the MSE
under some constraint of low speech distortion. Notice here that we
are only interested in noise reduction and not in speech dereverbera-
tion which goes out of the scope of this paper [5]. Since we use the
first microphone signal as a reference, we define the input SNR as:

SNR =
E{x2

1(t)}
E{v2

1(t)} =
σ2

x1

σ2
v1

. (2)

We aim at finding a linear filter, h, of length L that will be ap-
plied to the observed signals to obtain:

z(t) = hT y(t) = hT x(t) + hT v(t), (3)

where x(t) = [xT
1 (t) xT

2 (t) · · · xT
N (t)]T , xn(t) = [xn(t) xn(t −

1) · · · xn(t−L + 1)]T (n = 1, 2, · · · , N ), and so are defined y(t)
and v(t). At the output of this filter, the SNR is given by:

SNR(h) =
E
��

hT x(t)
�2�

E
�
[hT v(t)]2

� =
hT Rxxh

hT Rvvh
. (4)

In this paper, Rda denotes the correlation matrix of two random vec-
tors d and a. Our aim is to find optimal filters that provide us with
the highest noise reduction and the lowest signal distortion simulta-
neously.
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3. SPATIAL PREDICTION CONSTRAINT

It is well known that the speech signal is temporally partially pre-
dictable. Similarly, the utilization of an array of microphones
in room acoustics makes the received signal spatially predictable.
Indeed, the speech signal captured by any of the microphones
2, · · · , N can be predicted from the one captured by the first mi-
crophone. In other words, for any n ∈ {1, 2, · · · , N}, there exists
an L × L matrix Wn such that:

xn(t) ≈ Wnx1(t) (5)

with, of course, W1 = I (I is the identity matrix). Defining W =
[WT

1 WT
2 · · ·WT

N ], we can write

x(t) ≈ WT x1(t). (6)

This relation is very important and will be used as a constraint to
minimize the speech distortion while reducing the noise. Now, how
to calculate W? To this end, we minimize the following MSE crite-
rion:

J(W) = E

��
WT x1(t) − x(t)

�T �
WT x1(t) − x(t)

��
. (7)

Straightforward calculations lead to the optimal filter:

Wo = R−1
x1x1Rx1x. (8)

In practice, Rxx is not available (so are Rx1x1 and Rx1x, the first
L×L and L×NL block matrices extracted from Rxx, respectively),
but can be estimated if the noise is stationary enough (its second
order statistics do not change much with time). Indeed, using a voice
activity detector, one can estimate Rvv during the periods of silence
and use it during periods of speech jointly with the fact that Rxx =
Ryy − Rvv. Having x1(t) as a reference signal, a natural choice of
the MSE is the following [9]:

J(h) = E{[z(t) − x1(t)]
2}

= σ2
ex

+ σ2
ev

, (9)

where z(t) is defined in (3) and

σ2
ex

= E{e2
x(t)} = E

��
hT x(t) − x1(t)

�2�
, (10)

σ2
ev

= E{e2
v(t)} = E

��
hT v(t)

�2�
. (11)

Ideally, we would like to have ex(t) = 0 and ev(t) = 0. Unfortu-
nately, this is not the case, and any noise reduction leads to speech
distortion in practice. For a given filter h, the signal distortion is
given by:

ex(t) = hT x(t) − x1(t) ≈ hT WT
o x1(t) − uT

1 x1(t), (12)

where u1 = [1 0 · · · 0]T is an L−dimensional vector. The approx-
imation above is obtained by taking into account (6) and (8). Now,
(12) can be easily rewritten as:

ex(t) ≈ (Woh − u1)
T x1(t). (13)

Hence, by imposing the constraint:

Woh = u1 (14)

while minimizing the MSE or maximizing the output SNR, we ex-
pect to obtain minimum signal distortion. This approach will lead to
two new filters as explained below.

4. WIENER FILTER WITH SPATIAL PREDICTION
CONSTRAINT

The classical Wiener filter is obtained by minimizing the MSE in (9):

hW = arg min
h

J(h) (15)

which leads to:
hW = R−1

yy Rxx1u1. (16)

As stated previously, Rxx1 can be estimated if the noise is stationary
enough. However, we would like to take into account the constraint
(14) while minimizing the MSE. Namely, we are interested in solv-
ing this optimization problem:

hCW = arg min
h

J(h) (17)

s.t. Woh = u1. (18)

The Lagrangian is then given by:

L(h, λ) = J(h) + λT Woh − λT u1. (19)

Setting the derivative of this function with respect to h to zero leads
to:

hCW = R−1
yy

�
Rxx1u1 +

1

2
WT

o λ

�
. (20)

Using the constraint (18), we find:

λ = 2
�
WoR

−1
yy WT

o

�−1 	
WoR

−1
yy Rxx1 − I



u1. (21)

Using (6), (20), and (21), we obtain:

hCW = R−1
yy WT

o

�
WoR

−1
yy WT

o

�−1

u1. (22)

5. MAXIMUM OUTPUT SNR WITH SPATIAL
PREDICTION CONSTRAINT

Here, our aim is to maximize SNR(h) defined in (4) under the con-
straint of spatial prediction (6). The problem can be formulated as:

hCS = arg max
h

SNR(h) (23)

s.t. Woh = u1. (24)

The Lagrangian can be written as:

LSNR(λ,h) =
hT Rxxh

hT Rvvh
+ λT Woh − λT u1. (25)

Setting the derivative of the above function to zero, we find:

2

(hT
CSRvvhCS)

[M(hCS)]hCS + WT
o λ = 0, (26)

where

M(hCS) = Rxx − SNR(hCS)Rvv. (27)

When considering the maximization of the output SNR only,
the optimal filter is the eigenvector associated to the largest eigen-
value of R−1

vv Rxx. The corresponding output SNR is equal to this
eigenvalue. However, the resulting signal distortion is very high. If
SNR(hCS) is equal to any of the eigenvalues of R−1

vv Rxx, hCS is
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an associated eigenvector and the effect of the constraint (24) disap-
pears from (26). Hence, M(hCS) is invertible and

hCS = − (hT
CSRvvhCS)

2
[M(hCS)]−1 WT

o λ. (28)

Using the constraint (24), we obtain:

−hT
CSRvvhCS

2
Wo [M(hCS)]−1 WT

o λ = u1 (29)

meaning that

λ = − 2

hT
CSRvvhCS

�
Wo [M(hCS)]−1 WT

o

�−1

u1. (30)

We obtain:

hCS = [M(hCS)]−1 WT
o

�
Wo [M(hCS)]−1 WT

o

�−1

u1. (31)

Using (31), we propose an iterative approach to calculate hCS

and the corresponding output SNR. Indeed, we first use an initial

guess of the output SNR, say ˆSNR(hCS), and we deduce the corre-

sponding filter ĥCS using (31). After that, we use ĥCS to calculate
the output SNR and iterate few times to obtain the optimal filter and
the corresponding output SNR. Moreover, notice that (31) involves
the inversion of the matrix M(hCS) defined in (27). Remarkably,
this matrix depends on the energy of the speech signal which might
drop to very low values in noise-dominated frames [3]. This makes
the inversion of M(hCS) a delicate task because it becomes badly
conditioned and might lead to high signal distortions as we empiri-
cally found. Therefore, we will use the filter (31) with moderate to
high energy frames only as we explain in Section 6.

6. SIMULATIONS

In this section, we provide some numerical examples to corrobo-
rate the potential of the proposed approaches. We are interested in
providing the usefulness of the relation (6) which translates into the
constraint (24) or (18). Hence, we put aside the problem of noise-
second-order-statistics estimation and suppose that they are known
for any processed data frame. For further details, we refer the readers
to [3], Chapter 9, where noise estimation algorithms are investigated.

The starting point in the derivation of the spatial prediction ma-
trix W is the data model (1) which assumes that the noise and speech
are both present. However, the speech signal is not stationary and its
energy may go to zero in some data frames. Consequently, the clas-
sical Wiener filter is used instead of the two proposed filters if the
SNR< −15 dB. As we stated in Section 5, the filter (31) is used with
moderate to high energy frames only (with SNR ≥ 10 dB here). For
−15 ≤ SNR < 10 dB, we use the filter (22) instead. To sum up,
three methods are compared, namely, Method 1: Wiener filter (16),
Method 2: constrained Wiener filter (22) for SNR ≥ −15 dB and
Wiener filter otherwise, and Method 3: constrained SNR maximiza-
tion filter (31) for SNR ≥ 10 dB, constrained Wiener filter (22) for
−15 ≤ SNR < 10 dB and Wiener filter otherwise. In practice, the
exact value of the SNR for a given data frame is not available but can
be estimated; see [9, 10, 11] for example.

We use some impulse responses that are measured at the Bell-
Labs varechoic room. The simulated room dimensions1 are: length
= 6.7, width = 6.1, and height = 2.9 (x × y × z). We consider a
uniform linear array of N microphones which are placed on the axis

1All dimensions and coordinates are in meters.

(ym = 5.6, zm = 1.4 ) with the first microphone at the coordinate
xm,1 = 2.437 along the x-axis and the microphones spacing is Δ =
0.1. The source is a 4 seconds-long male speech taken from the
noisy speech corpus NOIZEUS [3] sampled at 8 kHz and located at
(xs = 1.337, ys = 3.162, zs = 1.6). The reverberation condition
is set to T60 ≈ 240 ms. The N simulated impulse responses (4096
filter taps each) are convolved with the speech signal before adding
a computer generated white Gaussian noise with a long-term input
SNR = 10 dB in both simulated scenarios. The perceived signals are
cut into small rectangular frames with 64 ms duration each and 50%
overlapping. After processing them, each frame is multiplied by a
Hamming window and overlap added to the other processed frames
[3]. As performance indices we use the output SNR defined in (4)
and the log-likelihood ratio [3] between the original speech and the
filtered one, hT x(k), as a measure of speech distortion.

In the first simulation setup, we chose N = 6 and vary the
number of filter taps L. The results are depicted in Fig. 1. We
notice that the spatial prediction constraint remarkably reduces the
signal distortion with both Wiener and output SNR maximization
filters (unconstrained output SNR maximization is discarded from
our comparisons as it introduces extremely high signal distortions).
This comes at the price of lower output signal to noise ratio for the
constrained Wiener filter (for moderate filter lengths). Method 3,
however, provides the best output signal to noise ratio and compara-
ble signal distortion especially when L ≈ 50. As L becomes very
high, the performance of all the filters collapse because the matrices
involved in the calculations of hW, hCW, and hCS become large and
ill conditioned.

In the second simulation setup, we choose L = 16 and increase
the number of microphones from 2 to 10. Here, it is worth mention-
ing that the spatial prediction model is valid for N ≥ 2 while the
Wiener filter is applicable even when N = 1. In this case, we em-
pirically found that the Wiener filter gives an output SNR ≈ 15.3 dB
and the log-likelihood ratio is around 0.3. The results of this simu-
lation are provided in Fig 2. We notice that, as expected, the output
SNR increases with the number of microphones for the three meth-
ods. However, the signal becomes more and more distorted with the
new proposed filters (especially when N increases from 2 to 6). This
fact is due to the spatial predictability constraint which is imperfect.
Indeed, recall that in (5), we are interpolating x1(k) to obtain xn(k)
(both vectors have the same length L). Therefore, xn(k) has some
unpredictable entries (at its end) because of the time delay propaga-
tion between sensors 1 and n. When n increases, the unpredictable
part of xn(k) becomes larger due to the increase of the propagation
time delay. We conclude that longer filters need to be used to take
advantage of the proposed spatial prediction constraint when arrays
of larger sizes are deployed. However, one has to pay attention to the
potential deterioration of the conditioning of the covariance matrices
which are involved in the calculations of the proposed filters.

7. CONCLUSIONS

In this paper, we explored a new concept of spatial predictability of
the speech signal received by a microphone array. This predictabil-
ity was then exploited as constraint to optimize two criteria, namely,
SNR maximization and MSE minimization. We empirically found
that the constrained SNR maximization provides more SNR gains
while the constrained MSE minimization provides less speech dis-
tortion especially for filters of moderate sizes. As the filter length
increases, both filters provide comparable signal distortions with dif-
ferent output SNR values.
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Fig. 1. Filter length (L) effect; T60 ≈ 240 ms and N = 6.
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