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Abstract—In this paper, we develop a novel optimal anchors
placement strategy tailored for anisotropic WSNs. By resorting to
the well-known particle swarm optimization (PSO), we derive the
optimal anchors’ positions that minimize the average location esti-
mation error (LEE). We show that our placement strategy provides
substantial accuracy gains if used instead of the conventional ones
and that it is able to reduce not only the average LEE but also
the LEE itself and, hence, guarantees high accuracy for any WSN
configuration.
Index Terms—Optimal anchors placement, wireless sensor net-

works (WSN)s, localization algorithms, anisotropic environments,
particle swarm optimization (PSO).

I. INTRODUCTION

Recent advances in wireless communications and low-power
circuits technologies have led to proliferation of wireless sensor
networks (WSNs). A WSN is a set of small and low-cost
sensor nodes often equipped with small batteries. The latter
are often deployed in a random fashion to sense or collect
from the surrounding environments some physical phenomena
such as temperature, light, pressure, etc. [1]- [3]. Since power
is a scarce resource in such networks, sensors usually resort to
multi-hop transmission in order to send their gathered data to
an access point (AP). However, the received data at the latter
are often fully or partially meaningless if the location from
where they have been measured is unknown [4], making sen-
sors’ localization an essential task in WSNs. Many localization
algorithms available in the literature [5]-[13] were designed to
comply with such networks. To properly localize each sensor,
most of these algorithms require the distance between the
latter and at least three position-aware nodes called hereafter
anchors1. Since it is very likely in WSNs that some sensors be
unable to directly communicate with all anchors, the distance
between each anchor-sensor pair is usually estimated using
their shortest path. This distance is in fact approximated by
the sum of the distances between any consecutive intermediate
nodes located on this path. Several approaches have been so far
developed to estimate these distances. Although efficient, they
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1In practice, an anchor node refers to a sensor, base station, or a nearby access
point (AP) with known position. This information is usually acquired using
global positioning system (GPS) technology, configured, or manually entered
into the node memory prior to deployment.

were unfortunately unable to guarantee high accuracy, especially
in anisotropic environments where the shortest multi-hop path
between each anchor-sensor pair is often much longer than the
actual distance separating them. This is actually due to the
fact that the accuracy of any localization algorithm is governed
not only by the distance estimation (DE) efficiency, but also
the position of the anchors themselves. Significant research
endeavors have been recently devoted to developing anchor
placement strategies able to guarantee high sensor localization
accuracy [14]-[22]. In [15], it has been proven that perimeter
placement is the optimal strategy in isotropic environments free
of obstacles (e.g., mountains, coverage holes, etc.). In [18], this
strategy was investigated and compared in accuracy performance
to other strategies in anisotropic environments. It was shown in
[18] and [19] that the perimeter placement performs poorly in
anisotropic environments. Some attempts to derive the optimal
anchors positions in such environments have been made in [20]-
[22] without providing significant accuracy gains.

In this paper, we develop a novel optimal anchors placement
strategy properly tailored for anisotropic WSNs. By resorting
to the well-known particle swarm optimization (PSO), we de-
rive the optimal anchors’ positions that minimize the average
location estimation error (LEE). We show that our placement
strategy provides substantial accuracy gains if used instead of
the conventional ones and that it is able to reduce not only the
average LEE but also the LEE itself and, hence, guarantees high
accuracy for any WSN configuration.

The rest of this paper is organized as follows: Section II
describes the network model. Section III introduces the average
LEE and proves its adequacy to anchor-based localization.
Section IV proposes a novel optimal anchors placement strategy.
Simulation results are discussed in Section V and concluding
remarks are made in Section VI.

II. NETWORK MODEL

Fig. 1 illustrates a network model of M anchors and N

sensors deployed in a 2-D square area S. The anchors are
aware of their positions while the sensors are oblivious to
this information. These sensors are assumed to be uniformly
distributed in S. All anchor and sensor nodes are assumed to
have the same transmission capability (i.e., range) denoted by
R. Each node is able to directly communicate with any other
node located in the disc having that node as a center and R

as a radius, while it communicates in a multi-hop fashion with
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the nodes located outside. As shown in Fig. 1, the anchors are
marked with red triangles and the senors are marked with blue
circles. If two nodes are able to directly communicate, they are
linked with a dashed line that represents one hop.

Let us denote by (ai, bi) , i = 1, . . . ,M the coordinates of
the anchor nodes and (xi, yi) , i = 1, . . . , N those of the regular
ones.
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Fig. 1: Network model.

In what follows, we propose an efficient anchor placement
strategy able to significantly enhance the accuracy of any anchor-
based localization algorithm. To this end, one should first
determine the metric which properly gauges the accuracy of
such algorithms. From this perspective, Section III presents a
new metric and proves its adequacy to anchor-based localization
algorithms.

III. AVERAGE LOCATION ESTIMATION ERROR (LEE)
As a first step of any anchor-based localization algorithm, the

k-th anchor broadcasts its coordinate (ak, bk) in the network.
The regular nodes receive these information either directly
or through multi-hop communication. Once the i-th regular
node obtains all anchors’ coordinates and computes their corre-
sponding distances, either heuristically or analytically, it derives
its own position by solving the following nonlinear equations
system: ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(a1 − x̂i)
2
+ (b1 − ŷi)

2
=

(a2 − x̂i)
2
+ (b2 − ŷi)

2
=

...
(aM − x̂i)

2
+ (bM − ŷi)

2
=

d̂2i−1

d̂2i−2
...

d̂2i−M

, (1)

where (x̂i, ŷi) are the estimated i-th sensor’s coordinates and
d̂i−k is its estimated distance to the k-th anchor. After some
rearrangements aiming to linearize the above system , we obtain

Υα̂i = −
1

2
κi, (2)

where α̂i = [x̂i, ŷi]
T ,

Υ =

⎡
⎢⎢⎢⎣

a1 − aM
a2 − aM

...
a(M−1) − aM

b1 − bM
b2 − bM

...
b(M−1) − bM

⎤
⎥⎥⎥⎦ , (3)

and

κi =

⎡
⎢⎢⎢⎢⎣

d̂2i−1 − d̂2i−M + a2M − a21 + b2M − b21
d̂2i−2 − d̂2i−M + a2M − a22 + b2M − b22

...
d̂2i−(M−1)−d̂2i−M+a2M−a2(M−1)+b2M−b2(M−1)

⎤
⎥⎥⎥⎥⎦ . (4)

Since Υ is a non-invertible matrix, α̂i could be estimated with
the pseudo-inverse of Υ as follows:

α̂i = −
1

2

(
Υ

T
Υ

)−1

Υ
T
κi. (5)

Therefore, the i-th sensor is able to obtain an estimate of its
coordinates as x̂i = [α̂i]1, and ŷi = [α̂i]2. Let EP,i denote the
i-th sensor’s location estimation error (LEE) given by

EP,i = ‖αi − α̂i‖
2
, (6)

where αi = [xi, yi]
T is a vector whose entries are the true i-

th sensor coordinates. From (6), EP,i is an excessively complex
function of the random variables (xi, yi), i = 1, . . . , N , di−k and
d̂i−k, k = 1, . . . ,M and, hence, a random quantity of its own.
Optimizing the anchors’ locations using such a metric would
not only be a tedious task, but it would also result in locations
strongly dependent on the sensors’ coordinates. Recall here that
such information are not available. A much more appealing
metric would be then the average LEE ĒP(N) = E{EP,i}
where the expectation is taken with respect to all the sensors’
coordinates. Actually, ĒP(N) could be differently defined as

ĒP(N) = E
{
GNet
P (N)

}
, (7)

where

GNet
P (N) =

1

N

N∑
i=1

EP,i, (8)

refers to the global LEE through the network. Furthermore, using
the strong law of large numbers, we show for large N that we
have

GNet
P (N)

p1
−→ ĒP(N), (9)

where p1
−→ stands for convergence with probability one. From

(9), ĒP(N) is not only the statistical average of GNet
P (N), but

also it approaches the latter for any given realization (i.e., any
given (xi, yi), i = 1, . . . , N ). All the above proves unambigu-
ously that ĒP(N) is a meaningful and useful performance metric.
It follows from (5) that

EP,i =
1

4

∥∥∥∥
(
Υ

T
Υ

)−1

Υ
T
δi

∥∥∥∥
2

, (10)

where [δi] = [ε1 − εM , . . . , εM−1 − εM ]
T with εk = d̂2i−k −

d2i−k being the squared-distance estimation error. EP,i is then
given by

EP,i=Tr

((
Υ

T
Υ

)−1

Υ
T
δiδ

T
i Υ

(
Υ

T
Υ

)−1
)

=Tr
(
Ωδiδ

T
i

)

=

M−1∑
k=1

Ωkk ([δi]k)
2
+

M−1∑
k=1

M−1∑
l=1,l �=k

Ωkl[δi]l[δi]k, (11)
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where Tr (X) is the trace of the matrix X and Ω =

Υ

(
Υ

T
Υ

)−2

Υ
T . Note in the second line of (11) that we

exploit the cyclic property of the trace. Since εk, k = 1, . . . ,M
are i.i.d random variables, we have from (11) the following

ĒP(N)= σ2
ε

⎛
⎝2Tr (Ω)+

M−1∑
k=1

M−1∑
l=1,l �=k

Ωkl

⎞
⎠=σ2

εF (Ω). (12)

Therefore, in order to reduce ĒP(N) (i.e., improve the local-
ization accuracy), one should minimize both σ2

ε and F (Ω) =
2Tr (Ω) +

∑M−1
k=1

∑M−1
l=1,l �=k Ωkl, the former by use of accurate

DE techniques [5]-[13] while F (Ω) requires the optimization
of the anchors positions. In the next section, adopt F (Ω) as a
new design cost function to develop a novel optimal anchors
placement strategy.

IV. PROPOSED ANCHOR PLACEMENT STRATEGY

In order to improve the localization accuracy in the anisotropic
environments of our concern, one could compute the optimal set
of anchors’ positions Sopt that satisfies

Sopt = argminF (Ω)

s.t. La ≤ ai ≤ Ua i = 1, 2, · · · , Na

Lb ≤ bi ≤ Ub i = 1, 2, · · · , Na

‖Pi − Pj‖ ≥ dmin ∀ i �= j (13)

where Pi = [ai, bi]
T is the vector of the i-th anchors coordinates

and La, Lb, Ua, and Ub are lower and upper bounds on all
anchors coordinates. These bounds depend on the obstacle form
and position. Please note that the first two constraints ensure
that anchors be located within the obstacle surrounding area.
Whereas the third constraint imposes a minimum distance dmin

between the anchors and, hence, guarantees their deployment all
over the available area.

Several effective optimization algorithms that require a moder-
ate memory and reasonable computational resources have been
proposed so far to solve such complex optimization problem,
for instance the simulated annealing algorithm (SA), genetic
algorithms (GA), artificial intelligence (AI), and particle swarm
optimization (PSO) [23]. Due to its ease of implementation, high
resolution, and speed of convergence, the latter has attracted a
lot of attention in the research community and has been recently
introduced as a promising tool for solving a wide range of op-
timization problems in different contexts such as UWB antenna
design, data mining, acoustic communication, and localization
[24]. However, despite their advantage, traditional PSO-based
algorithms may easily fall into local optima, especially when
solving a complex multimodal problem such as the one of our
concern [25]. In order to overcome this issue, we propose in this
paper a novel non-linear fitness-based inertia weight expression
given by

φk = wmax

⎛
⎜⎝1−

(wmax − wmin)μ+ wmin

1 + e

(
−2wmin

min fk
i
−max fk

i

f̄k
i

)

⎞
⎟⎠ , (14)

where μ is a random variable uniformly distributed in the
interval [0, 1] and f̄k

i is the average fitness value at the k-
th generation. From (14), the value of the inertia weight will

Algorithm 1 Optimal anchor nodes placement algorithm
% sk is the set of anchor nodes%
Initialize the first two anchor nodes positions
sk = [0 S;S S]
Initialize the cognitive and social scaling parameters c1 and
c2, respectively
Initialize the maximum number of iterations kmax

Initialize γg in such a way that the fitness of γg is as close
to infinity as possible
Initialize position and velocity boundaries
m = 3
for m ≤ Na do

X0 = sk (m− 1)
while Constraints criteria are not met do

k = 1
for each particle i do

Pi = |X0 + rand (1, 2)|
Vi = Vmax × rand (1, 2)
Compute f (Pi)
if f (Pi) < f (γg) then

γg = Pi

f (γg) = f (Pi)
end if

end for
while k �= kmaxv do

φk+1 ← Equation (14)
for each particle i do

V k+1
i ← Equation (15)

P k+1
i ← Equation (16)

Check the velocity and position boundaries
Compute f (Pi)
if f (Pi) < f (ρi) then

ρi = Pi

f (ρi) = f (Pi)
end if
if f (Pi) < f (γg) then

γg = Pi

f (γg) = f (Pi)
end if

end for
k = k + 1

end while
end while
m = m+ 1
sk = sk ∪ {γg}

end for

be then dynamically updated at each iteration in a non-linear
manner according to the calculated fitness. This allows a shorter
exploration time than with existing approaches such as the linear,
random, constant, and chaotic ones [26]-[29]. Once we get φk,
the velocity and position of each particle are updated using the
following equations

V k+1
i = φkV k

i + c1α
(
ρki − P k

i

)
++c2β

(
γk
g − P k

i

)
, (15)

and

P k+1
i = P k

i + V k+1
i , (16)
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where ρki is the best previous position of the i-th particle, γk
g

is the best global position at the k-th generation, c1 and c2 are
the cognitive and social scaling parameters, respectively, and α

and β are two random variables uniformly distributed within the
interval [0, 1]. The rest of the proposed PSO-based estimation
algorithm of the optimal anchors positions with a minimum
average LEE is summarized in Algorithm 1.

In the next section, we prove that placing the anchors in the
positions obtained using our PSO-based algorithm can enhance
localization accuracy in anisotropic environments substantially.

V. SIMULATIONS RESULTS

Monte-Carlo simulations are provided in this section to verify
the efficiency of the proposed anchors placement strategy. These
simulations are conducted to compare, under the same network
settings, the latter with three commonly adopted benchmarks,
namely the grid [14], perimeter [15], and random [13] placement
strategies. All these strategies are tested using two localization
algorithms: the well-known RAPS [8] and one of our recently
developed algorithms [9]. All simulation results are obtained by
averaging over 800 trials. In all simulations, nodes are uniformly
deployed in a 2-D square area in the presence of a rectangle
obstacle which makes the network topology C-shaped, except
in Fig. 2 where we consider an isotropic environment. S and R

are set to 502 m2 and 10 m, respectively. M is set to 12, expect
in Fig. 5 where it varies from 5% to 10%.

Figs. 2(a) and 2(b) plot the average R2-normalized LEE
(NLEE) achieved by RAPS [8] and our localization algorithm
in [9] using the proposed anchor placement, grid, perimeter,
and random strategies for different values of N in an isotropic
environment. From these figures, the accuracy of both localiza-
tion algorithms is improved using the proposed strategy instead
of the grid and random strategies. Furthermore, the proposed
strategy guarantees almost the same accuracy as the perimeter
placement, which was previously proven to be the optimal one
in any isotropic environment [15]. This validates the optimality
of the proposed anchors placement strategy.

Figs. 3(a) and 3(b) display the average NLEE achieved by
RAPS [8] and our localization algorithm in [9] using the pro-
posed anchor placement, grid, perimeter, and random strategies
for different values of N in an anisotropic environment. As could
be observed from these figures, the lowest average NLEE is
always achieved by the proposed strategy. The latter turns out
to be until about 76.8%, 61.62%, and 50.64% more accurate
than than grid, perimeter, and random strategies, respectively.
This proves the superiority of the proposed PSO-based anchor
placement strategy.

Figs. 4(a) and 4(b) plot the NLEE’s standard deviation
achieved by RAPS [8] and our localization algorithm in [9]
using all anchors placement strategies for different values of
N . From these figures, using any strategy, the NLEE’s standard
deviation decreases as expected when the node density increases.
However, the one achieved by the proposed strategy approaches
0 as N grows large, in contrast to all its counterparts. Our
strategy is actually able to minimize not only the average NLEE,
but also the NLEE itself. This is a highly desirable feature, since
it guarantees high accuracy for any WSN configuration.
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Fig. 2: Average NLEE achieved by RAPS [8] and our localiza-
tion algorithm in [9] using the proposed anchor placement, grid,
perimeter, and random strategies for different values of N in an
isotropic environment.

Figs. 5(a) and 5(b) show the average NLEE achieved by RAPS
[8] and our localization algorithm in [9] using the proposed
anchor placement, grid, perimeter, and random strategies for
different values of M with N = 150. As could be observed
from these figures, the localization accuracy is improved as
expected when he number of anchors is improved. However,
the average NLEE achieved using our new anchor placement
strategy remains the lowest, thereby further proving its high
efficiency.

Figs. 6(a) and 6(a) illustrate the NLEE’s CDF achieved by
RAPS [8] and our localization algorithm in [9] using all the
anchor placement strategies. With the proposed strategy, until
90% of the sensors could estimate their position with a NLEE
less than 2 using the RAPS algorithm. In contrast, 62% achieve
the same accuracy with the random strategy, 52% with the
perimeter strategy, and only about 40% with the grid strategy.
This highlights again the net advantage of the proposed PSO-
based placement strategy against its counterparts in anisotropic
environments.
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(a) RAPS [8].
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Fig. 3: Average NLEE achieved by RAPS [8] and our localiza-
tion algorithm in [9] using the proposed anchor placement, grid,
perimeter, and random strategies for different values of N in an
anisotropic environment.

VI. CONCLUSION

In this paper, we developed a novel optimal anchor placement
strategy tailored for anisotropic WSNs. By resorting to the
well-known particle swarm optimization (PSO), we derived the
optimal anchors positions that minimize the average location
estimation error (LEE). It was shown that our placement strategy
provides substantial accuracy gains if used instead of conven-
tional ones and that it is able to reduce not only the average LEE
but also the LEE itself and, hence, guarantees high accuracy for
any WSN configuration.
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