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Abstract—Composite multipath/shadowing fading environ-
ments are frequently encountered in different realistic scenarios.
These channels are generally modeled as a mixture of Nakagami-
m multipath fading and log-normal shadowing. The resulting
composite probability density function (pdf) is unfortunately
not in closed-form, thereby making the performance evaluation
of communication links in these channels cumbersome. In this
paper, we propose to model composite channels by the very
general G-distribution. This pdf arises when the log-normal
shadowing is substituted by the Inverse-Gaussian one. This
substitution will prove to be very accurate for several shadowing
conditions. In this paper we conduct an exhaustive performance
evaluation of communication systems operating in these channels.
Our study starts by deriving a closed-form expression for the
outage probability. Then, we derive the moment generating
function of the G-distribution, hence facilitating the calculation
of average bit error probabilities. We also derive closed-form
expressions for the channel capacity for three adaptive transmis-
sion techniques, namely, i) optimal rate adaptation with constant
power, ii) optimal power and rate adaptation, and iii) channel
inversion with fixed rate. The different expressions that will be
provided are of great importance in assessing the performance
of communication systems in composite channels.

Index Terms—Outage probability, information rates, fading
channels, adaptive transmission techniques, log normal, Nak-
agami distribution and composite distributions.

I. INTRODUCTION

Mixtures of multipath fading and shadowing are frequently
encountered in several scenarios. This is particularly the case
for communication systems with low mobility or stationary
users. In such configurations, the receiver can not mitigate
the multipath fading effect by averaging and is subject to
the instantaneous composite multipath/shadowed signal. A
composite distribution arises therefore as the perfect statistical
characterization of the signal to noise ratio in these channels.
Several composite models were presented in the literature (see
[1] and the references therein), like for instance, the shadowed
Nakagami fading channel [2], which is a generalization of the
Rayleigh-lognormal model (called also the Suzuki model) [3]-
[4], and consists of a mixture of Nakagami-m multipath fading
and log-normal shadowing.
The main drawback of the shadowed Nakagami fading model
is that the composite probability density function (pdf) is not

in closed-form thereby making the performance evaluation
(such as average error probabilities, outage probabilities and
channel capacity) of communication links in these channels
cumbersome. Attempts have been made to obtain a practical
closed-form composite distribution. We can site, for instance,
the well known K-distribution [5] and its generalized version
[6]. The K-distribution is obtained by substituting the gamma
shadowing to the log-normal one. This distribution proved
to be particularly useful in evaluating the performance of
composite channels [7]-[10]. Recently, the Inverse-Gaussian
pdf was proposed as a substitute to the log-normal one [11].
The authors proved that a composite Rayleigh-Inverse Gaus-
sian distribution approximates the Suzuki distribution more
accurately than the K-distribution.
In this paper, we consider the more general Nakagami-Inverse
Gaussian model. We demonstrate that this combination gives
birth to a closed-form composite distribution called the G-
distribution. This distribution was first proposed in [12] in the
context of Synthetic Aperture Radar (SAR) image modeling.
In this paper, we derive several important tools for the perfor-
mance evaluation of communications links in such channels.
Our study starts by deriving a closed-form expression for the
outage probability. Then, we derive the moment generating
function (MGF) of the G-distribution, hence making the aver-
age bit error probabilities in this type of channels (with and
without diversity combining) easy to compute. We also derive
closed-form expressions for the channel capacity with different
adaptive transmission techniques.
The remainder of the paper is organized as follows. In section
II, we present the G-distribution and some of its properties. In
section III, we give the expression for the outage probability.
Section IV deals with derivation of the MGF and average
bit error probabilities. In section V, we give a closed-form
expression for the capacity of three adaptive transmission
techniques namely, i) optimal rate adaptation with constant
power, ii) optimal power and rate adaptation, and iii) channel
inversion with fixed rate. Section VI provides some selected
numerical results to illustrate the derived formulas and vali-
dates the newly developed analytical expressions via computer
simulations. Section VII concludes the paper with a summary

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2008 proceedings.

978-1-4244-2075-9/08/$25.00 ©2008 IEEE 1333



of the main results.

II. THE G-DISTRIBUTION

A. The Probability Density Function of the Composite Enve-
lope

In a composite Nakagami-lognormal channel, the probabil-
ity density function of the envelope X is

fX(x) =
∫ +∞

0

fX/Y (x/Y = y)fY (y)dy, (1)

where fX/Y is the Nakagami-m multipath fading distribution
and is given by

fX/Y (x/Y = y) =
2mmx2m−1 exp(−mx2

y )

Γ(m)ym
, x > 0, (2)

where Γ(·) is the gamma function [20] and m is generally an
arbitrary number superior to 0.5. However, in our performance
study, this parameter will be restricted to integer values for
analytical tractability.
In (1), fY (y) is the log-normal shadowing distribution, i.e.,

fY (y) =
1√

2πσy
exp

(
− (ln(y) − µ)2

2σ2

)
, y > 0, (3)

where µ and σ are, respectively, the mean and the stan-
dard deviation of ln(y). The resulting composite distribution
fX(·) is unfortunately not in closed-form, hence making the
performance evaluation of communications links over such
channels very challenging. In order to obtain a more tractable
composite distribution, and as it was done in [11], the log-
normal shadowing is approximated by the Inverse-Gaussian
(IG) distribution which is given by

fY (y) =

√
λ

2π
y− 3

2 exp
(
−λ(y − θ)2

2θ2y

)
, y > 0, (4)

where λ and θ can be linked to µ and σ by the moment
matching technique as follows1 λ = exp(µ)

2 sinh( σ2
2 )

,

θ = exp
(
µ + σ2

2

)
.

Substituting (2) and (4) in (1) and using [20, Eq. (3.471.9)], we
find that this substitution results in a closed-form composite
distribution given by

fX(x)=
(

λ

θ2

)m+ 1
2
√

λ

2π

4mm exp(λ
θ )x2m−1

Γ(m)
(√

g(x)
)m+ 1

2
Km+ 1

2

(√
g(x)

)
,

(5)
where g(x) = 2λ

θ2 (mx2 + λ
2 ) and Kν(·) is the modified Bessel

function of the second kind of order ν [20]. This pdf was first
discovered in [12] where it was called the G-distribution (in

1Note that, in [11], the authors use different matching equations. Indeed,
they match the moments of the Suzuki distribution with the moments of the
Rayleigh-Inverse Gaussian one. In our case, we choose to match the moments
of the IG and the log-normal distribution and this has the advantage of leading
to simpler matching equations between (λ,θ) and (µ,σ).

[12], it is referred to as GA). If m = 1, this distribution reduces
to the Rayleigh-Inverse Gaussian model that was considered
in [11]. Previously, the gamma pdf was used as a substitute
to the log-normal one. The resulting composite pdf is the
generalized K-distribution. In [11], the authors demonstrated
that a composite Rayleigh-Inverse Gaussian distribution can
better describe a composite Rayleigh-lognormal channel. This
fact is further confirmed later in our numerical examples.

B. The Probability Density Function of the Instantaneous
Composite SNR

Using [13, Eq. (2.3)], the pdf of the composite instanta-
neous signal-to-noise power ratio (SNR) fγ(γ), can be easily
deduced from (5) as

fγ(γ) = A
γm−1(√

α + βγ
)m+ 1

2
Km+ 1

2

(
b
√

α + βγ
)

, (6)

where the following constants have been used:{
A = (λγ)

1+2m
4

Γ(m)

√
2λ
πθ exp(λ

θ )
(

m
γ

)m

, b = 1
θ

√
λ
γ ,

α = λγ, β = 2mθ.

Note that if a maximum ratio combiner with M i.i.d. branches
is used at the receiver, then the distribution of the instantaneous
SNR at the output of this combiner can be readily obtained
from (6) by substituting m with Mm and γ with Mγ (refer to
[14] for a similar analysis treating the K-distributed fading).
Consequently, all the following performance study applies also
if maximum ratio combining (in i.i.d. fading) is employed at
the receiver.

C. Moments and Amount of Fading

Using [20, Eq. (6.596.3)], the kth moment of the output
SNR can be found to be given by

E[γk] =A

∫ +∞

0

γm+k−1(√
α + βγ

)m+ 1
2
Km+ 1

2

(
b
√

α + βγ
)

dγ

=

√
2λ

πθ
e

λ
θ

(
γ

m

)k Γ(m + k)
Γ(m)

Kk− 1
2
(
λ

θ
), (7)

which yields the following Amount of Fading (AF)

AF =
E[γ2]
E[γ]2

− 1 =
(

1
m

+ 1
) (

θ

λ
+ 1

)
− 1. (8)

The AF ranges from θ
λ (for m = +∞) to 3 θ

λ +2 (for m = 1
2 ).

III. OUTAGE PROBABILITY

The outage probability is an important performance measure
of communication links operating over fading channels. It is
defined as the probability that the output SNR falls below a
given threshold γth, i.e.,

Pout =
∫ γth

0

fγ(γ)dγ = Fγ(γth) − Fγ(0), (9)

where Fγ(·) is the primitive of the instantaneous SNR’s pdf
and is defined as

Fγ(γ) =
∫

fγ(γ)dγ = AIm,m(γ, β, α), (10)
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where

Ip,q(x, y, z) =
∫

xq−1
Kp+ 1

2
(b
√

xy + z)

(
√

xy + z)p+ 1
2

dx. (11)

Using the results of Appendix I, Fγ(γ) can be written in
closed-form as

Fγ(γ) = −AΓ(m)
m∑

k=1

2kγm−k

(βb)k(m − k)!

Km−k+ 1
2
(b
√

α + βγ)(√
α + βγ

)m+ 1
2−k

.

(12)
Consequently, the outage probability is given by

Pout = 1−AΓ(m)
m∑

k=1

2kγm−k
th

(βb)k(m − k)!

Km−k+ 1
2
(b
√

α + βγth)(√
α + βγth

)m−k+ 1
2

.

(13)

IV. AVERAGE BIT ERROR PROBABILITY

The average bit error probability (BEP) constitutes probably
the most important performance measure of a digital commu-
nication system. Unfortunately, the average BEP is generally
not easy to find in closed-form. However, it was shown in
[13], that the MGF can be used to obtain the average BEP
of any kind of modulation (with and without diversity) either
in closed-form or in the form of a single finite-range integral.
For instance, for differentially coherent detection of phase-
shift-keying (DPSK) or noncoherent detection of orthogonal
frequency-shift-keying (FSK), the average BEP can be written
as [13]

Pb(E) = C1M(a1), (14)

where M(·) is the MGF and C1 and a1 are constants that
depend on the modulation.
The MGF is therefore a key tool that needs to be derived.
In Appendix II, we prove that the MGF corresponding to the
G-distribution can be written in closed-form as

M(s) = 1 + m
m−1∑
k=0

(−1)k+1Ck
m−1

(k + 1)!

k∑
p=0

Cp
k

(
2
√

αs

β

)k+1−p

× Γ[k + p + 1]H−(k+p+1)

(
b

2

√
β

s
+

√
sα

β

)
, (15)

where Cp
k is the binomial coefficient and Hν(x) is the Hermite

function of order ν [21].

V. CHANNEL CAPACITY

Spectral efficiency of adaptive transmission techniques has
attracted a rising concern in the last decade. This interest
stems from the fact that Shannon’s channel capacity represents
the upper bound for the data rate achievable in a transmis-
sion with an arbitrary small error probability, and, as such,
serves as an ultimate performance measure of communication
systems. The evaluation of the capacity of fading channels
mainly started with Lee’s paper [15], in which he analyzed
the capacity of Rayleigh fading channels under the optimal
rate constant power policy. Since then, several results on
wireless channel capacity became available. In [16], Alouini

and Goldsmith extended the work of Lee by examining the
capacity of Rayleigh fading channels under different adaptive
transmission techniques and different configurations. Other
fading channels like Rician, Hoyt, Nakagami, Weibull and
K fading channels were studied in [17], [18], [19] and [10].
Here, we present closed-form expressions for the capacity with
different adaptive transmission techniques for the G-distributed
fading channels.

A. Optimal Rate Adaptation with Constant Transmit Power

Under the optimal rate constant power (ora) policy the
capacity is known to be given by [16]

< C >ora=
∫ +∞

0

ln(1 + γ)fγ(γ)dγ = −
∫ +∞

0

Fγ(γ)
1 + γ

dγ.

(16)
Substituting Fγ(γ) with the expression obtained above, then
using the change of variable v = 1 + γ and applying the
binomial expansion, we obtain after some manipulations

< C >ora =AΓ(m)
m∑

k=1

2k(−1)m−k

(βb)k(m − k)!
(Rm−k(β, α − β)

−
m−k∑
j=1

Cj
m−k(−1)jIm−k,j(1, β, α − β)), (17)

where Rn(·, ·) is given by

Rn(x, y) =
∫ +∞

1

Kn+ 1
2
(b
√

xv + y)

v (
√

xv + y)n+ 1
2

dv, (18)

and is obtained in closed-form in Appendix III.

B. Optimal Simultaneous Power and Rate Adaptation

For optimal power and rate adaptation (opra), the capacity
is known to be given by [16]

< C >opra=
∫ +∞

γ0

ln
(

γ

γ0

)
fγ(γ)dγ = −

∫ +∞

γ0

Fγ(γ)
γ

dγ.

(19)
By replacing Fγ(γ) with its expression, we obtain

< C >opra = AΓ(m)(
2m

(βb)m
R0(γ0β, α)

−
m−1∑
k=1

2kIm−k,m−k(γ0, β, α)
(βb)k(m − k)!

). (20)

The variable γ0 is the optimal cutoff and is the solution of the
following equation∫ +∞

γ0

(
1
γ0

− 1
γ

)
fγ(γ)dγ = 1. (21)

Note that by using the same techniques as previously, this
integral can be expressed in closed-form. However γ0 can
not be solved in closed-form and the last equation has to be
evaluated numerically.
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C. Channel Inversion with Fixed Rate

1) Total Channel Inversion: The capacity for this scheme
is known to be given by [16]

< C >cifr= ln

(
1 +

1∫ +∞
0

1
γ fγ(γ)dγ

)
. (22)

For m ≥ 2, the integral in the logarithm can be expressed in
terms of Im,m−1(0, β, α), yielding the following expression

< C >cifr= ln
(

1 + γ
(m − 1)

m

λ

λ + θ

)
. (23)

Note that, for Rayleigh fading, i.e. m = 1, the capacity with
total channel inversion tends to zero. This is because the
integral inside the logarithm will diverge.

2) Truncated Channel Inversion: The capacity of this
scheme is given by [16]

< C >tcifr= ln

(
1 +

1∫ +∞
γ0

1
γ fγ(γ)dγ

)
(1 − Pout), (24)

which is readily obtained using the previously derived results
and the results presented in the appendix.

VI. NUMERICAL RESULTS

Fig. 1 shows the probability density functions of the log-
normal, the Inverse-Gaussian, and the Gamma distributions in
a frequent heavy shadowing environment (refer to [1] for more
information on this model). This figure shows clearly that the
IG-distribution can be used as a precise substitute for the log-
normal one.
In the next examples, we compare the closed-form expres-
sions that we have developed (referred to in the figures as
analytical formulae) with numerical integration (referred to as
simulation). This comparison is conducted for two shadowing
scenarios, namely the average shadowing environment and the
frequent heavy shadowing one. Throughout our simulations
the parameter m is arbitrarily set to 5.
Fig. 2 depicts the outage probability versus the average SNR
γ for γ0 = 5 dB. As expected, the outage probability increases
as the shadowing becomes more pronounced. The average bit
error probability for DPSK (C1 = 1

2 and a1 = 1 in (14)) and
noncoherent frequency shift keying (C1 = 1

2 and a1 = 1
2 in

(14)) is also illustrated in Fig. 3. Here also the performance
is degraded in the frequent heavy shadowing environment.
Fig. 4 shows also that compared to optimal power and rate
adaptation, transmission with optimal rate adaptation suffers
capacity penalty at low SNR only. However, as γ increases, the
two policies will provide the same capacity. The same holds
for truncated channel inversion and total channel inversion,
however due to the space limitations, these results are not
shown here.

VII. CONCLUSION

Composite multipath/shadowing fading environments are
frequently encountered in several realistic scenarios. In this pa-
per, hinging on the fact that the Inverse-Gaussian distribution
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Fig. 1. Pdf of the log-normal, the inverse-Gaussian, and the gamma
distribution for frequent heavy shadowing (µ = −3.914 and σ = 0.806).
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Fig. 2. Outage probability for γ0 = 5 dB in average (µ = −0.115 and
σ = 0.161) and frequent heavy shadowing environments (µ = −3.914 and
σ = 0.806).

accurately approximates the log-normal one, we have proposed
to use the Nakagami-Inverse Gaussian composite model as a
substitute for the log-normally shadowed Nakagami fading.
The resulting distribution, the G-distribution, has the advantage
of being in closed-form, thereby facilitating the performance
evaluation of communication links over composite channels.
In this study, several key results have been presented, including
the outage probability, average error probabilities, and the
capacity for different adaptive transmission techniques. The
expressions that we have provided are of great importance
in assessing the performance of communication systems over
composite channels.
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APPENDIX A
EVALUATION OF Ip,q(x, y, z)

Define Ip,q(x, y, z) as

Ip,q(x, y, z) =
∫

xq−1
Kp+ 1

2
(b
√

xy + z)

(
√

xy + z)p+ 1
2

dx. (25)

Using the fact that

d(x−µKµ(x))
dx

= −x−µKµ+1(x), (26)

and integrating by part we obtain

Ip,q(x, y, z) = −2xq−1

yb

Kp− 1
2
(b
√

xy + z)

(
√

xy + z)p− 1
2

+
2(q − 1)

yb
Iq−1,p−1(x, y, z). (27)

Iterating over this equation, we finally find that

Ip,q(x, y, z) = −(q−1)!
q∑

k=1

2kxq−k

(yb)k(q − k)!

Kp−k+ 1
2
(b
√

xy + z)

(
√

xy + z)p+ 1
2−k

.

(28)

APPENDIX B
DERIVATION OF THE MOMENT GENERATING FUNCTION

The MGF is given by

M(s) = A

∫ +∞

0

exp(−sγ)γm−1
Km+ 1

2

(
b
√

α + βγ
)

(√
α + βγ

)m+ 1
2

dγ

= (−1)m−1A
dm−1Gm(s)

dsm−1
, (29)

where Gm(s) is defined as follows

Gm(s) =
∫ +∞

0

exp(−sγ)
Km+ 1

2

(
b
√

α + βγ
)

(√
α + βγ

)m+ 1
2

dγ. (30)

Applying an integration by part, we find that Gm(s) satisfies
the following recursion formula

Gm(s) =
2
bβ

Km− 1
2
(b
√

α)

(
√

α)m− 1
2

− 2s

bβ
Gm−1(s). (31)

Iterating over this equation, we obtain

Gm(s) =
m∑

k=1

(−1)k−1 2ksk−1

(bβ)k

Km−k+ 1
2
(b
√

α)

(
√

α)m−k+ 1
2

+ (−1)m 2msm

(bβ)m
G0(s), (32)

where G0(s) is given by

G0(s) =
√

π

2b

∫ +∞

0

exp(−sγ)
e−b

√
βγ+α

√
βγ + α

dγ. (33)

By plugging the expression of Gm(s) in the MGF, the latter
will be given by

M(s) = 1 − Γ(m + 1)A2m

(bβ)m

m−1∑
k=0

Ck
m−1

sk+1

(k + 1)!
G

(k)
0 (s).

(34)
The kth derivative of G0 can be calculated as follows

G
(k)
0 (s) = (−1)k

√
π

2b

∫ +∞

0

γk exp(−sγ)
e−b

√
βγ+α

√
βγ + α

dγ, (35)

which, after some manipulations, leads to

G
(k)
0 (s) =

(−1)k

βk+1

√
2π

b
e−b

√
α

k∑
p=0

Cp
k(2

√
α)k−p

×
∫ +∞

0

yk+pe−
sy2

β e−y(b+ 2s
√

α
β )dy. (36)
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Using [20, Eq. (3.462.1)] with [21], the last equation can be
written as

G
(k)
0 (s) =

(−1)k

βk+1

√
2π

b
e−b

√
α

k∑
p=0

Cp
k(2

√
α)k−p(

s

β
)−

k+p+1
2

× Γ[k + p + 1]H−(k+p+1)

(
b

2

√
β

s
+

√
sα

β

)
, (37)

where Hν(x) is the Hermite function.

APPENDIX C
EVALUATION OF Rn(x, y)

Define Rn(x, y) as

Rn(x, y) =
∫ +∞

1

Kn+ 1
2
(b
√

xv + y)

v (
√

xv + y)n+ 1
2

dv. (38)

Using the change of variable X =
√

xv + y, we obtain

Rn(x, y) = 2
∫ +∞

√
x+y

Kn+ 1
2
(bX)

(X2 − y)Xn− 1
2
dX. (39)

Using the fact that Kn+ 1
2
(bX) can be written as

Kn+ 1
2
(bX) =

√
π

2bX
exp(−bX)

n∑
l=0

Γ(n + 1 + l)(2bX)−l

Γ(n + 1 − l)Γ(l + 1)
,

(40)
we obtain

Rn(x, y) =

√
2π

b

n∑
l=0

Γ(n + 1 + l)(2b)−l

Γ(n + 1 − l)Γ(l + 1)
Hn+l(

√
y,
√

x + y),

(41)
where

Hl(a, c) =
∫ +∞

c

exp(−bX)
(X2 − a2)X l

dX. (42)

This integral can be solved by applying partial fraction de-
composition

al+1

(X2 − a2)X l
=

1
2

[
1

X − a
− (−1)l

X + a

]
−

l+t
2∑

j=1

1
X2j−ta−2j+t+1

,

(43)
where t = 1−(−1)l

2 . Two cases must be distinguished here.
The first one corresponds to the event a 6= 0, in this case,
Hl(a, c) will be given by

Hl(a, c) =
e−abΓ[0, b(c − a)] − (−1)leabΓ[0, b(c + a)]

2al+1

−

l+t
2∑

j=1

E2j−t(bc)
c2j−t−1al−2j+t+2

, (44)

where Γ(·, ·) is the incomplete Gamma function and En(z) =∫ +∞
1

e−zt

tn dt is the nth order exponential integral function [20].
The second case corresponds to a = 0 and leads to Hl(0, c) =
El+2(bc)

cl+1 .
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