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Abstract—In this paper, we address the problem of time delay
estimation for Direct-Spread CDMA (DS-CDMA) multipath
transmissions. We observe that the attractive post-correlation
model (PCM) of the despread data allows for exploiting results
provided in array signal processing and we introduce a new time
delay estimator based on the maximum likelihood (ML) criterion.
The new technique finds the global maximum of the compressed
likelihood function in an efficient way using the importance
sampling (IS) technique. Simulation results show that the new
estimator provides very good performance in challenging cases
of very closely-spaced delays even with a single antenna and
transmitted symbol. The Cramer-Rao lower bound (CRLB) for
multipath delays is also provided.

Index Terms—Timing synchronization, post-correlation model,
optimization methods, Cramér-Rao lower bound (CRLB), maxi-
mum likelihood, importance sampling.

I. INTRODUCTION

Parameter estimation is a crucial operation for any digital

receiver; in particular the recovery of time delays introduced

by the effects of multipath propagation. In this work, we

focus on the CDMA array-receiver that provides very accurate

channel estimates with a low complexity cost [1] and the

post-correlation model (PCM) of the despread data developed

there. Actually, it is well known that incorrect multipath timing

degrades considerably the performance of CDMA systems.

Therefore, time delay estimation was investigated in [1] by

applying the powerful Root-MUSIC algorithm and revised in

[2] with a complexity reduction. In this paper, we avoid eigen-

decomposition operation widely used in conventional high-

resolution methods by adapting the maximum likelihood (ML)

criterion to the PCM.

According to estimation theory, the ML estimator is asymp-

totically efficient for high signal to noise ratio (SNR) or large

numbers of received samples. Its performance always outper-

forms other estimators especially for closely-spaced delays.

Unfortunately, in our problem, a closed-form solution for the

ML estimates is intractable and a direct maximization of the

likelihood function requires a multi-dimensional grid search,

whose complexity increases with the number of unknown

parameters. Therefore, we resort to the concept of importance

sampling (IS), as investigated in the case of frequency [3],

DOA [4] and single-path time delay estimation [5].
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It will be shown through simulations that the new method

outperforms the classical Root-MUSIC method for moderate

SNR values and presents noticeably better performance in the

special case of a single receiving antenna.

The remainder of this paper is organized as follows. In section

II, we briefly introduce the DS-CDMA model. In section III,

we derive the compressed likelihood function that we aim to

maximize. Then, in section IV, we introduce the importance

sampling technique with application to our problem of time

delay estimation for CDMA systems. The analytical expres-

sion of the corresponding CRLB will be derived in section

V. Simulation results are discussed in Section VI and some

concluding remarks are drawn out in Section VII.

II. SYSTEM MODEL AND BACKGROUND

We consider a CDMA transmission system where the re-

ceiver is equipped with M antenna elements. The symbol

duration is denoted by T and the processing gain is defined as

L = T/Tc, where Tc is the chip pulse duration. We consider

P propagation paths in a Rayleigh fading channel where the

largest delay is small compared to the symbol duration T .

The post-correlation model of spatio-temporal observation of

the nth received symbol on the antenna array is given by [1]:

Zn = GnΥnD
T (τ )sn +Nn, (1)

where sn = bnψn is the product of the transmitted symbol bn
and the total received power ψ2

n. The matrix D(τ ) is the time

response matrix whose pth column is:

dp = [ρc(−τp), ρc(Tc − τp), . . . , ρc((L− 1)Tc − τp)]
T , (2)

and ρc(.) is the correlation function of the spreading code. Gn

is the M ×P propagation matrix and Υn is a P ×P diagonal

matrix representing the power partition over the different paths

[1]. These two matrices can be gathered in one matrix Jn (i.e.,

Jn = GnΥn). Then, a compact form of Zn is given by:

Zn = Hnsn +Nn (3)

with Hn = JnD
T (τ ) represents the spatio-temporal propaga-

tion matrix. Finally, Nn is the M×L noise matrix. The spatio-

temporal model in (3) provides a powerful tool for estimating

the channel response and the transmitted symbol. In fact, a
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transformation of Zn, Hn and Nn, using the vect(.) operator1,

into ML-dimensional vectors yields:

zn = hnsn + nn, (4)

where zn, hn and nn are the resulting ML × 1 vectors. At

this stage, many blind channel estimators that were derived

in the literature can be used to obtain an estimate of ĥn.

In particular, we refer the reader to the channel estimator

that was derived within the framework of STAR receiver in [1].

Then, once an estimate ĥn is at hand, it will be used

to estimate the time delays. Additionally, the PCM space

time formulation of Hn offers an interesting structure since

it gathers all the parameters of interest in one matrix D(τ )
(i.e., Hn = JnD

T (τ )). This formulation will be exploited to

develop a ML time delay estimator.

III. LIKELIHOOD FUNCTION

Taking into account the estimation error of hn, the estimate,

Ĥn, of the spatio-temporal propagation matrix, Hn, is given

by:

ĤT
n = D(τ )JT

n +ET
n , (5)

where ET
n is the corresponding error matrix whose elements’

variance can be expressed as a function of the noise variance

in the received signal [6]. According to this representation, the

problem can be thought of as the estimation of the unknown

delays from M symbols received by L antenna elements. The

observation vectors are the columns of Hn and the columns of

Jn represent the transmitted signals from P different sources.

Now, using the fact that a delay in the time domain becomes a

phase shift in the frequency domain, we perform a column by

column fast Fourier transform (FFT) of ĤT
n and we obtain:

Ĥn = D(τ )JT
n + En, (6)

in which the matrix En is the resulting noise matrix and D(τ )
depends only on the unknown delays and is given by:

D(τ ) = [d(τ1), d(τ2), . . . , d(τP )], (7)

whose columns {d(τp)}Pp=1 are defined as:

d(τp) = [c0, c1e
− j2πτp

L , . . . , cL−1e
− j2π(L−1)τp

L ]T , (8)

and c = [c0, c1, . . . , cL−1]
T is the (L× 1) vector containing

the FFT coefficients of the correlation function of the spread-

ing code. In practice, this function has a very narrow lobe,

which makes the FFT coefficients quasi-constant in amplitude.

Now, suppose that the columns of Ĥn, denoted Ĥ(i)

n for

i = 1, . . . , M , are independent and the columns of the

error matrix En are Gaussian. Each column of Ĥn is hence

distributed according to a complex Gaussian probability den-

sity function (pdf) with zero mean and a covariance matrix

R = D(τ )PDH(τ )+σ2IL, where IL is an (L×L) identity

matrix and P is the covariance matrix of the columns of JT
n ,

1The vect(.) operator arranges the columns of a matrix as one column
vector.

supposed to be the same for all the columns. Consequently,

the pdf of Ĥn, parameterized by τ and P , is given by:

p(Ĥn; τ ,P ) =
1

πML

1(
det(D(τ )PDH(τ ) + σ2IL)

)M
exp

{
−

M∑
i=1

(Ĥ(i)

n )H
(
D(τ )PDH(τ ) + σ2IL

)−1

Ĥ(i)

n

}
,

(9)

where det(.) refers to the determinant of a matrix and τ =
[τ1, τ2, . . . , τP ]

T are the unknown delays to be estimated.

The resulting log-likelihood function L(τ ,P ), after omitting

the constant terms, is given by:

L(τ ,P ) = − log
{
det(D(τ )PDH(τ ) + σ2IL)

}
−

1

M

M∑
i=1

Ĥ(i)

n

(
D(τ )PDH(τ ) + σ2IL

)−1

Ĥ(i)

n

= − log {det(R)} − trace
{
R−1R̂

}
, (10)

with R̂ beeing the estimate of the sample covariance ma-

trix of the columns of Hn computed from Ĥn (R̂ =
1
M

∑M
i=1 Ĥ

(i)

n (Ĥ(i)

n )H ). The log-likelihood function in (10)

depends on the parameter vector of interest τ and the covari-

ance matrix P . Therefore, we need to maximize this function

over τ and P . To that end, it can be shown, using similar

developments used in the context of DOA estimation [7], that

the value of P that maximizes (10) for a given value of τ is:

P̂ML =
(
DH(τ )D(τ )

)−1

DH(τ )R̂D(τ )
(
DH(τ )D(τ )

)−1

σ2
(
DH(τ )D(τ )

)−1

. (11)

Injecting P̂ML in the expression of the log-likelihood function

in (10), we obtain the so-called compressed likelihood function

that depends only on τ :

Lc(τ ) =
1

σ2
trace

(
ΠR̂

)
−log

(
det
(
ΠR̂Π+ σ2(IL −Π)

))
,

(12)

where Π is an orthogonal projector matrix (Π =

D(τ )
(
DH(τ )D(τ )

)−1

DH(τ )). While σ2 is usually un-

known, it can be easily estimated either by averaging the

L − M smallest eigen-values of R̂ or by exploiting the

estimated power carried out in a previous stage of STAR [1].

IV. THE IMPORTANCE SAMPLING TECHNIQUE

The maximum likelihood estimates of the delays are ob-

tained by maximizing the compressed likelihood function

Lc(τ ) with respect to τ . The most obvious method consists

in performing a P -dimensional grid search, whose complexity

increases with the number of paths. And since a closed-form

expression of the solution is analytically intractable, we adopt

in this paper an entirely different technique. In fact, based on

the theorem of Pincus [8], the global maximum of Lc(τ ) is

given by:
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τ̂p = lim
ρ→∞

∫
J
. . .
∫
J
τp exp {ρLc(τ )} dτ∫

J
. . .
∫
J
exp {ρLc(u)} du , (13)

where J = [0, T ] is the interval in which the delays are

confined. Then, if we define the pseudo-pdf, for a sufficiently

large value ρ0, as follows:

L′
c,ρ0

(τ ) =
exp {ρ0Lc(τ )}∫

J
. . .
∫
J
exp {ρ0Lc(u)} du , (14)

then the optimal value of τ̂i is given by:

τ̂p =

∫
J

. . .

∫
J

τpL
′
c,ρ0

(τ )dτ , p = 1, 2, . . . , P. (15)

From the expression of L′
c,ρ0

(.), it can be seen that as ρ0 tends

to infinity, L′
c,ρ0

(.) tends to a P -dimensional Dirac function

centered at the location of the global maximum of Lc(.). In

fact, the use of the exponential operator makes the value of

L′
c,ρ0

(.) at the maximum of Lc(.) increases faster than the

other values. Therefore, the estimated values {τ̂p}Pp=1 using

(15) are indeed the desired maximum likelihood estimates of

the delays. However, the implementation of the estimator in

(15) requires the computation of a multidimensional integral,

which is usually difficult to perform. Yet, τ̂p can be seen as

the expected value of τp, when the vector τ is distributed

according to the pseudo-pdf2 L′
c,ρ0

(.). In this case, an estimate

of the mean can be simply found using Monte-Carlo methods

as follows:

τ̂ =
1

R

R∑
k=1

τk, (16)

where {τk}Rk=1 are R realizations of τ generated according

to L′
c,ρ0

(.). For the problem at hand, the pseudo-pdf, L′
c,ρ0

(.),
depends on the actual compressed likelihood function, Lc(.),
which is a complex multidimensional function. Thus generat-

ing realizations according to L′
c,ρ0

(.) as defined in (15) is a

difficult task and hence it will be more interesting to find a

simple one-dimensional function and use it instead of L′
c,ρ0

(.).
To that end, we resort to the concept of importance sampling

(IS) as detailed below [9].

The principle of the IS technique is based on the following

simple observation:∫
J

. . .

∫
J

f(τ )L′
c,ρ0

(τ )dτ =

∫
J

. . .

∫
J

f(τ )
L′
c,ρ0

(τ )

g′(τ )
g′(τ )dτ ,

(17)

for any function f(.) and where g′(.) is another pseudo-pdf

called normalized importance function (IF). Using (17), the

problem can be recast as the computation of the mean of

f(τ )
L′

c,ρ0
(τ )

g′(τ ) when τ is generated according to g′(τ ) instead

of L′
c,ρ0

(.). Then, we use again the Monte-Carlo method to

2We use the term "pseudo-pdf" because L′
c,ρ0

(.) has all the properties of
a pdf but τ is not a random variable.

compute the left-hand side of (17) as follows:∫
J

. . .

∫
J

f(τ )
L′
c,ρ0

(τ )

g′(τ )
g′(τ )dτ =

1

R

R∑
k=1

f(τk)
L′
c,ρ0

(τk)

g′(τk)
,

(18)

where the R vectors {τp}Rp=1 are now generated according

to g′(.). Clearly, the estimation performance depends on the

choice of R and g′(.). Indeed, a large value of R reduces the

estimation variance but increases the computation complexity;

although an appropriate choice of g′(.) can reduce the required

number of realizations R. In fact, g′(.) needs to be similar to

L′
c,ρ0

(.) and simple enough so that realizations according to

g′(.) are easily generated. Clearly, there are two contradictory

conditions for the choice of g′(.) which should be satisfied.

We discuss this point in the next section.

V. TIME DELAY ESTIMATOR

From (12), we see that the compressed likelihood function

involves the sum of two terms. These two terms depend on the

P positive eigenvalues λ1, λ2, . . . , λP of the matrix ΠR̂Π
as follows:

log
(
det
(
ΠR̂Π+ σ2(IL −Π)

))
=log

(
(σ2)L−P

P∏
p=1

λp

)

=

P∑
p=1

log

(
λp
σ2

)
+ L log σ2,

(19)

and

1

σ2
trace

(
ΠR̂

)
=

1

σ2
trace

(
ΠR̂Π

)
=

P∑
p=1

λp
σ2
. (20)

Clearly, the term
∑P

p=1
λp

σ2 is dominant compared to∑P
p=1 log

(
λp

σ2

)
. Therefore, we can neglect the second term

in the compressed likelihood function and keep only the

first one in the formulation of the IF g′(.). Moreover, to

make g′(.) separable with respect to the delays, the in-

verse matrix
(
DH(τ )D(τ )

)−1

is replaced by the diagonal

matrix
(∑L−1

l=0 |cl|2
)−1

IP . Note that this approximation is

very accurate since the diagonal elements of the matrix(
DH(τ )D(τ )

)−1

are dominant compared to its off-diagonals

ones3. Finally, using all these observations, we obtain the

following approximation for the actual compressed likelihood

function after omitting the constant term
(∑L−1

l=0 |cl|2
)−1

:

1

σ2
trace

(
D(τ )DH(τ )R̂

)
=

1

Mσ2

M∑
i=1

P∑
p=1

∣∣∣∣ L∑
l=1

cl−1 exp

{
−j2π(l − 1)τp

L

}
Ĥn(i, l)

∣∣∣∣2

=
1

Mσ2

P∑
p=1

I(τp), (21)

3We mention that justifications of this approximation were omitted due to
lack of space.
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where

I(τ) =
M∑
i=1

∣∣∣∣ L∑
l=1

cl−1 exp

{
−j2π(l − 1)τ

L

}
Ĥn(i, l)

∣∣∣∣2.
(22)

Note that we keep the term 1/(Mσ2) since it depends on the

experience’s conditions (the SNR and the number of antennas)

while
(∑L−1

k=0 cl

)−1

is always constant.

Hence, the intended normalized importance function (IF) is

given by:

g′ρ1
(τ ) =

∏P
p=1 exp {ρ1I(τp)}(∫

J
exp {ρ1I(u)} du

)P , (23)

where ρ1 is another constant4 different from ρ0. Note that it

is more interesting to use two different constants ρ0 and ρ1.

In fact, the normalized IF is built upon an approximation of

the actual compressed likelihood function and this results in

a biased estimation of the delays. This bias is alleviated by

the weighting factor L′
c,ρ0

(.)/g′(.). Therefore, it is of interest

to maximize the contribution of the compressed likelihood

function in this ratio rather than the normalized IF. Hence,

we need to make ρ0 larger than ρ1.

Clearly, this choice of the normalized IF facilitates the task

substantially since it leads to a separable optimization problem.

Therefore, one realization of the vector τ is simply obtained

by generating independent P realizations of P scalar random

variables according to the same pdf:

p(τ) =
exp {ρ1I(τ)}∫

J
exp {ρ1I(u)} du. (24)

Note that the construction of p(.) is made up such that it

exhibits P lobes centered at the location of the different delays.

The generated variables will be in the vicinity of these P lobes.

However, it should be kept in mind that the estimation error

on Hn makes other lobes appear and thus some generated

variables will take values around these undesired lobes thereby

increasing the estimation error. To circumvent this problem,

we may increase ρ1 so that the undesired lobes disappear.

Yet, we should also keep in mind that increasing ρ1 too much

may destroy some useful lobes and some delays may not be

estimated properly. Thus, the optimal value of ρ1 is the highest

one for which the pdf p(.) has at least P lobes. Moreover, this

appropriate choice of ρ1 reduces the computation complexity

by reducing the required number of realizations R since it

decreases the probability of generating undesired realizations.

To summarize, the proposed estimator requires the generation

of R realizations of a random vector according to g′(.) which

is made by finding a simple separable function instead of

a P -dimensional function. Then we evaluate the mean of

τ1, τ2, . . . τP as follows:

τ̂p =
1

R

R∑
k=1

τk(p)
L′
c,ρ0

(τk)

g′ρ1
(τk)

, (25)

4Note that the term
(
Mσ2

)−1
is inserted in ρ1 to symplify the notation.

where τk(i) is the ith element of the vector τk. Some other

modifications are adopted to further minimize the computa-

tional burden. In fact, noting that the delays are often confined

in the interval [0, LTc] [1], it is more attractive to use the

circular mean instead of the linear mean presented in (25). To

do so, the delays are transposed into the interval [0, 1] before

applying the definition of the circular mean [10] to obtain:

τ̂p =
LTc
2π

∠ 1

R

R∑
k=1

F (τk) exp

{
j2πτk(p)

LTc

}
, (26)

where F (.) is the weighting factor (i.e., F (τ ) =
L′
c,ρ0

(τ )/g′(τ )). From the formulation in (26), we are only

interested in finding the angle of a complex number. Therefore,

we drop the two positives factors
∫
J
. . .
∫
J
exp {ρLc(u)} du

and
(∫

J
exp {ρ1I(u)} du

)P
, used to normalize L′

c,ρ0
(τ ) and

g′(τ ), respectively. Moreover, an overflow may occur since

both the numerator and the denominator are exponential. To

reduce this overflow, we multiply the weighting factor by a

positive number:

F ′(τk) = exp

{
ρ0Lc(τk)− ρ1

P∑
p=1

I(τk(p))−

max
1≤l≤R

(
ρ0Lc(τl)− ρ1

P∑
p=1

I(τl(p))

)}
. (27)

VI. THE CRAMÈR-RAO LOWER BOUND

It is well known that the CRLB is a lower bound on the

variance of any unbiased estimator and this bound will be

henceforth derived and used as a benchmark to evaluate the

performance of the proposed estimator. In the following, the

multipath fading coefficients are modeled as random variables

with a known distribution. Therefore, the unknown parameters

are α = [τ , {�{P (l,m)}, �{P (l,m)}}Pl,m=1 , σ
2]. The

CRLB is the inverse of the Fisher information matrix (FIM),

given by:

I(m,n) =M trace

{
R−1 ∂R

∂α(m)
R−1 ∂R

∂α(n)

}
, (28)

and the lower bound of the parameters of interest are the

diagonal elements of the CRLB. However, the derivation

of (28) appears to be intractable. Alternatively, the CRLB

is asymptotically equivalent to the error covariance matrix,

CML(τ ) = E{(τ̂ − τ )(τ̂ − τ )T }, of the maximum likelihood

estimate, as M tends to infinity [11]. Recall that the ML

estimate τ̂ of τ verifies the following equation:

∂L(τ̂ ,P )

∂τ
= 0, (29)

where ∂L(.)/∂τ is the gradient of L(.) with respect to

τ . Using the first-order Taylor series expansion to the left-

hand side of (29), we obtain the following expression of the

estimation error:

τ̂ − τ = −
[
∂2L0(τ ,P )

∂τ 2

]−1
∂L(τ ,P )

∂τ
. (30)
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When injected back in the covariance matrix CML(τ ), it leads

to the following analytical expression for the CRLB of time

delay estimates:

CRLB(τ ) =
σ2

2M

[
�
{(

UH [I −Π]U
) ∗

(
PDHR−1DP

)T }]−1

, (31)

where ∗ stands for the element-wise product and the matrix

U is defined as follows:

U = [u1, u2, . . . , uP ], (32)

ui =
∂d(τi)

∂τi
. (33)

To the best of our knowledge, this is the first CRLB expression

for DS-CDMA multipath time-delay estimation in closed-

form.

VII. SIMULATION RESULTS

In this section, we assess the performance of the proposed

algorithm. As a benchmark for comparisons with our estima-

tor, we will use the Root-MUSIC algorithm implemented by

the STAR [1], [2] receiver to estimate the unknown delays. We

consider 3 propagation paths with closely-spaced delays equal

to 0.12 T , 0.15 T and 0.18 T and a processing gain L = 64.

The number of realizations R is fixed at R = 100. We also

assume that the power is equally distributed between the three

paths. The mean square error (MSE) — used as performance

measure — of the two estimators is compared to the CRLB

First, in Fig. 1, we evaluate the performance for M = 4
antennas. As expected, the two methods attain the CRLB at

high SNR values. However, the new ML IS-based estimator

performs better over the entire SNR range. The difference

between these two methods is more perceptible in the medium

SNR range. For a relatively small number of realizations

R = 100, please notice that our new estimator offers very

good performance with a reduced complexity burden. If we

now use only one receiving antenna branch, the performance

of the Root-MUSIC algorithm degrades considerably. Indeed,

we can see from Fig. 2 that the gap between the two methods

becomes very important. This is hardly surprising since Root-

MUSIC needs the estimation of the covariance matrix of the

columns of JT
n from the columns of the matrix Ĥn, reduced

to one column if M = 1.

To further investigate this issue, we fix the SNR value at 10 dB

and vary the number of antenna branches M from 1 to 8. The

MSE of the two algorithms versus M is plotted in Fig. 3. As

expected, the IS-based method attains the CRLB starting from

a small value of M contrarily to the Root-MUSIC algorithm.

This means that the IS-based estimator is well geared toward

situations of reduced antenna array sizes.

VIII. CONCLUSION

In this paper, we derived a new ML estimator of the time

delays for direct-spread CDMA multipath transmissions. We
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Fig. 1. Estimation performance of the IS-based and the Root-MUSIC
algorithms vs. channel estimation error for closely separated delays and
M = 4.
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Fig. 2. Estimation performance of the IS-based and the Root-MUSIC
algorithms vs. channel estimation error for closely separated delays and
M = 1

avoided the brute multidimensional grid search to find the

global maximum of the likelihood function by recurring to

a simple approximation of the compressed likelihood function

and adopting the concept of importance sampling. We also

provided an analytical expression for the corresponding CRLB

on multipath time delay estimation. We have shown through

simulations that the new estimator performs better than the

classical Root-MUSIC method at a very much reduced com-

plexity cost and that it achieves the CRLB even for a small

number of antennas.
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Fig. 3. MSE vs. number of antenna branches for the two algorithms at SNR
= 10 dB.
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