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{souden,benesty,affes}@emt.inrs.ca

ABSTRACT

We study the linearly constrained minimum variance (LCMV) and
the minimum variance distortionless response (MVDR) filters when
multiple interferers and unknown (ambient) noise coexist with a tar-
get speech signal. Precisely, the LCMV is designed to remove all the
interference signals while preserving the desired speech and attempt-
ing to reduce the ambient noise components. The MVDR is simply
formulated such that the overall ambient-noise-plus-interference are
reduced while satisfying a distortionless constraint. We provide sim-
plified expressions for both beamformers and show their relation-
ship. Furthermore, we underline the limitations of the LCMV when
the ambient noise is present. When the latter is absent, we also prove
that the MVDR degenerates to the LCMV. Numerical examples are
provided to support our study.

Index Terms— Noise reduction, interference rejection, micro-
phone array, beamforming, linearly constrained minimum variance
(LCMV), minimum variance distortionless response (MVDR).

1. INTRODUCTION

Microphone array signal processing has attracted a significant
amount of research attention over the last few decades. Indeed, its
inherent spatial aperture allows for additional key functions among
which is the celebrated noise reduction with no speech distortion
[1]–[10].

Earlier efforts devoted to gain insight into the functioning of
multichannel noise reduction techniques include [11] where Bitzer
et al. investigated the theoretical performance limits of the gener-
alized sidelobe canceller (GSC) in the case of a spatially diffuse
noise. In [12], Doclo and Moonen investigated the effect of gain
and phase errors in microphone arrays on broadband beamforming
and proposed robust design procedures of beamformers. In [13], the
theoretical equivalence between the LCMV and its GSC counterpart
was demonstrated. In [8], Habets et al. studied the effectiveness of
the MVDR when designed to remove both additive noise and rever-
beration. It was found that a tradeoff between noise reduction and
dereverberation has to be made. However, dereverberation still re-
mains an open field for future research and we would rather focus
on noise reduction here. Another notable effort to understand the
functioning of the multichannel linear processing for noise reduction
was published in [10]. Therein, Gannot and Cohen studied the noise
reduction ability of the channel transfer function (TF) ratios-based
GSC beamformer in [10]. They found that it is theoretically possible
to achieve infinite noise reduction when only one spatially coherent
noise overlaps with the desired speech. In [5, 6], analytical results
showing the tradeoff between noise reduction and speech distortion
in the parameterized multichannel Wiener filtering were established.

In this paper, we are interested in the analysis of the potential of
microphone arrays to reduce the ambient noise and reject multiple
interferers when both types of signals overlap with a target speech.

A widely known example consists in teleconferencing environments
where hands-free full-duplex communication devices are deployed
for speech acquisition. In this situation, the target signal is gener-
ated by one speaker while the interference is more likely to be gen-
erated by other participants or devices located within the same enclo-
sure. In addition, ambient noise is ubiquitous in these environments
and it has to be considered. The proposed study is motivated by
the need to understand the pros and cons of two main beamformers
that are commonly utilized in this scenario: the MVDR that simulta-
neously reduces overall interference-plus-ambient-noise energy and
the LCMV that totally rejects all the interferers while attempting to
reduce the ambient noise. Both filters preserve the target speech sig-
nal as well.

2. DATA MODEL AND ASSUMPTIONS

We consider the following frequency domain representation of the
investigated data model [9]

Yn(jω) = Gn(jω)S(jω) +
L�

l=1

Dn,l(jω)Ψl(jω) + Vn(jω), (1)

where Yn(jω), Gn(jω), S(jω), Dn,l(jω), Ψl(jω), and Vn(jω)
are discrete-time Fourier transforms of the output of microphone n
(n = 1, ..., N ), the channel TF between the target source and mi-
crophone n, the channel TF between the lth interfering source and
microphone n, the target speech signal, the original lth interference
signal, and the ambient noise component seen by microphone n, re-
spectively. Also, we define Xn(jω) = Gn(jω)S(jω), In,l(jω) =

Dn,l(jω)Ψl(jω) for l = 1, ..., L, and In(jω) =
�L

l=1 In,l(jω).
From now on, the frequency dependence will be removed for the
sake of clarity.

Our aim is to recover one of the noise-free speech components,
say X1, the best way we can (along some criteria to be defined
later) by applying a linear filter h to the overall observation vector
y = [Y1 Y2 · · · YN ]T . (·)T denotes the transpose operator. For no-
tational convenience, we also define x, i, and v as y and w = v+ i.
The output of h is

Z = hHy

= hHx + hH i + hHv, (2)

where hHx is the filtered speech component, hH i is the residual in-
terference part, hHv is the residual noise, and (·)H is the transpose-
conjugate operator. The vector containing all the channel TFs be-
tween the desired source and microphones’ locations is defined as
g = [G1 G2 ... GN ]T , while D = [d1 d2 ... dL] is the N × L

matrix where dl = [D1,l D2,l ... DN,l]
T

is the vector containing
all the channel TFs associated with the lth interferer. Also, we de-
fine φaa = E {AA∗} and Φaa = E

�
aaH

�
, respectively, as the

PSD and PSD matrix of a given random process A and a vector of
random processes a. We assume that all the interferers are uncor-
related which means that Φψψ = diag[φψ1ψ1 φψ2ψ2 ... φψLψL ].
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As performance measures, we use the SNR and SIR at the output

of a given filter h which are defined as SNRo (h) = hHΦxxh
hHΦvvh

and

SIRo (h) = hHΦxxh
hHΦiih

. In our processing, we are only interested in

reducing the additive noise w as in [4, 5, 6, 7, 9, 10] in contrast to
[3, 8]. Thus, we take the first microphone as a reference and accord-

ingly define the input SNR =
φx1x1
φv1v1

and input SIR =
φx1x1
φi1i1

.

3. MINIMUM VARIANCE DISTORTIONLESS RESPONSE

The optimization problem leading to the MVDR noise reduction fil-
ter is known as [1, 4, 5, 6, 7, 10]

hMVDR = arg min
h

hHΦwwh

subject to gHh = G∗
1. (3)

The MVDR solution is then written as

hMVDR = G∗
1

Φ−1
wwg

gHΦ−1
wwg

. (4)

We use the following matrix inversion lemma

Φ−1
ww = Φ−1

vv − Φ−1
vv D

�
Φ−1

ψψ + DHΦ−1
vv D

�−1

DHΦ−1
vv

to obtain
hMVDR = G∗

1
Pg

gHPg
, (5)

where P = Φ−1
ww. Since we are only interested in noise reduction,

it is possible to directly use the noise and noisy data statistics to
implement the above expression as [1, 5, 6]

hMVDR =

�
Φ−1

wwΦyy − I
�
u1

tr
�
Φ−1

wwΦyy

�− N
, (6)

where u1 = [1 0 ... 0]T is an N -dimensional vector. In the sequel,
we will be interested in the analysis of the MVDR’s behavior with
respect to both interference and ambient noise components that can
be better seen using (5).

4. LINEARLY CONSTRAINED MINIMUM VARIANCE

Here, the LCMV beamformer that we are interested in aims at re-
jecting all the interferers while preserving the target signal and at-
tempting to reduce the ambient noise. Mathematically, we have the
following optimization problem [2, 9]

hLCMV = arg min
h

hHΦvvh

subject to CHh = G∗
1ũ1, (7)

where ũ1 = [1 0 ... 0]T is an (L + 1)–dimensional vector, and
C = [g D]. The solution to this optimization problem is known as
[9, 13]

hLCMV = G∗
1Φ

−1
vv C

�
CHΦ−1

vv C
�−1

u1. (8)

This form is not easy to interpret. Nevertheless, we can prove that
(8) can be written as (see Appendix)

hLCMV = G∗
1

Qg

gHQg
, (9)

where

Q = Φ−1
vv − Φ−1

vv D
�
DHΦ−1

vv D
�−1

DHΦ−1
vv . (10)

It is interesting to see how similar both expressions (5) and (9) are.
Indeed, they only differ by the choice of the projection-like matrix
P or Q. Further interpretations are given below.

5. PERFORMANCE ANALYSIS

In order to understand the behaviors of both filters and outline their
relationship, we consider the cases of spatially white ambient noise
and single interferer (L = 1).

Spatially White Ambient Noise: In this scenario, the PSD ma-
trix of the ambient noise is given by Φvv = σ2I where σ2 is the
noise power. Consequently, the MVDR is expressed as

hMVDR = G∗
1

I − D
�
σ2Φ−1

ψψ + DHD
�−1

DH

gH

�
I − D

�
σ2Φ−1

ψψ + DHD
�−1

DH

�
g

g, (11)

while the LCMV’s expression becomes

hLCMV = G∗
1

I − D
	
DHD


−1
DH

g
�
I − D (DHD)−1 DH

�
g
g. (12)

We see from (11) and (12) that the LCMV performs a projection1

onto the subspace orthogonal to the L-dimensional one spanned
by the columns of D regardless of the level of the ambient noise,
i.e., σ2, and interferers, i.e., Φψψ . Conversely, the MVDR takes
into account the energy terms by modifying the projection ma-

trix by a term σ2Φ−1
ψψ = diag

�
1

INR1
... 1

INRL

�
, where we de-

fine INRl =
φψlψl

σ2 as the lth interference-to-ambient-noise ratio.
If we further assume that the interferers have equal energies, i.e.,
INR1 = INR2 = · · · INRL = INR, and suppose that INR → ∞
(equivalently supposing that σ2 → 0 for given levels of interference)

lim
INR→∞

hMVDR = hLCMV. (13)

This result means that the MVDR (with its simple and efficient for-
mulation) is able to perform perfect source extraction from a mixture
of multiple competing speakers. Resorting to the LCMV may not be
justified if we consider the required knowledge of the all propagation
paths of the interferers and potential amplification of ambient noise
that will be shown below. When the energy of the interferers is too
low as compared to the ambient noise, we have

lim
INR→0

hMVDR = G∗
1

g

‖g‖2 , (14)

which is the matched beamformer that coherently adds up the signal
components to enhance the desired signal and attenuate the ambient
noise.

Single Interferer: In this scenario, we have shown in [7] that
the MVDR can be written as a linear combination of the LCMV (to-
tally focussed on interference removal) and a matched filter (totally
focussed on ambient noise removal) and allows for a certain tradeoff
between both functions by properly weighting both components de-
pending on the INR. The decomposition in [7] is a particular case of
(5) even though no simplified decomposition is available when mul-
tiple interferers are present. However, one can expect a similar be-
havior where all the interferers locations and energies are taken into
account by the MVDR. The analysis of the single interferer scenario
seems to be sufficient and very insightful. For the sake of simplic-
ity here, we further assume that the ambient noise is white and that
the environment is anechoic. Consequently, the SIR and SNR at the
output of the LCMV and MVDR filters are given by [7]

SNRo (hMVDR) =
N

1 + N2 INR2κ(1−κ)

[1+N INR(1−κ)]2

SNR, (15)

1At the same time, no distortion is introduced to the desired signal.
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SIRo (hMVDR) =
[1 + N INR (1 − κ)]2

κ
SIR, (16)

SNRo (hLCMV) = N (1 − κ) SNR, (17)

SIRo (hLCMV) = +∞, (18)

where κ =
|gHd|2

‖g‖2‖d‖2 is the collinearity factor that has a critical

effect on the performance of both beamformers. Essentially, when
this factor is increased toward 1, an amplified ambient noise can

be obtained at the output of the LCMV (i.e.,
SNRo(hLCMV)

SNR
=

N (1 − κ) < 1). The MVDR can also amplify the ambient noise
if the input INR and collinearity factor are sufficiently high (in this
case, the ambient noise level takes very small value and its amplifi-
cation is not disastrous as it may be the case for the LCMV that may
dramatically amplify it regardless of its energy).

When multiple interferers are present, the likelihood of having
one of them in the vicinity of the target source signal becomes higher.
Consequently, it is more likely that the ambient noise becomes am-
plified, especially by the LCMV. In addition, the estimation of the
channel TFs associated with the interferences becomes more and
more complicated. Conversely, the MVDR allows for blind interfer-
ence and ambient noise removal since the knowledge of the channel
TFs of the interferers is not required as shown in (6) where only the
PSD matrices of the interference-plus-ambiant-noise and noisy data
are used.

6. NUMERICAL EXAMPLE

For illustration purposes, we consider a uniform linear array (ULA)
of 4 microphones with δ being the inter-microphone spacing, located
in a reverberant enclosure. The microphone elements are placed on
the axis (y0 = 1.016, z0 = 1.016) m with the center of the ar-
ray being at (x0 = 1.524 m, y0, z0) and the nth microphone at
(x0 − N−2n+1

2
δ, y0, z0) with n = 1, ..., N . In the first example,

we consider the case of an anechoic room (T60 = 0 ms) where the
channel transfer functions are pure delay-based. In the second sce-
nario, we consider a reverberant enclosure simulated using the image
method [14] with a reverberation time T60 = 300 ms. The source
and the two interferers are located in the same enclosure at a dis-
tance 2.5 m away from the array center and at the azimuthal angles
θs = 90◦, θi1 = θs − Δθ and θi2 = θs + Δθ which are measured
counter-clockwise from the array axis. Δθ will be chosen depend-
ing on the examples investigated below. An additive spatially white
noise was added to model the ambient noise. We choose the input
SIR and SNR to be equal to −3 dB and 0 dB, respectively.

In the first setup, we investigate the effect of the angular separa-
tion Δθ on the performance of the MVDR and LCMV beamformers
at a frequency f = 1 kHz. The inter-microphones spacing is set
such that δ = c

2f
(c = 343 ms−1 is the speed of sound). Figs. 1

(a) and (b) show the effect of Δθ on the SIR and SNR at the out-
put of both beamformers. When Δθ decreases, the output SNR of
the LCMV is decreased. It is even much lower than the input SNR
for Δθ < 15◦. In contrast, the output SNR of the MVDR is al-
most unaffected while very low output SIR values are obtained for
small Δθ. To gain a better understanding of these results, we pro-
vide the normalized beampatterns of both beamformers in Fig. 2
for Δθ = 30◦ and 10◦. We see that when Δθ is small, two ma-
jor behaviors of the LCMV emerge: displacement of the main beam
away from the source location and appearance of sidelobes. The

MVDR’s beampattern also exhibits larger sidelobes when Δθ is de-
creased. To explain these behaviors, recall that in the formulation of
the optimization problems leading to the LCMV and MVDR, the ar-
ray response towards the source direction is forced to the unity gain.
This constraint is always satisfied (the maxima of the LCMV beam-
pattern correspond to values larger than one and the results presented
in Fig. 2 are normalized with respect to the largest value). When the
interferers move towards the target source, it becomes harder for the
LCMV to satisfy two contradictory constraints: switching the array
gain from zero to one. This fact causes some instabilities that trans-
late into the appearance of sidelobes and displacement of the maxi-
mum far from the interference, thereby leading the array to capture
the ambient noise which spans the whole space. Finally, it is obvi-
ous that when Δθ increases, the two filters perform relatively well in
terms of noise (for the LCMV) and interference (for the MVDR) re-
moval. In the second setup, we consider a reverberant enclosure and
show the resulting output SNR and SIR for Δθ = 30◦ and 10◦ for
the frequency span 0 to 4 kHz in Fig. 3. We notice that the infinite
SIR gain achieved by the LCMV may come at the price of very low
output SNR as compared to the MVDR, especially for the low fre-
quency range (lower than 1000 Hz). When we compare Figs. 3 (a)
and (c) to Figs. 3 (b) and (d), respectively, we notice that when the
interference is placed near the target source, a remarkable perfor-
mance degradation is observed in terms of output SNR, especially
for the LCMV filter, and in terms of output SIR for the MVDR.

7. CONCLUSIONS

In this paper, we studied the ability of the MVDR and LCMV
beamformers to simultaneously reduce the ambiant noise and
reject the multiple interferers when both types of signals overlap
to the target speech signal. We elaborated simplified expressions
for both beamformers to illustrate the tradeoff of noise reduction
and interference rejection. Specifically, while the LCMV totally
focusses on interference rejection and may dramatically increase
the ambiant noise, the MVDR seems to be more promising since
it tradeoffs both functions by taking into account the energies of
both types of signals. In the particular case where the ambient
noise is weak (as compared to the level of the interferers), the
MVDR is more focussed on interference rejection and degenerates
to the LCMV without requiring the knowledge of the channel TFs
associated to the interferers. Conversely, when the interferers are
weak (as compared to the ambient noise), the MVDR allows for
better ambient noise reduction in contrast to the LCMV.

APPENDIX: PROOF OF THE NEW LCMV EXPRESSION

In order to prove (9)–(10), we first see that

CHΦ−1
vv C =

�
gHΦ−1

vv g gHΦ−1
vv D

DHΦ−1
vv g DHΦ−1

vv D

�
. (19)

By using (19), we can compute (20) that we plug into (8) to ob-
tain (21). Finally, we use the matrix inversion lemma to expand�
gHΦ−1

vv gDHΦ−1
vv D − DHΦ−1

vv ggHΦ−1
vv D

�−1
and use it in (21)

to obtain the LCMV expression in (9)–(10).

�
CHΦ−1

vv C
�−1

u1 = (20)�
�

	
gHΦ−1

vv g − gHΦ−1
vv D

�
DHΦ−1

vv D
�−1

DHΦ−1
vv g


−1

−�
gHΦ−1

vv gDHΦ−1
vv D − DHΦ−1

vv ggHΦ−1
vv D

�−1
DHΦ−1

vv g


� ,
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hLCMV

G∗
1

=
Φ−1

vv g

gHΦ−1
vv g − gHΦ−1

vv D
�
DHΦ−1

vv D
�−1

DHΦ−1
vv g

(21)

−Φ−1
vv D

�
gHΦ−1

vv gDHΦ−1
vv D − DHΦ−1

vv ggHΦ−1
vv D

�−1

DHΦ−1
vv g.
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Fig. 1. Performance of the MVDR and LCMV vs. Δθ: anechoic
room.
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Fig. 2. Beampatterns of the MVDR and LCMV filters; the source is
at 90◦ and two interferences at 90◦ ± Δθ: anechoic room.
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Fig. 3. SNR and SIR at the output of the LCMV and MVDR filters:
reverberant room.
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