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Abstract—In this work, we propose a novel hop-count based
localization algorithm able to reduce errors due to mapping
the hops into distance units. Using the proposed algorithm, the
mean hop size h̄s is locally derived at each regular or position-
unaware node, thereby avoiding its broadcast by anchors (i.e.,
a few nodes aware of their exact position) as usually required
in current state-of-the-art solutions and, hence, resulting in less
battery power depletion. The analytical expression of h̄s is derived
for different node distributions. Furthermore, it is shown that it is
possible to locally compute h̄s at each regular node with or even
without prior knowledge of the node distribution. Simulations
results show that the proposed scheme outperforms the most
representative hop count based localization schemes in terms of
accuracy.

Index Terms—wireless sensor networks, localization accuracy,
hop-count based, nonparametric approach.

I. INTRODUCTION

Due to their reliability, low cost, and ease of deployment,
wireless sensor networks (WSNs) are emerging as a key tool
for many applications such as environment monitoring, disaster
relief, and target tracking [1]. A WSN is a set of small battery-
powered sensors able to collect data from the surrounding
environment and transmit it to a base station or an access
point [2]. However, the sensing data are very often useless if
the location from where they have been measured is unknown,
making the localization a fundamental and essential issue in
WSNs. So far, several secure localization algorithms have been
proposed in the literature. These algorithms can be roughly
classified into two categories: range-based and hop-count based
localization algorithms.

To properly localize the regular or position-unaware node
positions, range-based algorithms exploit the measurements
of the received signals’ characteristics such as the time of
arrival (TOA) [3], the angle of arrival (AOA) [4], or the
received signal strength (RSS) [5]. These signals are, in fact,
transmitted by nodes with prior knowledge of their positions
called anchors (or landmarks). Although the range-based al-
gorithms stand to be very accurate, they are unsuitable for
WSNs. Indeed, these algorithms require high power to ensure
communication between anchors and regular nodes which are
small battery-powered units. Furthermore, additional hardware
is usually required at both anchors and regular nodes [6],
thereby increasing the overall cost of the network. Moreover,
the performance of these algorithms can be severely affected
by noise, interference, and/or fading. Unlike range-based algo-
rithms, hop-count based algorithms, which rely on the network

connectivity to estimate the regular node positions, are more
power-efficient and do not require any additional hardware and,
hence, are suitable for WSNs. Due to these practical merits,
range-free localization algorithms have garnered the attention
of the research community.

So far, many hop-count based schemes have been proposed
in the literature [7]- [11]. Most solutions are based on the
distance vector-hop algorithm (DV-Hop) [7] which is often
considered as a benchmark. Unfortunately, like other hop-count
based algorithms, DV-Hop does not provide sufficient accuracy
due to errors occurring when mapping the hops into distance
units. Furthermore, with DV-Hop each anchor has to compute
an estimate of the network hop size and broadcast it to the
other nodes, resulting in unnecessary high power consumption.
In this paper, we propose a new efficient and low-complexity
localization algorithm which is able to reduce the errors due to
mapping hops into distance, thereby increasing the localization
accuracy. Using the proposed algorithm, each regular node
locally computes an exact mean hop size h̄s, thereby avoiding
its broadcast by anchors and, hence, the depletion of battery
power. The analytical expression of h̄s is derived for different
node distributions. Furthermore, it is shown that it is possible
to locally compute h̄s at each regular node even without prior
knowledge of the node distribution. It is also proven that the
proposed algorithm outperforms the best representative hop-
count based localization algorithms currently available in the
literature in terms of localization accuracy.

The remainder of this paper is organized as follows: In
Section II the system model is described. In Section III
a novel hop-count based algorithm is proposed. Section IV
derives the expression of the average hop size h̄s for different
node distributions. Section IV shows how h̄s can be computed
without prior knowledge of the node distribution. Simulation
results are discussed in Section VI and concluding remarks are
made in section VII.

II. NETWORK MODEL

We consider a wireless sensor network (WSN) comprised
of N nodes and deployed in a 2-D square area with side length
A. We assume that all nodes have the same transmission radius
denoted by R. Hence, each node can only communicate with
any other node located within its coverage area πR2.

Only a few nodes commonly known as anchors are assumed
to be aware of their positions. The other nodes, called hereafter
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position-unaware, or for the sake of simplicity regular nodes
are oblivious of this information. Let Na and Nu denote the
number of anchors and regular nodes, respectively. Let (xi, yi)
be the coordinates of the i-th regular node and (ak, bk) those
of the k-th anchor.

III. PROPOSED HOP-COUNT BASED LOCALIZATION
ALGORITHM

In this section, we propose a two-step localization algo-
rithm. In the first step, the k-th anchor broadcasts through
the network a message containing (ak, bk, n) where n is the
hop-count value initialized to one. When a node receives
this message, it stores the k-th anchor position as well as
the received hop-count nk = n in its database, adds one
to the hop-count value and broadcasts the resulting message.
Once this message is received by another node, its database
information is checked. If the k-th anchor information exists
and the received hop-count value n is smaller than the stored
nk, the node updates nk by n, add one to n and broadcasts the
resulting message. If nk is larger than n, the node discards the
received message. However, when the node is oblivious to the
k-th anchor position, it adds this information to its database
and forwards the received message after incrementing n by 1.
This mechanism will continue until all nodes become aware of
all anchors’ positions and their corresponding minimum hop
count.

The i-th regular node computes then an estimate of its
distance to the k-th anchor as d̂ik = nmin

ik h̄s where nmin
ik is the

minimum hop count value corresponding to the k-th anchor
and h̄s is the mean hop size value depending on the node
distribution. Unlike the well-known DV-Hop which derives
at the anchors several estimates of h̄s (called corrections)
then broadcast them to the rest of the WSN, each regular
node is able, owing to the new proposed algorithm, to locally
compute the exact value of h̄s, thereby avoiding its broadcast
and reducing battery-power depletion. In the next sections, the
expression of h̄s is derived for different node distributions.
Using d̂ik , k = 1...Na, the i-th regular node is now able
to compute an initial guess (x̂i, ŷi) of its coordinates by
performing trilateration [12], provided that Na ≥ 3.

Unfortunately, error are expected to occur when estimating
the distance between each regular node-anchor pair, thereby
hindering localization accuracy. In the second step, we propose
to minimize the aforementioned errors. Let εik denotes the
estimation error of the distance between the i-th regular node
and the k-th anchor node as

εik = d̂ik − dik, (1)

where dik is the true distance between the two nodes. As
discussed above, this error hinders localization accuracy. As
such, we have {

xi = x̂i + δxi

yi = ŷi + δyi

, (2)

where δxi
and δyi

are the location coordinates’ errors to
be determined. Exploiting the Taylor series expansion and

retaining the first two terms, the following approximation
holds:

dik ≈ d†ik + αk1δxi
+ αk2δyi

, (3)

where
d†ik =

√
(x̂i − ak)

2 − (ŷi − bk)
2 (4)

and

αk1 =
∂d†ik
∂x

∣∣∣∣∣
x̂i,ŷi

=
x̂i − ak

d†ik
, (5)

αk2 =
∂d†ik
∂y

∣∣∣∣∣
x̂i,ŷi

=
ŷi − bk

d†ik
, (6)

for k = 1, 2, . . . , Na. Note that d†ik is different from d̂ik due
to the error incurred by trilateration [12]. Therefore, rewriting
(3) in a matrix form yields

Γiδi = ζi − εi, (7)

where

Γi =

⎡
⎢⎢⎢⎣

α11

α21

...
αNa1

α12

α22

...
αNa2

⎤
⎥⎥⎥⎦ , (8)

ζi =
[
[ζi]1 , [ζi]2 , . . . , [ζi]j

]T
(9)

with , [ζi]j = d̂ij − d†ij , j = 1, . . . , Na, δi = [δxi
, δyi

]T , and
εi = [εi1, εi2, . . . , εiNa

]T .
Many methods such as the weighted least squares (WLS)

might be used to properly derive δi. Using WLS, the solution
of (7) is given by :

δi =
(
Γ
T
i P

−1
i Γi

)−1
Γ
T
i P

−1
i ζi (10)

where Pi is the covariance matrix of εi. Since εik k =
1, . . . , Na are independent random variables. Pi boils down
to diag

{
σ2
i1, . . . , σ

2
iNa

}
where σ2

ik is the variance of εik.
However, assuming a high node density in the network, dik
could be approximated as follows

dik ≈
nmin

ik∑
j=1

hj, (11)

where hj is the real size of the j-th hop which is a random
variable itself. Substituting (11) in (1), we obtain that εik ≈
nmin
ik h̄s −

nmin

ik∑
j=1

hj and, hence, σ2
ik = nmin

ik σ2
h where σ2

h is the

variance of hj . Consequently,

δi = (ΓT
i ΛiΓi)

−1
Γ
T
i Λiζi, (12)

where Λi = diag{1/ni1, . . . 1/n
min
ik }. A straightforward in-

spection of (10) reveals that δi solely depends on the informa-
tion locally available at the i-th regular node and, therefore,
is locally computable at this node and does not require any
additional information exchange between nodes. Moreover,
since ΓT

i ΛiΓi is a 2-by-2 matrix, the entries of its inverse



can be analytically and easily derived. Thus, the computation
of δi does not burden neither the implementation complexity
of the proposed algorithm nor the overall cost of the network.
Once we get δi, the value of (x̂i, ŷi) is updated as x̂i=x̂i+δxi

and ŷi = ŷi + δyi
. The computations are repeated until δxi

and δyi
approach zero. In such a case, we have from (2) that

xi ≈ x̂i and yi ≈ ŷi and, hence, more accurate localization
is performed. Note that, from (12), δi is independent of
εik k = 1, . . . , Na. Consequently, the proposed algorithm is
able to reduce the error due to mapping hops into distance
units without requiring any distance error estimation.

IV. PARAMETRIC EVALUATION OF THE AVERAGE HOP-SIZE

As discussed above, to work properly, the proposed algo-
rithm requires the average hop size h̄s to be available at each
regular node. It is easy to show that

h̄s =

∫ R

0
zfZ (z)dz∫ R

0
fZ (z)dz

, (13)

where Z denotes the distance between any two nodes in the
network and fZ(z) is its probability density function (pdf). As
expected h̄s depends on fZ(z) which in turn depends on the
node distribution. In the following, the average hop size h̄s is
derived considering the most used node distributions in WSN:
Uniform and Gaussian.

Without loss of generality, let us denote by (x1, y1) and
(x2, y2) the coordinates of two nodes in the area of concern,
where x1, y1, x2, y2 are assumed to be identically and indepen-
dently distributed random variables. Z can be then expressed
as Z =

√
X2 + Y 2 where X = x1 − x2 and Y = y1 − y2.

A. Uniform distribution

Assuming that the nodes are uniformly distributed, one can
prove that the pdf of X2 and Y 2 are fX2 (x) = 1

A2

(
A√
x2

− 1
)

and fY 2 (y) = 1
A2

(
A√
y2

− 1

)
, respectively. Thus, Z has a

probability density function (pdf) fZ(z) given by

fZ(z) =
2z(πA2 − 4zA+ z2)

A4
, (14)

Using (14), h̄s is given by

h̄s =
4R(5πA2 − 15AR+ 3R2)

5(6πA2 − 16AR+ 3R2)
. (15)

It is straightforward to show from (15) that when A is large
enough, h̄s is reduced to 2R/3. As expected, h̄s increases
proportionately with the transmission range R.

B. Gaussian distribution

Consider now that xi, yi, xj , yj are normally distributed
random variables with the same standard deviation σ. In such a
case, X and Y are also normally distributed random variables
with variance equal to 2σ. Consequently, Z follows a Chi-
distribution with 2 degrees of freedom. and, hence,

fZ(z) =
z

2σ2
e−

z
2

2σ2 . (16)
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Fig. 1. Distance’s pdf estimation under a Uniform distribution.
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Fig. 2. Distance’s pdf estimation under a Gaussian distribution.

h̄s is then given by

h̄s =
√
πσ

[
1− 2Q

(
R√
2σ

)]
−Re−

R
2

4S2 . (17)

From (17), h̄s increases with R as observed in the case of the
Uniform node distribution.

It follows from (15) and (17) that h̄s can be readily
computed at each regular node provided a knowledge of node
distribution before WSN deployment.

V. NONPARAMETRIC AVERAGE HOP-SIZE EVALUATION

In the previous section, h̄s was derived using prior knowl-
edge of the node distribution. However, in practice, this
distribution is often unknown before the deployment of the
WSN. In such a case, we propose to exploit the distances
between anchors, which are available at each regular nodes, as
observations and use them to properly estimate the pdf fZ(z).
Known as nonparametric pdf estimation, this technique plays
a key role in enabling many applications such as image signal
processing, speech recognition, etc. [13].

Recently, many nonparametric techniques have been pro-
posed in the literature, for instance the histogram [14] and the
well-known kernel density estimation (KDE) techniques [15].
In this paper, we are only concerned by the latter.

Assuming that Na anchors exist in the network, the total
number of distances (i.e, observations) available at each regular
node is p = Na×(Na−1)

2 . Let us denote by z1, z2, . . . , zp such



observations. Hence, the distance’s pdf can be approximated
by

f̂Z(z) =
1

pS

p∑
i=1

K

(
z − zi
S

)
, (18)

where S is a smoothing parameter determined using the
method in [14] and K(z) is the Gaussian kernel given by

K(z) =
1√
2π

exp

(
−z2

2

)
. (19)

The estimated pdf is computed by averaging the Gaussian
density over all observations. Substituting (19) in (18) and
using the resulting pdf to compute h̄s yields

h̄s =

p∑
i=1

Xi

p∑
i=p

Ai

, (20)

where

Ai = s
√
2π

[
1−Q

(zi
S

)
−Q

(
R − zi

S

)]
, (21)

and

Xi =
(
S2 + z2i

)
Ai− S2

[
(R+ zi) e

− (R−zi)
2

2S2 − zie
− z

2

i

2S2

]
,

(22)
where Q(x) is the Q-function. As can be observed from Figs. 1
and 2, it is possible to accurately estimate the distance’s pdf
for both the Uniform and Gaussian node distributions using a
few anchors (i.e., observations). Moreover, from these figures,
when Na increases, the estimated pdf approaches the analytical
one. This gives a sanity check for the proposed nonparametric
method. Note that this method can be locally performed at each
node using the information already available locally without
any additional information exchange between nodes.

VI. SIMULATIONS AND RESULTS

In this section, we evaluate the performance of the proposed
algorithm in terms of localization accuracy by simulations us-
ing Matlab. These simulations are conducted to compare, under
the same network settings, the proposed algorithm with some
of the best representative hop-count based methods currently
available in the literature, i.e., DV-Hop [7] and LEAP [9]. All
simulation results are obtained by averaging over 100 trials.
We randomly deploy N = 60 nodes in a 2-D square area with
A = 50 m. In order to obtain a connected network with high
probability, one should select a suitable value of R. To this
end, we exploit the results in [16] to fix R = 12 in our WSN
setting.

As an evaluation criterion, we propose to use the normalized
root mean square error (NRMSE) defined as follows

e =

Nu∑
i=1

√
(xi − x̂i)

2
+ (yi − ŷi)

2

NuR
(23)
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Fig. 3. Localization NRMSE vs. the number of anchors with a Uniform
distribution.
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Fig. 4. Localization NRMSE vs. the number of anchors with a Gaussian
distribution.

Figs. 3 and 4 plot the localization NRMSE for different
number of anchors Na. From these figures, e decreases when
Na increases. This is expected since the trilateration becomes
more efficient for large Na. Moreover, as it can be seen
from Figs. 3, and 4, the proposed algorithm outperforms both
the DV-Hop and LEAP algorithms for both the Uniform and
Gaussian node distributions. Indeed, our algorithm turns out
to be until about four and six times more accurate than LEAP
and DV-Hop, respectively. Furthermore, the NRMSE curves for
the parametric and nonparametric approaches of our algorithm
are in quasi-perfect match even for small of anchors. This is
expected since the small error occurred when estimating h̄s

using the nonparametric approach is, in fact, added to εik,
k = 1, . . . , Na which are reduced at the second step of our
proposed algorithm. This further verifies the effectiveness of
our nonparametric approach.

Figs. 5 and 6 plot the localization NRMSE achieved by DV-
Hop, LEAP and the proposed algorithm for different values
of N when the number of anchors Na = 20% ∗ N and
R = 28. Note that R = 28 is selected to be adequate to
the lowest density (i.e, N = 20). These figures show that
the NRMSE decreases when the nodes’ density increases. As
can be shown from Figs. 5 and 6, the proposed algorithm,
whether parametric or not, achieves almost identically the
lowest localization NRMSE when compared to the two other
benchmarks.

Figs. 7 and 8 show the localization NRMSE for different
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Fig. 5. Localization NRMSE vs. the number of nodes with a Uniform
distribution.
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Fig. 6. Localization NRMSE vs. the number of nodes with a Gaussian
distribution.
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Fig. 7. Localization NRMSE vs. the communication range with a Uniform
distribution.
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Fig. 8. Localization NRMSE vs. the communication range with a Gaussian
distribution.
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Fig. 9. Localization NRMSE’s CDF with a Uniform distribution.
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Fig. 10. Localization NRMSE’s CDF with a Gaussian distribution.

communication ranges. As it can be observed from these
figures, the proposed algorithm outperforms its counterparts
for any value of R.

Figs. 9 and 10 illustrate the localization NRMSE’s CDF.
As it can be seen from Fig. 9 (Fig. 10, respectively), using the
proposed algorithm, 72% (95%) of the regular nodes could
estimate their position within half of the transmission range.
While using the LEAP, 51% (78%) of the nodes achieve the
same accuracy, and only 52% (72%) with DV-Hop.

VII. CONCLUSION

In this paper, we proposed a novel hop-count based localiza-
tion algorithm able to reduce the error due to mapping the hops
into distance units. Using the proposed algorithm, the mean
hop size h̄s is locally derived analytically at each position-
unaware or regular node, thereby avoiding its broadcast by an-
chors and, hence, resulting in reduced battery power depletion.
The analytical expression of h̄s is actually derived for both the
Uniform and Gaussian node distributions. Furthermore, it was
shown that it is possible to compute it locally at each regular
node with or without prior knowledge of node distribution.
It was also proved that the proposed scheme outperforms
the well-known DV-Hop and LEAP in terms of localization
accuracy.
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