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ABSTRACT
The localization process consists in finding the candidate source
location that maximizes the synchrony between the properly time-
shifted microphone outputs. In addition to using well-known
crosscorrelation-based criteria such as the steered response power
(SRP), minimum variance (MV), and multichannel crosscorrela-
tion (MCCC), this synchrony can be measured using the averaged
magnitude difference function (AMDF) and the averaged magni-
tude sum function (AMSF) whose calculations involve low compu-
tational cost. In this paper, we study the crosscorrelation and AMDF
(with AMSF) based approaches using an arbitrary number of mi-
crophones. Specifically, we use the eigenanalysis of the parameter-
ized spatial correlation matrix (PSCM) to first provide a unifying
study of the most popular crosscorrelation-based techniques. Then,
we show the efficiency of the AMDF and AMSF in localizing an
acoustic source using multiple microphones by proposing two new
parameterized matrices named as the parameterized averaged mag-
nitude difference matrix (PAMDM) and the parameterized averaged
magnitude sum matrix (PAMSM). The eigenanalysis of these two
matrices reveals new criteria.

Index Terms— Source localization, microphone array, eigen-
analysis.

1. INTRODUCTION

The process of acoustic source localization consists in measuring the
synchrony between properly delayed (noise-free) microphone out-
puts. Consequently, current acoustic source localization methods
can be classified into three main categories. First, the most popu-
lar techniques are based on the second-order-statistics of the micro-
phone outputs such as the SRP [1], MV [2], and MCCC [3]. The
second category consists of methods that measure the synchrony be-
tween the processed microphone outputs from an information theo-
retic point of view [4]. Nevertheless, the speech is generally assumed
to be Laplacian-distributed [5] and intricate calculations are required
to estimate the mutual information of the multivariate Laplacian-
distributed microphone outputs. The final category consists of meth-
ods based on simpler criteria since neither second-order-statistics nor
assumed distributions are required. In this category, the synchrony
between the outputs of each pair of microphones is measured using
either the AMDF or the AMSF. Both criteria have been previously
applied for time delay estimation (TDE) [6, 7] using a single pair
of microphones. But they have not been generalized to the multiple
microphone case with application to source localization yet. This
contribution is concerned with the first and third categories.

In this paper, we first analyze and classify the crosscorrelation-
based broadband source localization techniques from an eigenanal-
ysis perspective. The underlying idea of the proposed approach is
that when the PSCM is steered toward the source location, two sub-
spaces can be identified. The first one corresponds to the one dimen-
sional subspace associated with the largest eigenvalue of the PSCM,

while the second is defined by its remaining eigenvalues. We take
advantage of the variations of both types of eigenvalues to gain a
better understanding of the functioning of existing methods and pro-
pose new ones. Our second contribution consists in generalizing the
AMDF and AMSF to the localization of acoustic sources using mul-
tiple microphones. For a given pair of microphones, both criteria
aim at maximizing the synchrony between time-shifted output sig-
nals by calculating the absolute difference and sum, respectively. In
an analogous fashion to the crosscorrelation-based framework, we
propose two new parameterized matrices, namely, the PAMDM and
PAMSM that contain all the combinations of the AMDF and AMSF
relating each pair. The eigenanalysis of both matrices reveals new
efficient criteria for source localization.

2. PROBLEM STATEMENT

Let s(t) denote a signal generated by a broadband source and cap-
tured by an array of N microphones. We are interested in estimating
the azimuthal angle of arrival, θs, of this source which is assumed to
lie in the far-field (for simplicity, we also assume that the source and
microphone array are located on the same plane). The output of the
nth (n = 1, ..., N ) microphone is given by

xn(t) = ans [t − τn(θs)] + vn(t), (1)

where an is the channel attenuation, vn(t) is an additive noise, and
τn(θs) is the propagation time delay from the source to the nth mi-
crophone element which is a function of the source location and ar-
ray geometry. The time difference of arrival (TDOA) between pairs
of microphones is commonly used for localization [1, 8] and is de-
noted as Fnm(·) for a pair (n, m). For a given parameter θ, we
define

x(t, θ) = [x1[t] x2[t + F12(θ)] · · · xN [t + F1N (θ)]]T , (2)

where xn[t+F1n(θ)] = ans[t−τn(θs)+F1n(θ)]+vn[t+F1n(θ)].

3. CROSS-CORRELATION-BASED METHODS

The PSCM is defined as

Rxx(θ) = E
�
x(t, θ)xT (t, θ)

�
= ARss(θ)A + Rvv(θ), (3)

where A = diag [a] and a = [a1, a2, ..., aN ]T . Rss(θ) and
Rvv(θ) are the resulting parameterized covariance matrices of the
source and noise, respectively. The (i, j)th entry of the PSCM
is given by [Rxx(θ)]i,j = rxixj [Fij(θ)] = aiajrss[Fij(θ) −
Fij(θs)] + rvivj [Fij(θ)], where rxixj (τ) = E {xi(t)xj(t − τ)}
for a given time delay τ . The general procedure for parameterized
processing that we consider in this paper consists in investigating
the broadband spatial spectrum, denoted herein as S [Rxx(θ)], and
identifying its peak that corresponds to the source location. For-
mally, this approach consists in estimating θs as [8]

θ̂s = arg max
θ

S [Rxx(θ)] . (4)
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To date, several criteria have been proposed such as the SRP [1], MV
[2], and MCCC [3]. In the following, we show that all these methods
can be devised from a general eigenanalysis-based framework.

Justifying the Eigenanalysis-Based Framework: In narrow-
band high-resolution techniques such as MUSIC [9], the knowledge
of the so-called steering vector (that lies in the signal subspace when
θ = θs) allows one to determine the DOA. In our case, however, no
explicit expression for this steering vector is available because of the
wideband nature of the acoustic signal and the convolution involved
in (1). Fortunately, the eigenanalysis of Rxx(θ) can be of great help.
Indeed, when θ = θs, we have

Rxx(θs) = σ2
saa

T + Rvv(θs), (5)

where σ2
s = E{s2(t)}. Clearly, Rxx(θs) can be used to identify

two subspaces: signal-plus-noise (major) and noise (minor) sub-
spaces with dimensions 1 and N−1, respectively. Consequently, for
a given θ, we decompose Rxx(θ) as Rxx(θ) = UT (θ)D(θ)U(θ),
where U(θ) is a unitary matrix, D(θ) = diag [λ1(θ), ..., λN (θ)],
and λ1(θ), ..., λN (θ) are the eigenvalues of Rxx(θ) sorted in a de-
creasing order. Now, by ignoring the noise component in (1), we
see that when the PSCM is steered toward θs, the major eigenvalue
of Rxx(θs) is λ1(θs) = σ2

s

�N
n=1 a2

n. Hence, λ1(θs) captures the
overall energy of the received signal (including the channel effect).
Let us further consider the particular case where the desired source
is temporally white with identically distributed components. In this
case, when θ �= θs, Rxx(θs) = σ2

sdiag
�
a2
1, ..., a

2
N

�
. Obviously,

λn(θ) = σ2
sa2

n and λ1(θs) =
�N

n=1 λn(θ). Hence, when θ �= θs,
the source energy is spread over the N dimensions. The analysis
in the case of a temporally correlated process such as speech is not
straightforward. But, one can expect a similar behavior. In the light
of this example, we gained some insight into the effect of the choice
of θ on the behavior of the desired signal energy distribution over the
N dimensions: the energy is spread over multiple dimensions when
θ �= θs and focussed on a single one when θ = θs.

Analysis of the Major Eigenvalue: When θ = θs, there is only
one dominant eigenvalue (supposing that the noise is weak enough
or has i.i.d. components) that corresponds to the source (plus noise)
energy. Physically, this can be explained by the fact that the overall
signal energy is impinging on the microphone array from a single
direction. When θ �= θs, however, the rank of Rxx(θ) is larger than
1, meaning that the energy of the source is spread over many dimen-
sions. This intuition has been partially exploited in [8] by observing
the maximum eigenvalue and choosing this criterion

SMaxEig [Rxx(θ)] = λ1(θ). (6)

Now, we demonstrate that the SRP and MV aim in essence at
analyzing the major eigenvalue. To this end, we further suppose the
knowledge of a (also assumed to have a unit norm without loss of
generality) and try to find an estimate of λ1(θs) knowing a certain

estimate of Rxx(θs), say R̂xx. From a covariance fitting perspective
[10], this can be easily formulated as

λ̂1 = arg min
λ

���λaaT − R̂xx

���2

, (7)

or

λ̂′
1 = arg min

λ

���(λaaT )# − R̂−1
xx

���2

, (8)

where # denotes the pseudo-inverse of a matrix. The straightforward
solutions to these two optimization problems are respectively

λ̂1 = aT R̂xxa, (9)

and

λ̂′
1 =

�
aT R̂−1

xx a
�−1

. (10)

If we assume that there is no channel attenuation in the data model
(1), i.e., a = 1 = [1 ... 1]T , and replace R̂xx by the best available
estimate of this matrix at a given direction θ, i.e., Rxx(θ) , we obtain
the well known SRP and MV criteria [1, 2]

λ̂1(θ) = SSRP [Rxx(θ)] = 1T Rxx(θ)1, (11)

λ̂′
1(θ) = SMV [Rxx(θ)] =

�
1T R−1

xx (θ)1
�−1

, (12)

up to constant scaling factors, respectively.

Analysis of the Minor Eigenvalues: In the absence of noise, we
have λ2(θs) = · · · = λN (θs) = 0. But, when the noise is present,
one hopes that the energy of speech is high enough compared to
the noise’s so that λ1(θs) is much higher than all other eigenval-
ues, thereby allowing to distinguish between the noise and speech
contributions to the PSCM when steering it towards the source loca-
tion. The criteria that we propose herein are based on observing the
energy of the minor subspace calculated using λ2(θ), ..., λN (θ) by
either geometric or arithmetic averaging

SNSA [Rxx(θ)] =

	
1

N − 1

N

n=2

λn(θ)

�−1

, (13)

SNSG [Rxx(θ)] =

	
N�

n=2

λn(θ)

�−1/(N−1)

. (14)

The subscripts NSA and NSG stand for “noise subspace arithmetic”
and “noise subspace geometric” averaging, respectively. Another
notable acoustic source localization method was proposed in [3]
where Benesty et al. took advantage of the linear spatial predictabil-
ity of the noise-free microphone signals from each other (multiple
redundancies) to develop a new criterion that essentially minimizes
the determinant of the PSCM. It is known that

det [Rxx(θ)] =
N�

n=1

λn(θ). (15)

Again, we find that the eigenanalysis allows for defining another
well known criterion for source localization. Also, we deduce that
the MCCC is quite different from the SRP and MV since its objec-
tive is to look for the minor subspace and reach the optimality when
det [Rxx(θ)] is minimal, i.e., when the effect of the minor eigenval-
ues is dominant (due to the geometric averaging).

Common Eigenalysis Framework: The information about the
source location can be traced using both types (i.e., major and minor)
of eigenvalues. Herein, we propose the following general form that
combines all the eigenvalues

SGSA [Rxx(θ)] =
N


n=1

αnλνn
n (θ), (16)

SGSG [Rxx(θ)] =
N�

n=1

λβn
n (θ), (17)

where GSA and GSG stand for “generalized spectrum arithmetic”
and “generalized spectrum geometric” averaging, respectively. αn,
νn, and βn , n ∈ {1, ..., N}, are some multiplicative and expo-
nential weighting factors that have to be chosen properly to define
the MV, SRP, MCCC, MaxEig, NSA, and NSG criteria. It is clear
that all these localization techniques exploit the fact that when the
spatial correlation matrix is steered toward θs, their averaged spec-
trum is minimal (or maximal) due to the dominance of the effect of
the eigenvalues associated with either the minor or major subspace.
However, different weights have to be attributed to the eigenvalues
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depending on whether they are associated with one of either sub-
spaces. By doing so, one wishes to obtain better spectrum resolution
and potentially improved localization. In the absence of any prior
knowledge of the noise statistics, we can simply assign the same
weights to the minor eigenvalues as given below

SCEig [Rxx(θ)] = λ1(θ) − 1

N − 1

N�

n=2

λn(θ) (18)

SCMCCC [Rxx(θ)] = λ1(θ)
N�

n=2

λ−1
n (θ). (19)

The above criteria are based on the contrast between both subspaces
which reaches its maximum when the matrix is steered toward θs.

4. AMDF AND AMSF-BASED METHODS

The AMDF is a well-known criterion in pitch estimation literature
[11, 12] and has been recently shown to offer good performance
with low complexity when applied to TDE for a pair of microphones
[6, 7]. In [7], Chen et al. showed that the AMSF is another promis-
ing simple and accurate synchrony measure for TDE for two micro-
phones. Here, we take advantage of both criteria to localize acoustic
sources using multiple microphones. Similar to the crosscorrelation-
based approaches, we process the parameterized vector x(t, θ) using
AMDF or AMSF-based criteria.

The AMDF criterion is less complex than the cross-correlation-
based criteria since it involves no multiplications. Specifically, it is
defined for a given pair (i, j) of microphones, i, j ∈ {1, ..., N}, as

Jij,AMDF(θ) = E {|xi[t] − xj [t + Fij(θ)]|} . (20)

In order to take full advantage of the multiple microphones, we
define the PAMDM, Δ(θ), whose (i, j)th entry is defined as
[Δ(θ)]ij = Jij,AMDF(θ). For equal channel attenuation coeffi-

cients and no additive noise in the data model (1), ‖Δ(θ)‖2 → 0
when θ → θs where ‖·‖ denotes any matrix norm. In particular, we

consider the norm ‖Δ(θ)‖2 = tr
�
Δ(θ)ΔT (θ)

�
=
�N

n=1 δ2
n(θ),

where δn(θ), n = 1, ..., N , are the eigenvalues of the PAMDM
sorted such that |δ1(θ)| ≥ |δ2(θ)| ≥ · · · ≥ |δN (θ)|. Hence, we de-
duce that ‖Δ(θ)‖ reaches its minimum at the source location and so
do |δ1(θ)|, |δ2(θ)|, ..., |δN (θ)|. It can be empirically verified that
most of these eigenvalues have regular variations that can be used
for localization. However, we found that the largest eigenvalue is
the most reliable to be used as a criterion. Consequently, we propose
the first new multiple microphone AMDF-based criterion

SEigAMDF(θ) =
1

|δ1(θ)| . (21)

Also, we propose another criterion which is inspired from the SRP
and termed herein as steered magnitude difference (SMD)

SSMD(θ) =
1

1T Δ(θ)1
. (22)

In [7], it was shown that the AMSF is maximized when the sig-
nals are perfectly aligned. In our case, the synchrony between the
outputs of a given pair of microphones (i, j), i, j ∈ {1, ..., N}, is
maximized when the AMSF criterion

Jij,AMSF(θ) = E {|xi[t] + xj [t + Fij(θ)]|} (23)

is maximized. Following the same procedure that led to the new
generalized multi-microphone AMDF-based criteria, we first define
the PAMSM, S(θ), such that its (i, j)th entry is given by [S(θ)]ij =

Jij,AMSF(θ). In [7], it was demonstrated that the correlation coeffi-
cients between AMDF and AMSF are approximately zero, thereby

meaning that both criteria contain supplementary information. This
fact is also observed herein in the PAMSM and PAMDM. Indeed,
since the maximum synchrony between all pairs is achieved when
θ = θs, we expect ‖S(θ)‖2 = tr

�
S(θ)ST (θ)

�
=
�N

n=1 γ2
n(θ),

where γ1(θ), γ2(θ), ..., γN (θ) are the eigenvalues of S(θ) sorted
such that |γ1(θ)| ≥ |γ2(θ)| ≥ · · · ≥ |γN (θ)|, to reach its maximum
when all pairs are aligned, in contrast to ‖Δ(θ)‖ which reaches its
minimum. It can be empirically verified that most of these eigenval-
ues have regular variations that can be used for localization. How-
ever, we found that that the largest eigenvalue is the most reliable to
be used for source localization. Consequently, we define the follow-
ing new criterion

SEigAMSF(θ) = |γ1(θ)|. (24)

The other eigenvalues can be used. But they have been empirically
verified to provide poorer results due to their sensitivity to reverber-
ation and noise. Finally, we propose another ad-hoc yet simple and
accurate multi-microphone AMSF-based criterion for source local-
ization. This criterion is termed, herein, as steered magnitude sum
(SMS) and is given by

SSMS(θ) = 1T S(θ)1. (25)

5. NUMERICAL EXAMPLES

In the investigated scenarios, the speaker is located in a reverberant
room with dimensions: length = 304.8 cm, width = 457.2 cm, and
height = 381 cm (x × y × z). The reverberant enclosure is sim-
ulated using the Allen and Berkley’s image method [13, 14]. We
consider a uniform circular array of N = 10 microphones whose
center is located at (152.4, 228.6, 101.6) cm and its radius is chosen
as r = 6.9 cm. The speaker is a 2 minutes-long female speech and
situated at a distance 200 cm from the center of the array and forms
an azimuthal angle θs = 60 degrees. A white Gaussian noise was
added to all sensors with SNR values of 0 and 10 dB. The speech
signal is sampled at a rate 48 kHz to achieve a good angular reso-
lution, and the frame length used to estimate the required criteria is
128 ms. To scan the whole plane, the spatial spectra are estimated
at every degree over the range [0, 359] degrees. In what follows, we
start by analyzing the eigenvalues of the three parameterized matri-
ces: PSCM, PAMDM, and PAMSM. Then, we compare the perfor-
mance of all the localization criteria considered in this paper in both
anechoic and reverberant (with reverberation time T60 = 210 ms)
environments. The results are presented in terms of percentage of
anomalies (estimates that differ from the actual angle of arrival by
more than 5 degrees) and root mean-square error of non-anomalous
azimuth estimates.

In Fig. 1, we show the variations of the first and last two eigen-
values of the three matrices, e.g., PSCM, PAMDM, and PAMSM.
We see that λ1(θ) and |γ1(θ)| reach their maximum while |δ1(θ)| is
minimized at θs. To explain this result, recall that in the ideal case
(neither channel attenuation nor noise) Rxx(θs) and S(θs) are each
of rank one. Thus, the energy of the PSCM (or PAMSM) is maxi-
mized and focussed on the maximum eigenvalue when it is steered
toward the direction of arrival of the source. Otherwise, it is smeared
toward other dimensions. In contrast, the norm of the PAMDM is
minimized at θs. This explains the special peak of 1/ |δ1(θ)| at θs. It
is also clear that almost all other eigenvalues reach their minimum at
the source location and can consequently be used for source localiza-
tion. However, the spectra of the smallest eigenvalues exhibit several
spikes that have a detrimental effect on source localization. The re-
sults of Tables 1 and 2 show that when SNR = 0 dB, all the PSCM-
based localization methods exhibit very similar accuracy in terms
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of both percentage of anomalies and RMSE of the non-anomalous
source location estimates. When the SNR is increased to 10 dB,
we see that the SRP, MaxEig, NSA, CEig criteria yield almost ex-
act source location estimates. The performance of the MCCC, NSG,
CMCCC, and MV are deteriorated. To explain this fact, recall that
we have previously shown that the MCCC, NSG, and CMCCC de-
pend on the minor subspace eigenvalues which may exhibit irregular
variations. When the SNR is increased to 10 dB, the masking effect
of the noise (spatially white) is reduced and the effect of the minor
eigenvalues become significant. Also, recall that the MV requires
the inversion of the PSCM which becomes problematic when this
matrix is ill conditioned. Both problems translate into inaccuracies
for the three minor-subspace-based methods in addition to the MV.
The regularized (the regularization consists in diagonally loading the
PSCM) MCCC and MV exhibit a more robust behavior and perform
as well as the SRP, MaxEig, and CEig since the regularization fac-
tor masks the effect of the smallest eigenvalues for the MCCC and
improves the conditioning of the PSCM for the MV. The proposed
NSA criterion provides comparable and even better accuracy than
all other PSCM-based criteria. The NSG and CMCCC are sensitive
to the effect of the smallest eigenvalues and lead to high percentage
of anomalies for high SNR. Finally, it is quite remarkable that the
SMD, EigAMDF, SMS, and EigAMSF are also good candidates for
source localization in reverberant and anechoic environments. For
instance, the two PAMDM-based criterion yield the lowest percent-
age of anomalies in the reverberant environment at SNR = 10 dB.

6. CONCLUSION

We proposed a new eigenanalysis-based framework for broad-
band source localization. First, we analyzed and classified
crosscorrelation-based source localization techniques using the eige-
nanalysis of the PSCM. By observing the variations of minor and
major PSCM eigenvalues, we concluded that they bear very useful
information about the source location. Then, we generalized the
AMDF and AMSF to the multi-microphone case and applied both
criteria to source localization. We proposed two new parameter-
ized matrices, namely, PAMDM and the PAMSM that contain all the
combinations of the AMDF and AMSF relating each pair of micro-
phones. The eigenanalysis of both matrices revealed new efficient
localization criteria.
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T60 = 0 ms T60 = 210 ms

SNR [dB] 0 10 0 10
SSRP 3.71 0 28.43 23.54
SMV 4.60 21.41 32.0 45.0
SMV(regularized) 3.71 0 28.43 23.35
SMaxEig 3.53 0 28.24 22.97
SMCCC 3.89 20.17 36.15 55.93
SMCCC(regularized) 3.71 0 28.62 21.84
SNSA 3.53 0 28.24 22.97
SNSG 4.07 19.46 33.52 55.17
SCEig 3.53 0 28.24 22.97
SCMCCC 4.07 19.29 32.95 54.04
SEigAMDF 3.71 0 30.88 20.28
SSMD 3.71 0 30.69 21.71
SEigAMSF 6.54 0.17 33.89 25.98
SSMS 6.72 0.17 33.71 25.98

Table 1. Percentage of anomalies.

T60 = 0 ms T60 = 210 ms

SNR [dB] 0 10 0 10
SSRP 1.95 0.65 2.75 2.92
SMV 1.99 2.62 2.74 2.90
SMV(regularized) 1.95 0.65 2.75 2.92
SMaxEig 1.97 0.64 2.74 2.96
SMCCC 1.98 0.86 3.0 3.92
SMCCC(regularized) 1.96 0.64 2.84 3.0
SNSA 1.97 0.64 2.74 2.96
SNSG 1.99 0.86 2.99 3.87
SCEig 1.97 0.64 2.74 2.96
SCMCCC 1.98 0.86 2.92 3.76
SEigAMDF 2.06 0.65 2.75 3.0
SSMD 2.07 0.66 2.76 2.99
SEigAMSF 2.29 1.27 2.77 2.96
SSMS 2.29 1.27 2.78 2.95

Table 2. RMSE of non-anomalous estimates.
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Fig. 1. Eigenvalues vs. θ: (a) PSCM, (b) PAMDM, and (c) PAMSM.
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