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1. ABSTRACT

In semi-blind channel estimation techniques, the choice ofthe
regularizing parameter that weights the blind criterion when
linearly combined to the training-based least square criterion
has a great impact on channel estimation performance. If a
scalar regularization is considered, it has been noted that the
optimal value of the regularizing factor has no closed-form
expression. In a recent work, we proved that by using a reg
ularization matrix instead, we not only enhance the perfor
mance but also can determine a closed-form expression for
the optimal regularizing matrix that minimizes the asymp
totic mean-square-error of the channel estimate. In this pa
per, we generalize our work to the context of Multiple-Input
Multiple-Output-Orthogonal-Frequency-Division-Multiplexing
(MIMO-OFDM). As an application, we propose to make a
performance comparison between linear prediction and sub
space semi-blind estimators. In particular, we assess by simu
lations the accuracy of the derived results and investigate the
Bit Error Rate performance as well as the impact of channel
overmodeling.

Key words: semi-blind equalization, MIMO-OFDM, reg
ularization, asymptotic performance.

2. INTRODUCTION

Multiple-input multiple-output orthogonal-frequency division
multiplexing (MIMO-OFDM) has been proposed as a strong
candidate for future generation wireless communication sys
tems. Using multiple transmit and receive antennas, a MIMO
OFDM system can achieve high data rates without increasing
the power or the bandwidth as compared to a single-antenna
and/or a single-carrier system, provided that an accurate chan
nel estimate is available at the receiver side [1].

In MIMO-OFDM systems, a variety ofmethods have been
applied for getting an accurate estimate of the channel. They
can be classified into three classes, namely, training-based
methods, blind methods and semi-blind methods. Training
based methods rely on the periodic transmission of known
symbols, entailing the reduction of the system bandwith ef-
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ficiency. On the other hand, blind methods, do not require
any training symbols, at the expense of a high computational
complexity. Semi-blind methods emerged as new promising
techniques which can allow significant reduction in the num
ber of training symbols while keeping a good quality of the
channel estimate.

Regularized semi-blind estimators have been proposed in
many previous works. They are essentially based on com
bining linearly the training sequence-based criterion with the
blind criterion. A weighting factor (regularizing constant) is
usually employed for trade-offbetween the Least-Square (LS)
and the blind criteria. Given its impact on the channel estima
tion performance, the regularizing factor has been proposed to
be set in such a way that it minimizes the asymptotic Mean
Square-Error (MSE), [2]. Since the optimal regularizing con
stant has no closed-form expression, [2] proposed to employ
iterative algorithms that converge to the optimal solution. On
the other hand, [3] proposed to evaluate the asymptotic MSE
at finite discrete possible values for the regularizing constant
and keep thereafter the value that exhibits the least channel es
timation error. In [4], an explicit formula was given by assum
ing that the minimization of the semi-blind cost can be trans
formed into a Weighted-Least-Square minimization problem
(WLS) [5].

Recently, we proposed in [6] to employ a regularizing
matrix instead of a regularizing constant. Interestingly, we
proved in this case that a closed-form expression for the op
timal regularizing matrix exists. Moreover, we found that the
proposed scheme asymptotically outperforms all the previ
ously aforementioned techniques. In this paper, we propose to
generalize our work to the context ofMIMO-OFDM. We par
ticularly derive the optimal regularizing matrices expressions
in the case of subspace and linear prediction techniques. We
assess the accuracy of our theoretical derivations and investi
gate practical aspects such as channel overmodeling, and the
impact of the number of pilot symbols on the mean square
error. Finally, we analyze the Bit Error Rate (BER) perfor
mance in a turbo decoding context.
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3. CHANNEL ESTIMATION TECHNIQUES

3.1. Blind channel estimation

In this paper, we consider a MIMO-OFDM system with N;
transmitting antennas and N; receiving antennas.

Letx(n,k) = [xl(n),··· ,xNt(n)]bethen-thtransmit
ted sample of the k-th OFDM symbol after the IDFT module
and y(n, k) = [Yl (n, k), ... .un;»(n)] be the received sig
nal before the DFT module. Assuming that the channel length
L is less than the cyclic prefix length u, the linear convolution
between the channel and the transmitted signal is transformed
into a circular convolution as follows:

least square channel estimation is possible only when np =
ngkp 2: (L + l)Nt where L + 1 is the maximum length ofall
channels.

For MIMO-OFDM systems, optimal pilot sequences and
optimal pilot placement of the pilot tones with respect to the
MSE ofthe least-square channel estimate were derived in [7].

We design our pilot sequence according to [7] as follows:
Let Yi(k) denotes the kp x 1 frequency domain vector of

pilot samples received at time k by the i-th antenna and let
Yi = [Yl(O),··· ,yl(ng _l)]T. ThenYi satisfies:

L

y(n, k) = L Hzx(n -l, k) + v(n, k), n = 0,··· ,K - 1,
z=o

where Hz is the N; x N; channel response matrix at time
l, and v(n, k) is the noise vector, K represents the num
ber of subcarriers. Moreover, if n < 0, due to the circu
lar convolution, the value x(n, k) is set to x(K + n, k). Let
H = [HOT, ... ,HL T]T and h = vee(H). Stacking M + 1
observations y(n, k) in the Nr(M + 1) vector, YM(n, k) =
[y(n, k),··· ,y(n - M, k)], we get for M ::; n ::; K - 1

YM(n, k) = IM(H)xL(n, k) + v ut», k),

where A is a np x (L + 1)N; matrix that depends on the pilot
symbols and chosen to be orthogonal, AHA = npI(L+l)Nt '

vi is--!he noise vector with respect to the ith receiving antenna
and hi is the channel vector response associated to the i-th
receiving antenna given by:

Ii· = [h· 1(0) ... h· I(L) ... h· N (0) ... h· N (L)]T.1, 1" , ,1" , ,1" t , ,1" t

Defining

Y [Yl,··· ,YNr] ,

H [h1 , .. · , hN r ] ,

Y=AH+V.

v

where A = (INr 0 A) E and h .: vee(H), E being the per
mutation matrix that transforms h into hand 0 represents the
Kronecker product.

......... 1 K-l n g - l

RM = (K _ M)n L L YM(n, k)yJ&(n, k).
9 n=M k=O

where vjj Ir», k) = [vT(n, k),··· ,vT(n - M, k)]T andIM(H)
is the (M +l)Nr x (M +L+1)Nt block Toeplitzmatrix with we have
the first block row given by [H(O), ... ,H(L), 0, ... ,0].

Assuming that IElx(n, k) 1
2 = 1, the covariance matrix of

the received signal can be expressed as: Let Ii = vee (H) 1. The least-square estimate minimizes the
following criterion:

RM = IEYM(n, k)y~(n, k) = IM(H)IMH(H)+a2I(M+l)N
r '

where a2 denotes the noise variance. m~n Ilvec(Y) - I N r 0 Ahl1
2

= m~n Ilvec(Y) - Ah11
2

, (2)

It is estimated in practice as:

Most blind channel estimation techniques evaluate the chan
nel up to a matrix ambiguity by solving the following quadratic
form minimization problem:

(1)

3.3. Semi-blind channel estimation

To solve the intrinsic indeterminations of blind channel esti
mation techniques and improve their performance, [2] to com
bine linearly the training sequence criterion (2) with the blind
criterion (1), thus leading to the following cost function:

where BK is an estimated matrix of B, B being the matrix
that depends on the considered blind estimation technique.

3.2. Least square channel estimation

We assume that the channel estimation at the receiver side is
conducted over ng OFDM symbols, each OFDM symbol con
taining kp pilot samples (i.e pilot subcarriers). Obviously, the

where a is a regularizing constant. The semi-blind estimator
is then given by [2]:

ha(A) = (AHA + aKngB~BK) -1 AHvec(Y).

1Note that ii and h are the same up to a permutation.
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where

4.2. Linear prediction (LP) criterion

The LP approach is based on the observation that if the chan
nels have no zeros in common, then a N; x N; polynomial
matrix P(z) = I Nr + E~o Piz-i exists such that

Let P sub be the orthogonal projector onto the column range
space ofV(lIsub), and Psub its estimate, then the semi-blind
estimator based on the subspace criterion is given by:

hSUb=Q\.HA+Kng (INt® i\ub)ASUb(INt ® PSUb)) -lAHvec(Y)

where Asub is the regularizing matrix for this semi-blind cri
terion.

IIo

o lIM

IIo 0

V(IIsub) =

thus giving,

where

It was shown in [2] that the choice ofthe regularizing constant
has a great impact on the channel estimation error. Besides,
no closed-form expression for the regularizing constant that
minimizes the estimation MSE was found.

In [6], we proposed to use a regularizing matrix instead of
a regularizing constant. Particularly, we have shown that for
SIMO systems, once the blind criterion is expressed under a
quadratic form, and under mild assumptions, the optimal reg
ularizing matrix has a closed-form expression. In this paper,
we propose to extend this work to MIMO-OFDM systems.
We consider to minimize the following cost function:

C(f,A) = Ilvec(Y) - Afl12 + (Kng)fHPKAPKf,

where PK is the estimate ofP, the orthgonal projector on the
space spanned by B K. The semi-blind channel estimate is
therefore given by:

hA = (AHA + (Kn9)PKAPK) -1 AHvec(Y).

In [6], it was shown that under mild assumptions, the op
timal regularizing matrix is given by:

Ao p = (B#EooB#) # . (3)

L

P(z) LHiZ-i = H(O),
i=O

where 6(P) is the (L +M)Nr x (L + l)Nr matrix given by:

4. SEMI-BLIND CHANNEL ESTIMATION BASED
ON SUBSPACE (SS) AND LINEAR PREDICTION (LP)

BLIND CRITERION

In this section, we briefly review the blind channel identifi
cation methods based on LP [8] and SS [9] criteria. We also
provide in each case an expression for the semi-blind channel
estimate.

or equivalently:

[
H(O)]

8(P) : =
H(L)

H(O)
o

o

4.1. Subspace blind criterion

Based on the eigenvalues of the covariance matrix, one can
perform the decomposition into signal and noise subspaces.
The signal subspace is spanned by eigenvectors correspond
ing to the largest (M + L + l)Nt eigenvalues, whereas the
noise subspace is spanned by the remaining eigenvalues which
are all equal to the noise variance 0'2. Denote by IIsub the or
thogonal projection matrix on the noise subspace. Then we
have:

IIsubIM(H) = O. (4)

Splitting the projection matrix IIsub into M +1 matrices such
that IIsub = [IIo,··· , lIM], where each matrix IIi is (M +
l)Nr x Ni., then (4) can be rewritten as:

o

6(P) = PM

o

The linear predictor P = [P l, . .. , PM] and the prediction
error D = HoH~, can be identified by the following Yule
Walker equations:

- [ltl,··· ,RM ] (RM _ l - O'2I)#

P

R o +L P i R7
i=l
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where where:

Denote by IIlin the orthogonal projector on the null column
space spanned by D. Therefore,

IE [YM-l(n,k)Y~_I(n,k)J,

IE [y(n, k)yH(n - i, k)] .

For the SS-based semi-blind estimator, E oo is given by:

6. SIMULATIONS

Plin n.; [INr P]

a-: CtM Jt+L-2 0 Jt+l 0 INr).

Note that if we neglect the terms in 0(0-2 ) , we end-up with
expressions that are independent from the system parameters,
hand 0-2 • Hence, the implementation of the optimal weight
ing matrix in (3) can be achieved without resorting to iterative
techniques.

=0,
[
H(O)]

n.; 0 <5(P) :

H(L)

thus giving:

Let Plin be the projector on the column range space of
II0<5(P), and Plin its estimate, then the semi-blind estimator
based on the LP criterion is given by:

5. ASYMPTOTIC ERROR AND CLOSED-FORM
EXPRESSION FOR THE REGULARIZING MATRIX

h........ . - (A-HA- + K (I tOI p........ . )A. (I tOI p........ . )) -lA-H (Y) In all the simulations described below, we consider a MIMO-
lin - n g Nt'<Y lin lin Nt '<Y lin vee. . .

OFDM system With N; = 2 transmit antennas and N; = 4
receive antennas. The length ofthe cyclic prefix is 20, and the
block size M is equal to 10. We assume also a Rayleigh chan
nel model with a L + 1 = 5 tap MIMO-FIR filter where each
tap is represented by a 2 x 4 random matrix whose elements
are i.i.d complex Gaussian variables with zero mean and vari-
ance equal to L+

1
l . We also assume that 16 subcarriers are

Following the same lines as in [6], we can prove that, under
used for pilot transmission.

some mild assumptions, the asymptotic covariance matrix of
the estimated error 8h = h_ h is given by: The empirical MSE is given by:

Cov(8h)

where NT is the total number of Monte Carlo iterations.

where

M (I(L+l)NrNt + '1 (IN t 0 P) A (I Nt 0 P))

C (IN t 0 P) AB#EooB#A (I N t 0 P)

and P = P sub (resp. P = Plin), B = Bsub (resp. B =
Blin) and E oo = Eoo,sub (resp. E oo = Eoo,lin) to refer
to the SS-based semi-blind estimator (resp. LP-based semi
blind estimator).

Let J; ~ [: Ip-r] for T 2: 0 and J; ~ (J;r) T if
Or ...

T < O.
For the LP-based estimator, we can prove that E oo is given

by:

~oo,lin = IN, 0 diag (PlinPlinH, (IM +L - 2 0 Plin) a-:
(IM +L - 2 0 PlinH)) + 0(0"2)

6.1. Accuracy of the channel estimation error

In this experiment, we set the number of the subcarriers K
to 2048. We estimate empirically the MSE over NT = 100
iterations. Fig. 1 displays in the same graph the empirical
MSE as well as the theoretical MSE for the linear prediction
and subspace-based semi-blind estimators. At low SNR, we
observe that the theoretical MSE tends to underestimate the
real MSE since it does not take into account the term of or
der 0-2 in the expression of E oo . However at moderate and
high SNR, we obtain a good match between theoretical and
empirical results.

6.2. Impact of channel overmodeling

In this experiment, the channel estimation performance in terms
of MSE is investigated. The simulation is undertaken based
on 100 Monte Carlo runs of the transmission of ng = 4
OFDM symbols on K = 512 subcarriers, of which np = 16
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Fig. 1. Theoretical and empirical MSE versus SNR
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subcarriers are used for training. The channel is set to be the
same for all the SNR range. We propose to investigate the im
pact of the over-modeling of the channel on the performance
of the semi-blind estimators. We note that if the estimated
channel order L is equal to L, the semi-blind SS estimator
outperforms the LP-based estimator. But, once L is greater
than L, the LP-based estimator becomes better, as we can see
on fig. 2.

Fig. 3. Impact of the number of pilots on the mean square
error

linear prediction and subspace estimator, employ at least 20
pilot symbols less than the least square estimator.

10-
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Fig. 2. Impact of channel overmodeling.

6.4. Semi-blind estimation with iterative decoding

At the receiver side, we perform iterative symbol detection
and channel decoding. The receiver consists of a MIMO de
tector and a SISO channel decoder that exchange extrinsic
soft information with each other, so as to maximize the apos
teriori probabilities. We set the number of iterations between
the MIMO detector and the SISO decoder to 2 [10]. We as
sume that the binary information data are encoded by a rate
1/2 NRNSC code with constraint length set to 5 defined in
octal form by (037 021). Throughout our simulations, we as
sume that each frame is composed of 4 OFDM symbols with
K = 512 subcarriers. We also consider 16 - QAM con
stellations with Gray labeling and we assume that the channel
length has been over-estimated, L= 6. Fig. 4 displays the Bit
Error Rate for the Least square and the two semi-blind based
schemes. We note that both semi-blind schemes achieve al
most the same performance and outperform the least-square
based scheme by about 1 dB.

7. CONCLUSION

6.3. Mean square error with respect to the number of pi
lots

In this section , we investigate the impact of the number of
pilots on the mean square error. Fig. 3 compares the MSE of
the least square channel estimator with that of the semi-blind

In this paper, we generalized the matrix-regularized semi
blind estimation technique to the context of MIMO-OFDM
systems. As an application, we investigated the performance
ofsubspace- and linear prediction-based estimators. A closed
form expression for the optimal regularizing matrix as well as
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Fig. 4. BER versus SNR

the asymptotic error have been provided. We also provided
simulations which strongly support our asymptotic deriva
tions and illustrate the significant gain in terms ofdata through
put when using our semi-blind methods as compared to the
non-blind least-squares technique.
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