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Abstract—Safety measures have always been a main concern
in the mining industry that, despite the modern practices, utilizes
old-fashioned surveillance and monitoring systems. Our mission
in underground mines stems from the profound need of geo-
positioning systems that can accurately localize endangered min-
ers and their heavy machinery in one of Earth’s most harsh and
rough environments. In underground mines, complex channels’
responses to wireless transmitted signals challenge traditional
localization techniques, yet they fail to defeat our innovative,
cost-effective and accurate fingerprint-based positioning tech-
niques that use artificial neural networks (ANNs) and exploit
space-time diversity. Being among the pioneers in underground
communications research, we bring forward a more sophisticated
and accurate fingerprint-based positioning technique that exploits
spatial transmission diversity in the presence of more than one
transmitter Tx and/or receiver Rx antenna, such as in the
case of single/multiple input multiple output (SIMO/MIMO)
communication systems. More importantly, an advanced study
is conducted to reduce the cost of fingerprint-acquisition trading
off pinpoint accuracy for lower complexity and better ANNs’
design. By challenging the localization system using less data
measurements, we prove that ANNs, when properly designed,
succeed to attain high positioning accuracies even when localizing
in measurement gaps that were not seen in the training phase.
Index Terms—Indoor localization, underground mines, arti-

ficial neural networks, channel impulse response, fingerprint-
ing, time diversity, spatial diversity, SIMO, MIMO, coopera-
tive/collaborative localization.

I. INTRODUCTION

Indoor localization in complex channels is as yet a topic
of research that aims to replicate the success achieved by
commercially viable outdoor localization systems. In the min-
ing industry, for example, localizing miners and their heavy
machinery is not a luxurious task, but a critical requirement
that guarantees basic safety measures and helps avoid potential
risks in cases of fire, collapses and other hazardous work
activities. In fact, localization techniques that succeed to
attain high positioning accuracies in outdoor scenarios fail to
maintain similar precision and accuracy in underground mines.
In position estimation theories, major parameters extracted
from wireless signals, such as the received signal’s strength

(RSS), time of arrival (ToA), angle of arrival (AoA) and/or
time difference of arrival (TDoA), are used to estimate the
distance travelled by wireless signals from transmitters to
receivers. However, complexity arises when the channel, where
wireless transmission takes place, introduces robust distortion,
attenuation and/or fading to received signals’ characteristics.
In complex indoor channels such as the case in the mining en-
vironment, a priori estimation of complex channel’s response
to wireless transmission is not yet feasible due to the severe
reflections/refractions that signals suffer from due to rough
surfaces, water, inter-connected tunnels and heavy machinery
in the confinement of underground galleries.
Major research projects at Telebec’s Underground Commu-

nications Research Laboratory (LRTCS), one of the leading
research laboratories in the world for underground communi-
cations (cf. surveys [1] and [2]), have revealed new, more
accurate indoor localization techniques that use fingerprinting
and ANNs in the 2.4 GHz, 5.4 GHz [3], [4], over UltraWide
Band (UWB) [5], [6] and recently being investigated in the
mmWave/60 GHz bands [7]. Localization using fingerprinting
and ANNs is based on extracting parameters from the channel
impulse responses (CIRs) and mapping them to given positions
located at different distances away from a given transmitter
[8]. In order to overcome some of the challenges, such
as the presence of inter-connected tunnels, and to further
enhance localization accuracy, more sophisticated fingerprint-
based positioning techniques were developed in [9], [10]
and [11] by exploiting spatial, temporal and spatio-temporal
diversities, respectively.
In this work, we put forward a new fingerprint-based posi-

tioning technique that exploits the presence of dual Tx and Rx

antennas in nowadays SIMO/MIMO-capable communication
equipment. It is shown herein that CIR-based localization
exploiting spatial diversity and SIMO/MIMO-type fingerprints
significantly increases positioning accuracies and is, so far,
the most accurate among all CIR-based fingerprint positioning
techniques in underground mines. More importantly, all stud-
ied fingerprint-positioning techniques are challenged by lower
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fingerprint-acquisition rate in the ANNs’ training phase. In
an effort to reduce measurement campaigns’ cost, ANNs are
well-designed and trained to attain high positioning accuracies
even when they are forced to localize in measurement gaps
that, due to the lowered fingerprint-acquisition rate, were never
introduced to ANNs’ training phases.
In the following section, we review the most recent CIR-

based positioning techniques that exploit spatially and/or
temporally diverse fingerprints in underground mines. Sec-
tion III introduces the novel fingerprint-based localization
technique that exploits SIMO/MIMO-type fingerprints. An
advanced study is then performed to lower the cost overhead of
fingerprint-acquisition in section IV after which performance
results are presented in section V. Finally, the paper is closed
by a conclusion in section VI.

II. LOCALIZATION IN UNDERGROUND MINES USING
CIR-BASED FINGERPRINTING

The special nature of underground mines shown in Fig.
1, which is made of quasi-curvilinear intersecting tunnels,
enforces the quest to develop more sophisticated localization
techniques seeking better security and safety practices in the
mining industry. For more than fourteen years of continuous
research, LRTCS and similar research labs have been looking
for alternatives to traditional triangulation techniques before
the first ANN-based geo-location method was innovated and
published in [8]. In the following, we study, as a background
exercise, the method in [8] laying the groundwork for dis-
cussing more advanced techniques that exploit space-time
diversities in [9], [10] and [11].

Fig. 1 – Map of the tunnel.

A. ANNs and CIR-Based Fingerprint Positioning
Fingerprint positioning techniques rely on mapping wireless

signals’ parameters to the distance separating the receiver from
the transmitter. Due to the special nature of underground prop-
agation channels, some parameters such as the RSS fluctuate
for the same position inside the mine and may not be used
solely for position estimation [12]. The same can be said about
AoA and ToA, because the former (i.e., AoA) represents the
last angle of reflection inside the tunnel while the latter (i.e.,
ToA) represents the total time travelled after bouncing inside

the confined tunnel. In [8], a fingerprint is a combination of
seven parameters which are the mean excess delay (τ̄ ), the root
mean square (τrms), the maximum excess delay (τmax), the
total power of the received signal (P ), the number of multipath
components (N ), the power of the first arrival (P1) and the
delay of the first path component (τ1).
By using Multilayer Perceptron (MLP) ANNs, which are

extremely powerful computational models for non-linear prob-
lems, a fingerprint fi = (τ̄ , τrms, τmax, P,N, P1, τ1) is
then matched to its corresponding set of distances D =
{d1, d2, d3, ..., dn}. For simplicity, the distance is calculated
using the x−axis only neglecting minor variations which are
of less importance on the y − axis inside the confinement of
narrow underground tunnels as shown in Fig. 2. The original
memoryless technique (i.e., ANN(1,0)), developed in [8] and
used as a comparison benchmark, scores an accuracy of 1.3 m
and 1.4 m for 90% of the training and testing data, respectively.

Fig. 2 – The CIRs are extracted at different distances to the
transmitter with 1-meter step-size along the x-axis.

B. Exploiting Rx Spatial, Temporal and Space-Time Diversi-
ties
At first, the localization technique in [8] was challenged

by misleading information about the direction of transmission
in case one localizing receiver is placed at junctions of
interconnecting tunnels. To overcome such scenarios and to
further enhance positioning accuracy, a new fingerprint-based
positioning technique was developed in [9] and it exploited
Rx spatial diversity at two receivers as shown in Fig. 3. A

Fig. 3 – Localization using two signatures of two receivers in the
area where two signals intersect.

centralized ANN, shown in Fig. 4, is then used to collect both
signatures (or sub-fingerprints) from both receivers, R1 and R2

separated by a distance D = 80 m, forming one fingerprint
that contains 14 parameters. The training set S that defines
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Fig. 4 – Neural network based on multiple signatures.

the fingerprints’ space is a concatenation of two sub-sets, SR1

and SR2 , and is denoted by: S = {F1, F2, F3, ...., Fm} =
{(f1, f

′

1), (f2, f
′

2), (f3, f
′

3), ..., (fm, f ′

m)}, where fi and f ′

i

represent the sub-fingerprints collected, for a position i, at
R1 and R2, respectively. By using one ANN with two sub-
fingerprints from R1 and R2, localization accuracy signifi-
cantly increases to prove the effectiveness of exploiting Rx

spatial diversity and errors slip to 77 cm and 90 cm for the
training and testing data, respectively.
Increasing the accuracy and robustness using Rx spatial

diversity only may require increasing the number of ac-
cess points which is not an option in the limited space of
underground mine tunnels. However, the use of temporal
diversity increases the system’s accuracy when more than one
fingerprint is concatenated in time slots prior to estimating the
transmitter’s final position at dt0i [10]. A temporal fingerprint
is represented by:

f
j
i =

(

fit0 , fit−1
, fit

−2
..., fit

−(l−1)

)

,

where l is the memory level or the number of concatenated
fingerprints. The length of a temporal fingerprint Lf depends
on the memory depth where:

Lf = 7l.

An example of a temporal fingerprint is demonstrated for l = 3
in Fig. 5. The maximum number of path fingerprints jmax that
may be obtained for a given distance is upper bounded by Nfp

where:
jmax ≤ Nfp = 5(l−1).

All possible sub-fingerprint, for l = 3, at t−1 and t−2 are
concatenated to the sub-fingerprint at t0 forming 25 temporal
fingerprints (or path fingerprints) each of length Lf = 21. For
each memory length l, there exists one ANN that is trained
to count for all possible path-fingerprints leading to a given
distance d along the x-axis of the tunnel. With a step-size
of dp = 1 m along the x-axis of the tunnel, the miner’s
possible path fingerprints may be extracted from the CIRs at

Fig. 5 – Possibilities of previous positions for l = 3.

the filled-circled positions in Fig. 5. For simplicity, motion
across diagonals is excluded. Multiple scenarios were tested
for different memory levels (i.e., l = 1, 2, 3, 4) and their
position estimation errors start at 89 cm and 1.14 m, at l = 2,
and drop down to 48 cm, at l = 4, for 90% the training and
testing data, respectively.
After maximizing accuracy gains of temporally diverse

fingerprints, a new fingerprinting technique was developed
in [11] and it uses both Rx spatial and temporal diver-
sities of the collected fingerprints. By exploiting Rx spa-
tial diversity from both collaborative receivers and com-
bining memory-type fingerprints, the developed localiza-
tion system topped the accuracy benchmark, surpassing
those achieved by previous fingerprint-based techniques in
[8], [9] and [10]. The fingerprint subset SR1

i , collected
at at a distance di away from R1, is concatenated path-
wise with the second fingerprint subset SR2

i collected at
R2, where: SR1

i =
{

F
R1,1
i , F

R1,2
i , F

R1,3
i , ..., F

R1,jmax

i

}

,

SR2
i =

{

F
R2,1
i , F

R2,2
i , F

R2,3
i , ..., F

R2,jmax

i

}

. The spatio-
temporal fingerprint subset Si extracted for one specific dis-
tance di is designed as follows:

Si =
{

(FR1,1
i , F

R2,1
i ), (FR1,2

i , F
R2,2
i ), (FR1,3

i , F
R2,3
i ), ...,

(FR1,jmax

i , F
R2,jmax

i )
}

.

The dynamic design of spatio-temporal fingerprints allows
variable memory depths ranging between l = 1 (no memory)
and l = 5 (beyond which no increased performance is noticed)
reproducing multiple spatio-temporal fingerprint scenarios that
we donate by (l1, l2). Each receiver, R1 or R2, can be
set to introduce any memory depth, l1 or l2, respectively.
At lower complexity, a spatio-tempral ANN performing at
(l1 = 2, l2 = 2) is capable of achieving performance ac-
curacies of less than 50 cm, at Sx = 1 m, which matches
the results obtained by a complex memory-assisted ANN
performing at l = 4 in the presence of one receiver only. It
will be shown later in Sec. V-B that at higher Sx, long chains
of memory-type fingerprints become less significant while
spatio-temporal techniques maintain a better posture at lower
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fingerprint sampling rate. Results of other scenarios involving
different memory allocations (i.e., ANN(2,1), ANN(3,1), etc
...) at each receiver may be reviewed in [11].

III. EXPLOITING Tx AND Rx SPATIAL DIVERSITIES:
SIMO/MIMO-TYPE FINGERPRINT POSITIONING

So far, we discussed Rx spatial diversity (i.e., at two
receivers R1 and R2) and temporal diversity (i.e., using
memory) showing how they are both used to design new
fingerprint-based positioning techniques. Although their per-
formance results, as shown later in Sec. V, are outstanding
in terms of positioning accuracy and precision, we push their
performance limits forward and introduce a more advanced
fingerprint positioning technique that exploits the presence of
dual Tx antennas 1. In addition to that, the novel technique
simultaneously uses Rx spatial diversity which significantly
increases localization performance. SIMO-type fingerprints are
formed from sub-fingerprints of two adjacent Tx antennas in
the presence of one receiver or Rx. A SIMO-type fingerprint
is denoted by:

FSIMO
i = (fTx1

i , fTx2
i ),

Where fTx1
i and fTx2

i are fingerprints collected, at a position
i, by Rx1 for Tx1 and Tx2, respectively. On the other hand,
MIMO-type fingerprints are concatenated by extracting two Tx

sub-fingerprints at both receivers Rx1 and Rx2. A MIMO-type
fingerprint is represented as:

FMIMO
i =

{

(fTx1
i , fTx2

i ), (fTx1

i′ , fTx2

i′ )
}

,

where fTx1
i and fTx2

i represent sub-fingerprints collected at
Rx1, whereas fTx1

i′ and fTx2

i′ are sub-fingerprints extracted by
Rx2, at a position i′ = D− i, for Tx1 and Tx2, respectively.
The use of SIMO/MIMO-type fingerprints is so far the

most robust CIR-based localization technique with accura-
cies that drop below 50 cm as shown later in Sec. V. By
comparing both SIMO/MIMO-like fingerprints and spatio-
temporal fingerprints, many conclusions may be drawn. First,
Tx spatial diversity comes as an alternative to memory-type
sub-fingerprints that result from exploiting temporal diversity,
leading to lower system complexity and better design effi-
ciency in the scenarios where transmitters are equipped with
two Tx antennas. Second, as we discuss further in the follow-
ing section, temporal diversity fingerprints prove to produce
lower performance when measurement gaps are introduced
in an effort to reduce the cost of measurement campaigns.
However, localization using Tx and Rx diversities maintains
low position estimation errors even when the resolution of
fingerprint-acquisition is reduced.

IV. COMPLEXITY AND COST REDUCTION

Fingerprinting techniques are mainly criticized because they
require extensive measurement campaigns that are costly and
time consuming. What if the measurement campaigns’ cost

1Real measurements taken every 0.5 m and 1 m along the y-axis and x-axis
simulate dual antenna spacing of δTx

y = 0.5 m and δTx
x = 1 m , respectively.

can be cut down to less than one quarters of its original
value? Would localization techniques, which based their fin-
gerprints on CIRs exploiting space and/or time diversities,
hold as accurate and cost-effective positioning techniques for
underground mines? A study was conducted to answer the rea-
sonable questions in an effort to tune pinpoint accuracies and
trade it for lower fingerprint-acquisition cost. By introducing
measurement gaps or sub-grids that are not fed to the ANNs
in the training phases, we challenge all CIR-based localization
techniques and test their positioning accuracies and precision
at higher sampling step-size Sx

2. ANNs are carefully designed

Fig. 6 – Optimum number of neurons for different ANNs.

to interpolate measurement gaps by running trial and error
simulations that aim to optimize the number of neurons needed
for each Sx. For each localization technique and Sx, a trial
is run three times while varying the number of neurons n as
follows:

1 < nn < Nn = 2Ni + 1,

where Ni is the number of inputs fed to the ANNs which
varies depending on the spatial, temporal or spatio-temporal
fingerprints’ chain length. As shown in Fig. 6, the number of
neurons drops with the decrease in the number of fingerprints
for each training set which comes as a result of cutting
down the cost (i.e., reducing the measurement campaign’s
acquisition rate).

V. PERFORMANCE RESULTS

The performance results of CIR-based localization tech-
niques are presented using the cumulative density function
(CDF) that shows, on one axis, the accuracy of position esti-
mations in meters, and on another, the precision accomplished
by a given localization technique. It should be noted that all
ANNs are trained on 75% of the collected fingerprints while
leaving 25% for the testing phase at Sx= 1 m. In the case
where Sx ≥ 2 m, training results represent 75% of the sampled
sub-grid then ANNs are tested using 25% of every sub-grid
not seen in the training phase. All spatial, temporal and spatio-
temporal positioning techniques are analyzed at Sx = 1 m

2Sx, ranging from 1 m to 6 m, represents the step-size between consecutive
offline measurement positions along the x-axis of the tunnel.
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first, after which they are compared, at 90% precision, using
different sampling grid’s resolution in Figs. 7, 8 and Tab. I.

Fig. 7 – Positioning errors from CDFs of testing data at 90%
precision.

Fig. 8 – Positioning errors from CDFs of SIMO/MIMO-type testing
data at 90% precision.

A. Results of SIMO/MIMO-Type Fingerprinting using Tx and
Rx Spatial Diversities
SIMO/MIMO-type fingerprints, discussed in Sec. III, con-

stitute the groundwork for a new, more sophisticated and
less complicated type of a CIR-based fingerprint positioning
technique. They bring in the advantages of exploiting spatial
diversity at both the receiver and transmitter, without intro-
ducing memory, raising positioning-accuracy levels to a new
record in underground mines. Since we have one Tx-antenna
separation distances at the x-axis and two at the y-axis, we
shall report them separately using the notations δTx

x = 1
m, δTx

y = 1 m and δTx
y = 0.5 m, respectively. SIMO-type

fingerprints are denoted by 2Tx-1Rx whereas MIMO-type
fingerprints use the 2Tx-2Rx notation and their performance
results are reported in Fig. 8 and Tab. I.
If we compare, at Sx = 1 m, SIMO-type techniques to

ANN(2,0) that uses the same fingerprint length of Lf = 14,
we notice that SIMO-type fingerprints localize more accurately

with a an estimation error of 85 cm as compared to 1.15 m us-
ing memory-assisted techniques with ANN(2,0). Another ex-
ample can be drawn from comparing spatio-temporal diversity,
such as ANN(2,2), to the accuracy of MIMO-type fingerprints
using 2Tx-2Rx ANN. While the first uses temporal diversity
to boost accuracy results to 49 cm, the latter (i.e, using MIMO-
like fingerprints) succeeds to score accuracies of 43 cm and
38 cm at δTx

x = 1 m, δTx
y = 0.5 m, respectively. The use

of SIMO/MIMO-like fingerprints surpasses the performance
limits achieved by temporally diverse fingerprints and provides
a less complex fingerprinting technique that does not include
memory when localizing transmitters in underground mines. It
is also beneficial to state the importance of having Rx and Tx

diversities at the same time when localizing at lower sampling
resolution or higher Sx as discussed in the following section.

B. Results of Low Fingerprint-Acquisition Rate on Accuracy
The pinpoint accuracies obtained from fingerprint localiza-

tion exploiting Rx and/or Tx spatial, temporal and spatio-
temporal diversities, reported above, may be controlled and
traded off for lower fingerprint-acquisition cost. Location
accuracies at Sx ≥ 2 m provide less fingerprints in the training
phases of ANNs and reduces the time needed for offline
fingerprint-acquisition. More than 14k ANNs were tested in
this simulation in the best effort to optimize the number of
neurons used for each CIR-based localization technique and
the significant results are shown in Fig. 6. In the following,
we shall judge each localization technique based on its ability
to sustain the benchmark obtained by the original technique
ANN(1,0) developed in [8] which, at Sx = 1 m , which has
an estimation error of 1.42 m 90% of the time (circled in Tab.
I).
After selecting the most effective number of neurons based

on Sx from Fig. 6, we show the performance accuracies of all
localization techniques using higher step-sizes of Sx = 3 m and
Sx = 6 m in Figs. 9 and 10. The rest of step-size scenarios are
shown for 90% precision in Figs. 7 and 8 then summarized
in Tab. I to show the granularity of positioning accuracies
for different Tx antenna spacing or δTx. The performance

Fig. 9 – Localization performance at Sx = 3 m.
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Fig. 10 – Localization performance at Sx = 6 m.

of temporal fingerprints was expected to degrade at lower
sampling resolution (i.e., higher Sx) because temporal sub-
fingerprints, collected at positions separated by higher step-
sizes, carry less information about the position to be estimated.
An example can be drawn from the performance of ANN(4,0)
which fails to sustain the 1.42 m accuracy beyond Sx = 2 m.
However, taking a closer look at the results of memory-

assisted localization techniques that only exploit Rx spatial
diversity reveals an outstanding performance for ANN(2,2)
which achieves, at Sx = 6 m, an accuracy matching the
benchmark of 1.42 m obtained by ANN(1,0) at Sx = 1 m!
The same can be said about ANN(1,1) which can maintain
the benchmark using only one fifth of the measurement
campaign’s data (i.e., at Sx = 5 m).

The new positioning techniques that use SIMO/MIMO-
like fingerprints reveal the power of combining Rx and Tx

diversities in the realm of fingerprint positioning using ANNs
in underground mines. The use of SIMO-type fingerprints
exploiting spatial diversity at Tx only is not the best candidate
for localization because it reports lower accuracy performance
compared to ANN(1,1) which uses Rx spatial diversity only.

TABLE I – Performance Results with Multiple Resolution

ANN Technique
Grid Resolution Accuracy Results

1 m 2 m 3 m 4 m 5 m 6 m

ANN(1,0) 1.42 m 1.44 m 1.81 m 2.04 m 2.12 m 2.83 m

ANN, 2Tx1Rx δTx
y = 0.5 m 1.10 m 1.43 m 1.73 m 1.81 m 2.26 m 2.58 m

ANN, 2Tx1Rx δTx
y = 1 m 0.85 m 1.36 m 1.53 m 1.66 m 1.94 m 1.97 m

ANN(2,0) 1.15 m 1.35 m 1.58 m 1.92 m 1.97 m 2.07 m

ANN(3,0) 0.53 m 1.36 m 1.58 m 1.78 m 1.94 m 2.02 m

ANN(4,0) 0.48 m 1.30 m 1.46 m 1.72 m 1.91 m 1.93 m

ANN, 2Tx1Rx δTx
x = 1 m 1.05 m 1.23 m 1.33 m 1.51 m 1.61 m 2.07 m

ANN(1,1) 0.91 m 1.07 m 1.15 m 1.28 m 1.39 m 1.45 m

ANN, 2Tx2Rx δTx
y = 1 m 0.64 m 0.84 m 1.07 m 1.14 m 1.35 m 1.51 m

ANN(2,2) 0.49 m 0.95 m 1.07 m 1.22 m 1.26 m 1.41 m

ANN, 2Tx2Rx δTx
x = 1 m 0.43 m 0.93 m 1.10 m 1.14 m 1.19 m 1.32 m

ANN, 2Tx2Rx δTx
y = 0.5 m 0.38 m 0.83 m 0.98 m 1.12 m 1.20 m 1.28 m

However, the performance limits of MIMO-like fingerprints
exploiting both Tx and Rx diversities surpass those of the
original techniques, especially at δTx

y = 0.5 m highlighted in
Tab. I, to achieve location accuracies of 38 cm and 1.28 m for
the testing data at Sx = 1 m and Sx = 6 m, respectively. One
can cut down the cost of data measurements to half by using
Sx = 2 m and still obtain positioning accuracies of 83 cm 90%
of the time! Localization using MIMO-like fingerprints in the
presence of well-designed ANNs proves to be an accurate,
robust and cost-effective technique in underground mines.

VI. CONCLUSION

The focus of this study stems from years of research for
an accurate, cost-effective positioning techniques that can
improve safety practices in underground mines. The new
fingerprint positioning technique, presented here, uses MIMO-
like signatures that combine Rx and Tx spatial diversities and
brings forward new positioning accuracies of less than 50 cm,
at sampling step-size Sx = 1 m, while achieving high accuracy
records of 1.28 m when ANNs are challenged, in the training
phases, using only one sixth of the measurement campaign’s
fingerprints (i.e., at Sx = 6 m). When correctly applying the
discussed ANNs’ design strategies, localizing using MIMO-
type fingerprints turns out to be, as yet, the most accurate
and cost-effective CIR-based positioning technique and it
may be implemented using different wireless technologies in
underground mines.
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