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Abstract-In this paper, we derive for the first time an explicit 
expression for the stochastic Cramer-Rao lower bound (CRLB 
or CRB) of the DOA estimates from spatially and temporally 
correlated signals generated from noncircular sources. The new 
CRB is compared to those of circular temporally correlated 
and noncircular independent and identically distributed (iid) 
signals. It will be shown that the CRB obtained assuming 
both noncircular sources and temporally correlated signals is 
lower than the CRBs derived considering only one of these 
two assumptions. This illustrates the potential gain that both 
the noncircularity and the temporal correlation provide when 
considered together. It will also be proved that the difference 
between the three CRBs increases with the number of snapshots. 
However, as the signal-to-noise ratio (SNR) increases, the 
CRBs merge together and decrease linearly. Moreover, we 
notice that in low SNR values the temporal correlation is more 
informative about the unknown DOA parameters than the 
noncircularity. Finally , we show the dependence of the CRB on 
the noncircularity rate, the noncircularity phase separation and 
the DOA separation. 

Keywords: DOA estimation, spatial correlation, temporal 
correlation, noncircularity of the signals, stochastic Cramer-Roo 
lower bound (CRLB). 

I. INTRODUCTION 

Direction of arrival (DOA) estimation for multiple plane 
waves impinging on an arbitrary array of sensors has received 
a significant amount of attention over the last several decades. 
It has typically played an important role in array signal 
processing areas such as modern wireless communication 
systems, radar, sonar, audio/speech processing systems and 
radio astronomy. 

In this context, many DOA estimators have been extensively 
studied, assuming different data models. Indeed, a number 
of high resolution DOA estimation algorithms such as the 
deterministic (or conditional) and the unconditional Maximum 
Likelihood (ML) estimators [1], the MUltiple SIgnal Classifi­
cation (MUSIC) estimator [2, 3] and the MODE estimator [4] 
have been developed assuming the signals to be independent 
and identically distributed (iid) and generated from circular 
sources. Moreover, efforts have been directed to devolop 
more realistic models assuming the signals to be temporally 

correlated and circular [5, 6]. Later, there was a considerable 
interest in diriving algorithms that exploit the unconjugated 
spatial covariance matrix for noncircular and iid signals [7, 8, 
9].  

The performance of any DOA estimator is often assessed by 
computing and plotting its bias and variance as a function of 
the true SNR values. In this context, a given unbiased estimator 
is usually said to outperform another one, over a given SNR 
range, if it has a lower variance. 

In signal processing, a well known common lower bound 
for the variance of unbiased estimators of a given parameter 
is the Cramer-Rao Lower Bound (CRLB or CRB). It serves 
as a useful benchmark for practical estimators [10]. The 
CRLB is often numerically or empirically computed. But 
even when a closed-form expression can be obtained, it is 
usually complex and requires tedious algebraic manipulations. 
Roughly speaking, in signal processing, there are two major 
categories of DOA CRBs according to the transmitted signal: 
deterministic and stochastic. In the deterministic case, the 
transmitted signal is assumed to be an unknown deterministic 
process while in the stochastic case the transmitted signal 
is assumed to be stationary and generated from a random 
process. Because the derivation of the stochastic CRB was 
thought to be prohibitive in [1, (2.13)], the authors therein 
considered arbitrary deterministic signals corrupted by circular 
complex Gaussian noise for which the associated deterministic 
CRLB was easily derived. However, the deterministic CRLB 
is known to be not achievable in the general case. Hence, there 
has been interest in developing the stochastic CRB which can 
be asymptotically achieved by the stochastic ML estimator. 

Several works which deal with the computation of the 
stochastic CRLB have been reported in the litterature. In 
fact, an explicit expression of the CRLB for real Gaussian 
distributions was derived in [11, 12] by Slepian and Bangs. 
This work was extended to circular complex Gaussian distri­
butions in [13] .  Although their efficiency, all the oforemen­
tioned CRLBs present some practical limitations. In fact, they 
are mainly developed assuming the snapshots to be iid or 
uncorrelated in time. This assumption places a challenging 



limitation on the applicability of the results in the real world 
and forces some practical difficulties. Therefore, efforts have 
been directed to consider more realistic models assuming 
the signals to be temporally correlated. Then, an explicit 
expression for the stochastic DOA CRLB of circular Gaussian 
distributed and temporally correlated signals was derived in 
[6]. Yet, noncircular complex signals, for example binary 
phase shift keying (BPSK) and offset-quadrature-phase-shift­
keying (OQPSK) modulated signals, are frequently encoun­
tered in digital communications. Therefore, more recently, 
an explicit expression for the stochastic DOA CRLB of 
noncircular Gaussian sources was derived in [14] but for iid 
signals. But, to the best of our knowledge, no contibutions 
have dealt yet with the derivation of the DOA CRLB assuming 
the signals to be both spatially and temporally correlated and 
also generated from noncircular sources. Therefore, the aim of 
our proposed work is to derive an explicit expression of the 
CRB of the DOA estimates assuming spatially and temporally 
correlated signals generated from noncircular sources. 

This paper is organized as follows. In section II, we present 
the notations and definitions used throughout the article. In 
section III, we introduce the system model that will be used 
to derive the CRB. In section IV, an explicit expression of 
the DOA CRB assuming spatially and temporally correlated 
signals generated from noncircular sources will be derived. In 
section V, some concluding remarks will be drawn out. 

II. NOTATIONS AND DEFINITIONS 

A. Notations 

We mention that throughout this paper, matrices and 
vectors are represented by bold upper case and bold lower 
case characters, respectively. Vectors are, by default, in 
column orientation. 

(A)* 
(A)T 
(A)H 
tr(A) 

IIAllpro 
vec(A) 

�{.} 
�{.} 
E{.} 

® 

<:) 

Conjugate of the matrix A 
Transpose of A 
Conjugate transpose of A 
Trace of A 
Frobenius norm of Aj IIAII�ro = tr(AAH) 
The "vectorization" operator that turns the 
matrix A into a vector by stacking the 
columns of the matrix one below another 
Real part operator 
Imaginary part operator 
Expectation operator 
The Kronecker operator 
The Hadamard-Schur product operator 

Ip 
Opxq 

N(O,P) 

B. Definitions 

The (p x p) identity matrix 
The (p x q) null matrix 
A centred normal distribution with first 
covariance matrix P = E{:v( t ):vH (t)} 

We will first define what the true SNR means. In fact, the 
true SNR of a considered system can be defined as follows: 

SNR = Psignal 
, Pnoise 

(1) 

where Psignal is the power of the transmitted signal and Pnoise 
is the power of the noise. 

Now, to define the noncircularity rate and the noncircular­
ity phase notions, we denote Z (Z, respectively) a centred 
random variable (a centred random vector, respectively). In 
this paper, we consider as second-order noncircular (NC), the 
random variables (vectors, respectively) such as E{ Z2} =F ° 
(E{ZZT} =F 0, respectively). 

The degree of second-order noncircularity of a centred 
random variable Z is determined by the noncircularity rate 

p of module lower than 1 defined as follows 

E{Z2} _ iq, 
E{ IZI2} - pe , 

where the parameter ¢ represents the noncircularity phase. 

III. SYSTEM MODEL 

Consider an array of L sensors receiving the signals emitted 
by K narrowband sources with directions (J = ((h, ... , () K ). 
Then, the received data can be modelled as a complex signal 
as follows: 

y(t) = A :v(t) + w(t), t = 1,2, ... , N, (2) 

where, N represents the total number of received samples in 
the observation window. At time index t, :v(t) is the transmit­
ted sources signals, A = (a(()l), ... ,a (()K)) is the steering 
matrix with {a(()i) h=l, . . .  ,K are the array steering vectors 
parametrized by the scalar DOA parameters {()ih=l, . . .  ,K and 
w(t) is the sensors noise vector. 

Stacking the received data over the whole observation 
window in a matrix Y, (2) can be written in a matrix form as 
follows: 

Y=AX+W, (3) 

where Y = [y(I), ... , y(N)] represents the data samples, 
X = [:v(I), ... , :v(N)] is the signal sequence and W = 
[w(I), ... , w(N)] is the noise sequence. 

Now, consider that the transmitted signals :v(t) are assumed 
to be generated from noncircular sources. This means that 
E{:v(t):vT(t)} =F ° contrarily to circular signals. Otherwise, 
the transmitted signals {:v(t)}t=1,2, . . .  ,N are supposed to be 
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zero-mean complex noncircular, temporally and possibly spa- IV. DERIVATION OF THE CRB FOR NONCIRCULAR 

tially correlated with conjugated and unconjugated covariance GAUSSIAN DISTRIBUTED AND TEMPORALLY CORRELATED 

matrices PNKxNK and P�KXNK' respectively as follows SIGNALS 

PNKXNK 
P�KXNK 

(4) 

(5) 
'k ,'k where Blockik [PkxKl and Blockik [Pk xKl represent block 

matrices with blocks P�XK and P'1txK respectively. The 
ik'th block of the block matrix p, pik

, represents the first 
space-time covariance matrix of the signals and is defined as 

P� �, � 
= E{x(i)xH (k)}. (7) 

Moreover, the ik'th block of the block matrix p', p,ik
, 

represents the second unconjugated spatial covariance matrix 
of the signals and is defined as 

-n'ik p' r ik, 
= E{x(i)xT(k)}. 

(8) 
(9) 

The noise is assumed to be Gaussian complex circular, pos­
sibly spatially correlated and temporally white. Therefore, we 
have 

vec(W) 'V N(O,C), (10) 

where 

(11) 

C represents the noise covariance matrix defined as follows 

C = E{w(t)wH(t)}. (12) 

Therefore, the received signals are zero-mean complex non­
circular, temporally and possibly spatially correlated with 
conjugated and unconjugated covariance matrices 'RNLxNL 
and 'R� Lx N L' respectively as follows 

where 

'RNLxNL APAH + C, 
'R�LXNL = APAT, 

(13) 
(14) 

(15) 

In this paper, we consider the same assumptions AI, A2 and 
A3 recently introduced in [6] as follows: 

• AI) It is assumed that K < L and that for any set of 
distinct DOA parameters (h, . .. , (h, the vectors 
{a(fh), .. . , a(fh)} are linearly independent. Further­
more, a ( 0) is assumed to be differentiable with respect 
to 0 and the true parameter vector 00 is an inner point of 
the set of parameter vectors of interest. 

• A2) The transmitted signals {X(t)h=1,2, ... ,N are as­
sumed to be independent from the noise components 
{W(t)h=1,2, ... ,N. 

• A3) The signals are assumed to exhibit a "sufficient" 
temporal correlation. 

In this section, we assume that the transmitted signals 
{x(t) h=1,2, ... ,N are zero-mean Gaussian distributed. Then, we 
introduce the following extended vector 55 

Then, we have 

where 

55 'V N(O, P), 

P = E {5555H}, 

= (;* �*), 

(16) 

(17) 

(18) 

(19) 

where P and P' are previously defined in (4) and (5), 
respectively. 

To derive the CRB of the considered model, we assume 
that the noise is circular Gaussian distributed and the noise 
covariance matrix C is known (possibly up to a multiplicative 
scalar). Then, we define the parameter vector as follows 

( T T)T Q= O ,{3 , (20) 

where 0 introduced in section IT represents the directions of 
the narrowband sources and {3 is defined by 

{3= ( (�{�j}, �{�j}, �{P:j}' �{P:j})l�j<i�NK' 

(Pii, �{P:i}' �{PM )i=l, ... ,NK) 
T 

. 
We also define the vector Y N as 

_ _ ( C-!
.
Y(I) ) 

YN - : . 
C-!y(N) 

(21) 

(22) 

Moreover, we introduce the following extended vector Y N 

Then, we have 

where 

with 

:::: ( YN ) YN = YN . 

YN 'V N(O, fiN), 

fiN =E {YNYZ } , 

= (�% �t), 

'RN=E{YNY�} , 
'R� = E {YNyr-} . 

(23) 

(24) 

(25) 

(26) 

(27) 

(28) 
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'R-N and 'R-� can be written as 

- -H 'R-N=G1'G +INL, 
'R-� = G1" GH , 

(29) 

(30) 

where G is defined as follows 

(31) 

Therefore, 'R-N is rewritten as 

where 

- -H 'R-N = GPG + 12NL, (32) 

Similarly to [14] ,  the ik'th entry of the Fisher information 
matrix (FIM) corresponding to Y N is given by 

(33) 

(34) 

Following the same steps of [10], we obtain the following 
expression of the (CRB -1 ) ik 
(CRB-1(0))ik = 1R {tr (G7� GkP GH 'k-;/ G p) }, 

where 

(35) 

G. - dG(O) 
(36) 

t 
- dOi ' 

-
(
_H_

)-
1_H �=I2NL - G  G G G .  (37) 

Some algebraic manipulations (see appendix A) yield the 
following expression of CRB (0) for temporally correlated 
signals generated from noncircular sources 

CRBnoncir/cor(o) = � [1R{ (DHC-!II�C-!D) 0 

T}]
-1 

T --1 A1' 1" A ) 'R- (A*1"*)) , (38) 

where A is defined in (15) and BtrK denotes the block trace 
and is defined as 

(39) 

We note here that in the case of circular sources, we have 
1" = OKNxKN and 'R-' = OLNxLN. Therefore, 'k becomes 

'k = ( o
'R- OLN X I::*

) . LNxLN '" (40) 

Consequently, (38) reduces to 

CRBcir/cor(o) = � [1R {( DHC-!II�C-!D) 0 

BtrK (1'AH'R--1 A1') T} r1 
, (41) 

derived in [6]. 
Now, we denote 

(1'AH 1"AT)'k-\ ;";,*) , (42) 

1'AH'R--1 A1', (43) 
(44) 

Applying [1, lemma AA] to B1 and B2, we obtain 

(45) 

where for two matrices A and B, A 2: B implies that 
A - B 2: O. This inequality applies to the transpose of these 
matrices. Then, we have 

Bi - Bf 2: O. (46) 

Moreover, we have 

(47) 

Therefore, thanks to standard results of linear algebra (see [15, 
App. A, result R.19]), we prove the following result 

CRBnoncir/cor(o) S CRBcir/cor(o). (48) 

V. ILLUSTRATIVE SIMULATIONS 

In this section, we will present some figures showing the 
Cramer-Rao bounds. We will see that the CRB obtained 
assuming both noncircular sources and temporally correlated 
signals is lower than the CRBs derived considering only one 
of these two assumptions. 

We first consider two complex noncircular Gaussian signals 
with identical noncircularity rate p = 1 and noncircularity 
phases <PI = 1r /2 and <P2 = 1r /3. These sources, located 
at angles 01 = 0 and O2 = 0.2 radians with respect to 
the normal of array broadside, impinge on a uniform linear 
array of 4 sensors separated by a half-wavelength for which 
a ( Ok) = [1, e)-Ir sin(Ok) , e2j7r sin«(h) , • • •  , ej(L-1)7r sin(Ok) ] T 
where {Okh=1,2 are the DOAs relative to the normal of the 
array broadside. We assume that SNR = 0 dB. Moreover, we 
suppose that the signals are spatially uncorrelated. 

To represent the CRBs, we define the first and the second 
(unconjugated) signal space-time covariance matrices as fol­
lows 

l' 
1" 

Pt®P, 
Pt®P', 

(49) 
(50) 

where P and P' are the covariance matrices of the noncir­
cular complex Gaussian signal. Moreover, Pt represents the 
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temporal correlation matrix. We also consider the following 
expressions of the three matrices as follows 

(P)ik 
(P')ik 
(Pdik 

8ik, 
pej4>i8ik, 
e- O.2 Ii -k l . 

(51) 
(52) 

(53) 

Otherwise, we define the noise covariance matrix as follows 

(54) 

Figs. 1 and 2 show In(CRBnOncir/eOr), In(CRBcir/eOr), 

In(CRBnoneir/uneor) and the deterministic CRB In(CRBdet) as 
a function of the number of snapshots N. From Figs. 1 and 

-1.5 
--Cirteor CRB 
- Noneirtiid CRB 
- Noneirteor CRB 
- - - Det CRB 

iD � u -4 
C; .Q 

-4.5 

-5 " '," 

-5.5 

-6 .......... . '!ooo 

-6.5 
0 10 20 30 40 50 

N 

Figure 1. An example of the CRBs versus the number of snapshots N in 
logarithmic scale for two equipowered sources. 

-6 

-7 

-7.5 

-8 

- - -Cirteor CRB 
- Noneirtiid CRB 
....... Noncirtcor CRB 
--DetCRB 

-8 . 5'----'-----'-----"-----'-----' 50 100 150 200 250 300 
N 

Figure 2. CRBs versus the number of snapshots N in logarithmic scale for 
two equipowered sources. 

2, we verify that 

CRBdet ::; CRBnoncir/eor < CRBcir/eor, (55) 
CRBnoneir/eor < CRBnoneir/uneor. (56) 

We verify also that the CRB obtained assuming both non­
circular sources and temporally correlated signals is lower 
than the CRBs derived considering only one of these two 
assumptions. This illustrates the potential gain that both the 
noncircularity and the temporal correlation offer when consid­
ered together. Moreover, we see, from Figs. 1 and 2, that the 
difference between these CRBs increases with the number of 
snapshots N. This is hardly surprising since the more samples 
we receive, the more information we can retrieve about the 
temporal correlation and the noncircularity of the signals. In 
fact, with increased number of snapshots N, there is more 
room for both the noncircularity of the signals and the tempo­
ral correlation to improve the DOA estimation performance. 
Now, we consider, in Fig. 3, three equipowered sources with 
identical noncircularity rate p = 1 and noncircularity phases 
<Pi = 7r /2, <P2 = 7r /2 and <P3 = 7r /3. These sources are 
located at angles (h = 0, 82 = 0.2 and (h = 0.4 radians. 
Fig. 3 illustrates the inequalities (55) and (56). Moreover, it 

2 . -_ CRsCir/cor 

-...--CRBNoncirfiid 

--.--CRBNoncir/cor 
. 

- - -CRBDel 

-2 . 

-3 . 

---
- 4 �-- -L--- �--- �----� �- ---� -� -� 

o 10 20 30 40 50 
N 

Figure 3. An example of the CRBs versus the number of snapshots N in 
logarithmic scale for three equipowered sources. 

proves that the difference between CRBnoneir/eor and CRBcir/eor 

increases with the number of sources K while the difference 
between CRBnoncir/cor and CRBnoneir/noncor decreases as K in-
creases. This can be explained by the fact that with increased 
K, there is more room for the noncircularity of the signals to 
improve the DOA estimation performance than the temporal 
correlation. 

In the following graphical representations, we consider the 
case of two equipowered sources. In Fig. 4, the CRBs are 
depicted versus the SNR for a number of snapshots N = 100. 
It can be seen, from this figure, that as the SNR increases, the 
CRBs merge together and decrease linearly. In fact, at high 
SNR values, the useful signals are not too much corrupted by 
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-3 
-.- CRBNoncirliid 
-- CRSCir/cor 
---*- CRSNoncir/cor 

- - - CRBOet 

iC -6 
cr: u 
0; 
.Q -7 

-8 

-9 

- 10 
-10 -5 a 5 10 

SNR 

Figure 4. An example of the CRBs versus the SNR in logarithmic scale for 
two equipowered sources and number of snapshots N = 100. 

noise. Then, in this SNR region, the signals are very informa­
tive about the the DOA estimates. This scenario is therefore 
equivalent to the deterministic case. This illustrates the fact 
that at high SNR values, all the CRBs coincide. Moreover, 
we notice that at low SNR values the temporal correlation is 
more informative about the unknown DOA parameters than the 
noncircularity. In fact, at low SNR values, the useful signals 
are too much corrupted by the noise. Therefore, the useful 
signals are not very informative about the unknown DOA and 
more particularly, the noncircularity rate does not bring much 
information about the DOA estimates. 

In Figs. 5 and 6, we show the dependence of the 
CRBDoDcir/cor on the noncircularity rate p , the circularity 
phase separation 6.¢ = ¢2 - ¢l and the DOA separation 
6.() = ()2 -()l. 

In fact, Fig. 5 represents the ratio 
(CRBDODcir/COr) / (CRBcir/COr) as a function of the noncircularity 
rate for different values of 6.() for N = 100 and SN R = OdB. 
It can be seen from this figure that CRBDoDcir/cor decreases as 
the noncircularity rate increases. Furthermore, this decrease is 
more prominent at low DOA separations. Moreover, from Fig. 
6, we see that the CRBDoDcir/cor is sensitive to the circularity 
phase separation at low DOA separations. 

VI. CONCLUSION 

In this paper, we derived for the first time an explicit 
expression for the stochastic Cramer-Rao bound (CRB) of the 
DOA estimates for spatially and temporally correlated signals 
generated from noncircular sources. This CRB was compared 
to those of circular temporally correlated and noncircular 
independent and identically distributed signals. We showed the 
potential gain that both the noncircularity and the temporal 
correlation provide when considered together. We also proved 
that the difference between the three CRBs increases with the 
number of snapshots. On the other hand, as SNR increases, 

1.1 

0.9 

0.8 

o 
� 0.7 cr: 

0.6 

0.5 

0.4 

a 
Noncircularity rate p 

Figure 5. Ratio = (CRBnoncir/cor) / (CRBcirlcor) as a function of the 
noncircularity rate p for different values of DOA separation (ll.B), for 
</>1 = 1[/2, </>2 = 1[/3, N = 100 and SNR = OdE. 

4.5 

3 

� 2.5 

g 
� 2 
u 

1.5 

0.01r 

0.5 0.02;d 

a 
a 

0.03r 

0.1 0.2 0.3 0.4 0.5 
Noncircularity phase 11$ 

Figure 6. CRBnoncir/cor as a function of the noncircularity phase ll.</> for 
different values of DOA separation (ll.B), for p = 1, N = 100 and SN R = 
OdE. 

the CRBs merge together and decrease linearly. Otherwise, 
we showed that at low SNR values the temporal correlation is 
more informative about the unknown DOA parameters than the 
noncircularity. Finally, we proved that the CRB derived assum­
ing noncircular and temporally correlated signals decreases as 
the noncircularity rate increases. Furthermore, this decrease is 
more prominent at low DOA separations. Moreover, this CRB 
is sensitive to the noncircularity phase separation at low DOA 
separations. 
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ApPENDIX A-PROOF OF (38) 

We have 

This expression is equivalent to 

(58) 

Observing that 

(59) 

we get 

where 

dA(O)/d(h . (61) 

We also consider that 

D (62) 

where 

Then, Di can be written as 

(64) 

Therefore, (CRB-
1
(0))ik can be written as 

(CRB-
I
(O))" � 2iJl {t, (df'c-trrj,C-ld.) {F,}.; } , 

(65) 

where Fj represents the jth (K x K) block on the diagonal 

f th . ( -H , -T ) .;; -
1 ( G P ) C o e matrIx P G P G '" N G

* 
P'* . on-

sequentIy, we obtain the following expression of CRB-
1
(0) 

CRB-
I
( 0) � 2!R {t, (DH C-l rrj,C-1 D) 0 FT } . (66) 

We use this following identity 

(67) 

where 

- ( 'R,. 'R,.= 'R,.'* 
'R,.' ) 
'R,.* , (68) 

with 'R,. and 'R,.' are previously defined in (13) and (14), 
respectively. Then, after some algebraic manipulations, we 
obtain the expression of CRBcor/noncir (0) as given by (38). 
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