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Abstract—A novel MIMO cognitive transceiver (CTR) for
LTE-downlink communication system is devised in this work. We
consider the cognition concept from the perspective of providing
a highly reliable communication to the mobile user anytime
anywhere. Rather than handling spectrum allocation (the com-
mon perspective of cognitive radio), we consider the channel
estimation as the reconfiguration parameter of the proposed
CTR. The developed cognitive transceiver is capable of selecting
the best channel identification scheme between the conventional
least squares (LS) estimator and the recently proposed maximum
likelihood (ML) estimator. the proposed CTR is also able to toggle
between the conventional pilot-assisted or data-aided (DA) mode
and the non-data-aided with pilot (NDA with pilot) mode that
relies on both reference and data symbols to track the channel
variations. The decision rules of the new CTR that identify the
best combination couple of pilot-use and channel-identification
modes are drawn after running extensive and exhaustive LTE-
downlink link-level simulations. The proposed CTR outperforms
all static transceivers, in terms of link-level performance, for any
given operating conditions such as SNR, mobile speed, channel
type, and channel quality indicator (CQI). The new proposed
CTR offers significant link-level throughput gains against the
LS channel estimator working in a pilot-assisted mode in most
operating conditions and the improvement gains can reach as
much as 100% at low SNR and high mobility!

I. INTRODUCTION

Offering high data rate wireless communication is the aim
of all generations of wireless systems. Multiple-input multiple-
output (MIMO) technology was considered for 3G and beyond
as a cost-effective solution that offers increased data rate
[1]. Large-scale antennae arrays commonly known as massive
MIMO are under investigation for the coming 5G standard [2].
MIMO systems allow to exploit spatial diversity and spatial
multiplexing providing system performance enhancements.
Spatial diversity is exploited by transmitting the signal over
multiple independently fading paths. This combats the small-
scale fading effects in wireless communication, but, the spec-
tral efficiency is not enhanced. Spatial multiplexing, however,
consists in transmitting independent data streams on each
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transmit antenna allowing an increased spectral efficiency with
the cost of high inter-channel-interference (ICI) thereby requir-
ing more complex receiver to mitigate that issue. In this paper,
we capitalize on the spatial modulation as a transmission
technique for our MIMO cognitive transceiver to resolve this
dilemma. The spatial modulation is defined as exploiting the
number of transmitting antennas as an constellation diagram
in the spatial domain besides the constellation diagram in the
signal domain. Each group of data bits is carrying two types
of information: 1) the modulated signal (phase, amplitude or
frequency) and 2) the index of the transmitting antenna [3].
As only one antenna is transmitting at a time, the ICI problem
is resolved. On the other hand, the overall spectral efficiency
increases by the base-two logarithm of the number of transmit
antennas.
The cognition concept we consider for our MIMO CTR is
from the perspective of providing a highly reliable commu-
nication to the mobile user anytime anywhere. The basic
idea is to allow a transceiver to rapidly adapt itself to the
changing environment conditions in the aim of maximizing
its performance. Rather than handling spectrum allocation (the
common perspective of cognitive radio) [4]- [6], we consider
the channel estimation as the reconfiguration parameter of
our proposed CTR. Reliable channel estimation is key to any
wireless communication system. For that purpose, reference
symbols (also know as pilot symbols) are inserted in the
data information to facilitate the prediction of the channel
variations with the cost of data rate reduction. However,
for a severe channel conditions (frequency-selective or fast
fading channels), channel estimation becomes a challenging
task when the pilot insertion rate becomes insufficient to allow
proper tracking of the channel variations. On the other hand,
for good channel conditions (high signal-to-noise-ratio, flat
or slow fading channels), easy channel estimator is possible
and the number of required pilots can be moderately low.
Our cognitive transceiver aims to solve the aforementioned
dilemmas by switching to the best channel identification
scheme between the conventional least squares (LS) and the
newly proposed maximum likelihood (ML) estimators.

II. CONTEXT-AWARE MODES FOR THE COGNITIVE
TRANSCEIVER

A. DA or pilot-assisted mode

Pilot symbols are inserted according to a predetermined
mapping known by the receiver. They are used in the receiver978-1-5386-3531-5/17/$31.00 c© 2017 IEEE



side for synchronization purpose and to estimate the wireless
channel.

1) LS channel estimator: The conventional LS channel
estimator consists of estimating the channel by minimizing the
squared error between the received and the known transmitter
pilot symbols. Let ytx,rxi,DA denote the received signal from the
transmit antenna tx to the receiving antenna rx, on pilot sub-
carrier i among Npilot pilot sub-carriers at the OFDM pilot
symbol index t. In the remaining of the paper, the time index t
and the transmitting and receiving antennas index are omitted
for simplification and without loss of generality since when an
antenna tx is transmitting a pilot symbol on resource element
(i,t), all other transmitting antennas are not transmitting at that
resource element. The transmitted pilot symbol xi,DA is related
to yi,DA as follows:

yi,DA = hixi,DA + ni i = 0, 1, ..., Npilot − 1 (1)

where hi is the complex channel coefficient and ni is a zero-
mean Gaussian noise. Equation (1) can be written in matrix
format as:

yDA = XDAh + n (2)

where XDA = diag
{
x0,DA, x1,DA, . . . , xNpilot−1,DA

}
, h =

[h0, h1, ..., hNpilot−1]
T , and n = [n0, n1, ..., nNpilot−1]

T is the
i.i.d complex zero-mean Gaussian noise vector. The LS algo-
rithm aims at minimizing (yDA −XDAh)†(yDA −XDAh) (†
denotes matrix Hermitian transpose) to estimate the frequency
response of the channel. This minimization leads to estimating
the channel coefficients at pilot subcarriers as follows: [7]:

ĥLS = X−1DAyDA, (3)

where A−1 denotes the inverse of the matrix A. The channel
coefficients at non-pilot subcarriers are subsequently approxi-
mated by interpolation [10]. This approximation is not accurate
in the case of high user velocity, which corresponds to a fast
fading channel. In this case, the pilots spacing may not be
sufficient, which results in inaccurate tracking of the channel
variations. Reducing the pilot spacing would increase the pilot
overhead and therefore would result in a deterioration of the
throughput.

2) ML estimator: In this work, the ML channel estimator
proposed in [8] is considered. This DA channel estimator
tracks the variations in the channel for each OFDM symbol
using a polynomial expansion of order (J − 1) . In fact,
the channel over each {rth}Nr

r=1 antenna branch and the ith

subcarrier, in a MIMO system (note here that when an antenna
tx transmits a pilot symbol on resource element (i,t) all other
transmit antennas do not transmit on that resource element
which recalls a SIMO system), is modeled as follows [9]:

hi,r(tn) =
J−1∑
j=0

c
(j)
i,r t

j
n +REM

(i,r)
J (tn). (4)

where, tn = nTs and Ts is the sampling period. The order
J − 1 of the polynomial expansion is Doppler-dependent and
is obtained from [8]. c(j)i,r is the jth coefficient of the channel
polynomial approximation over the ith sub-carrier and the rth

branch. The term REM
(i,r)
J (tn) denotes the remainder of the

Taylor series expansion. This term can be made sufficiently
small by selecting a sufficiently small approximation window.
Therefore, an accurate approximation of the channel coeffi-
cients can be obtained as follows [8]:

hi,r(tn) =
J−1∑
j=0

c
(j)
i,r t

j
n. (5)

For simpler and clearer representation, the sub-carrier index is
removed in the following analysis.
Reducing the order J − 1 in (4) significantly reduces the
computation complexity since a smaller size matrix inversion
will be needed. To reach this objective, the newly proposed
DA ML estimator partitions the entire observation window into
K local approximation windows of the same size. following
this partition, the probability density function (pdf) of each
of the locally-observed vectors, y

(k)
DA , parametrized by ck, is

maximized:

p(y(k)
DA ;ck|Bk)

= 1
(2πσ2)NDANr

exp
{
− 1

2σ2

[
y
(k)
DA −Bkck

]H[
y
(k)
DA −Bkck

]}
, (6)

where ck is a vector containing the unknown approxima-
tion polynomial coefficients over the kth approximation win-
dow (i.e., for all the antenna branches) defined as ck =
[cTk,1, c

T
k,2, ..., c

T
k,Nr

]T with ck,r = [c
(0)
k,r, c

(1)
k,r, ..., c

(J−1)
k,r ]T

where c
(j)
k,r is the jth coefficient of the channel polynomial

approximation over the ith sub-carrier, the kth approximation
window and the rth branch and σ2 defines the noise variance.
In (6), y(k)

DA = [y(k)
1,DA y

(k)
2,DA ... y

(k)
Nr,DA]

T with y
(k)
r,DA being the received

pilot samples over the antenna element r within the kth ap-
proximation window, i.e., y

(k)
r,DA = [y(k)

r (t1) y
(k)
r (t2) ... y(k)

r (tPDA )].
PDA is the number of pilot symbols in each approximation
window which is covering NDA pilot and non-pilot received
samples. NDA is Doppler-dependent approximation window
size, which can be optimized as was shown in [8]. Moreover
Bk is a PDANr×JNr block-diagonal matrix defined as Bk =
blkdiag{AkT,AkT, ...,AkT}. Here, Ak is the PDA×PDA diagonal
matrix of the transmitted pilot symbols within the kth obser-
vation window, i.e., Ak = diag{ak(t1), ak(t2), ..., ak(tPDA

)},
and T is a Vandermonde matrix given by:

T =


1 t1 ... tJ−11

1 t2 ... tJ−12

...
...

. . .
...

1 tPDA
... tJ−1PDA

 . (7)

By nullifying the partial derivative of (6), the the channel
coefficients estimates over all the receiving antenna branches
can be obtained by:

ĉk,DA = (B†kBk)
−1

B†ky
(k)
DA , (8)

The DA ML estimates for the channel coefficients at pilot and
non-pilot positions are consequently obtained by injecting the
estimates of the polynomial coefficients from (8) back into (4).



TABLE I
PARAMETERS USED IN THE LINK-LEVEL SIMULATIONS.

Number of User Equipment 1
Channel Bandwidth (MHZ) 1.4
Carrrier Frequency (GHZ) 2.1

Frame Duration (ms) 10
Sub-carrier Spacing (kHz) 15

FFT size 128
Number of subcarriers/RB 12
OFDM Symbols/subframe 7

Transmit mode 2×2 MIMO
Channel type PedA, PedB, VehA, and VehB

B. NDA with pilot or hybrid mode

Accurate channel modelling is essential for reliable com-
munication. However, this task becomes very challenging in
the case of fast receiver mobility and significant surrounding
scatterers’ motion. These parameters result in a hard to track
fast-varying channels. Indeed, pilot symbols, which are often
inserted far apart, in the time-frequency grid, are not sufficient
to estimate the channel behaviour. In the following, this paper
proposes to use the information carried in data symbols in a
hybrid channel identification scheme in order to enhance the
system performance.
MIMO systems are among the most promising transmission
techniques enabling the high data rate and high spectral effi-
ciency demanding by future wireless communication systems.
For that purpose, we extend our previous work on SIMO
systems [11]- [13] to MIMO systems. However, increasing
the capacity for MIMO systems exploiting spatial-multiplexing
requires transmitting multiple independent data streams over
the antennas which causes high Inter Channel Interference
(ICI). On the other hand, the number of transmit antenna
do not improve spectral efficiency when exploiting the spa-
tial diversity for MIMO systems. Given the aforementioned
dilemmas, we choose the spatial modulation technique for our
new MIMO cognitive transceiver. The basic idea of spatial
modulation is to map each group of data bits into two types
of information: 1) the modulated signal (phase, amplitude or
frequency) and 2) the number of the transmitting antenna. The
overall spectral efficiency is hence increased by the base-two
logarithm of the number of transmit antennas. The MIMO
system is then equivalent to a SIMO system with variant
transmit antenna and for which the transmit antenna index
carries an information.

1) NDA w. pilot RLS estimator: At OFDM symbol
t + 1 received from transmit antenna tx, we use preceeding
transmitted signals from the same antenna as a training
sequence of t symbols. We assume that the index of transmit
antenna tx is perfectly known for the denoted ”perfect RLS”
transceiver version. For the ”RLS” channel estimation based
transceiver, the index of the transmit antenna tx is estimated
using the Maximum Receive Ratio Combining (MRRC).
Then, the channel estimate for each transmit antenna tx,
ĥt+1, at OFDM symbol t+ 1 is obtained using the weighted
LS method as follows [14]:

ĥt+1 = argmin
ĥ

t∑
w=1

βw‖yw − ĥqwxw‖2, (9)

where the channel variation 〈 is approximated to the Dth

order Taylor series expansion according to the OFDM symbol
instance m, i.e.: 〈w '

∑D
d=0 w

d〈<d> = hqw with qw ,
[w0INr

, w1INr
, ..., wDINr

]T ∈ R(D+1)×1. In (9) βw ∈ R
stands for a weighting coefficient given by βw = λt−w where
λ ∈ R is referred to as a forgetting factor. The exponential
weighted RLS algorithm is implemented as follows:

ζt = Φ−1t−1qtxt ∈ C(D+1)×1,

αt =
1

λ+ ζ†tqtxt
∈ R,

Φ−1t = λ−1Φ−1t−1 − λ−1αtζtζ
†
t ∈ C(D+1)×(D+1),

et = yt − ĥxt ∈ CNr×1

ĥt+1 = ĥt + αtetζ†t ∈ CNr×(D+1).

For initialization, ĥ1 is considered to be identically zero and
Φ−10 is set to %INr(D+1) where % � 1 is a constant with
sufficiently large value. Moreover, x1 is assumed to be a pilot
symbol. The channel estimate ĥt+1 is then used to detect the
(t+ 1)th symbol xt+1.

2) NDA w. pilot ML estimator: Similarly to the RLS
channel estimator, We assume that the index of transmit
antenna tx is perfectly known for the denoted ”perfect
NDA ML with pilot” transceiver version. The transmit
antenna index is estimated for the denoted ”NDA ML
with pilot” using the MRRC. Given the transmit antenna
index, the MIMO system recalls a SIMO system. The
expectation maximization (EM) based ML estimator is
then the iterative algorithm used as presented in [8] for
SIMO systems. Pilot and data symbols are jointly used
by the EM algorithm for channel variation tracking. As
described in Section II-A2, firstly, pilot symbols are used
for channel coefficients prediction on each pilot symbol
for each pilot sub-carrier. Then the channel coefficients
on non-pilot symbols are estimated by applying the EM
algorithm on all received symbols from transmit antenna tx.
The iterative EM algorithm consists on two operations using
as initialization ĉk,DA deduced in (8) using pilot symbols only.

• Expectation step (E-Step):

On the E-Step, all the possible transmitted symbols {am}Mm=1,
where M is the modulation order, are considered by the pdf
function presented in (6). We iterate the objective function at
each iteration q for every NNDA sized approximation window
as follows:

Q(ck | ĉ(q−1)
k ) = −NNDANr ln(2πσ

2)

− 1

2σ2

Nr∑
r=1

(
M

(r)
2,k +

NNDA∑
n=1

α
(q−1)
n,k |c

T
r,kt(n)|2− 2β

(q−1)
r,n,k cr,k

)
, (10)

where M (r)
2,k = E{|yr,k(n)|2} is the second-order moment of

the received samples over the rth receiving antenna branch,
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Fig. 1. Simulation results in terms of link-level throughput for MIMO LTE on the downlink for A) PedA channel/speed=2 km/h, B) PedB channel/speed=2
km/h, C) VehA channel/speed=100km/h, D) VehB channel/speed=30 km/h, and 1) CQI=1 for QPSK, 2) CQI=7 for 16QAM, and 3) CQI=10 for 64QAM.

t(n) = [1, tn, t
2
n, ..., t

J−1
n ]T and:

α
(q−1)
n,k =

M∑
m=1

P
(q−1)
m,n,k |am|

2, (11)

β
(q−1)
r,n,k (cr,k) =

M∑
m=1

P
(q−1)
m,n,k<{y

∗
r,k(n)amtT (n)ci,k}, (12)

where, P (q−1)
m,n,k = P (am | yk(n); ĉ(q−1)) is the a posteriori

probability of am at iteration (q − 1) that is calculated based
on Bayes’ formula as follows:

P
(q−1)
m,n,k =

P (am)P (yk(n)|am; ĉ(q−1)
k )

P (yk(n); ĉ(q−1)
k )

. (13)

Since the symbols are assumed to be equally likely transmit-
ted, we have P (am) = 1

M and therefore:

P (yk(n); ĉ(q−1)
k ) = 1

M

M∑
m=1

P (yk(n)|am; ĉ(q−1)
k ) . (14)

• Maximization step (M-Step):

On the M-Step, we maximize the objective function
given in (10) with regards to ck:

ĉ(q)k = argmax
ck

Q(ck |̂c(q−1)
k ). (15)

New accurate approximation polynomial coefficients estimates
are then provided as follows:

ĉ(q)r,k =

(
NNDA∑
n=1

t(n)tT (n)

)−1 NNDA∑
n=1

λ
(q−1)
r,n,k t(n). (16)

In (16), λ(q−1)r,n,k is given by:

λ
(q−1)
r,n,k =

[
â
(q−1)
k (tn)

]∗
yr,k(tn), (17)

in which

â
(q−1)
k (tn) =

M∑
m=1

P
(q−1)
m,n,kam, (18)

is the soft symbol estimate at iteration q − 1 and t(n) =
[1, tn, t

2
n, ..., t

J−1
n ]T .

III. SIMULATION SETUP AND RESULTS

In this paper, we simulate a downlink communication for
LTE MIMO system with 2 transmit antennas at the base station
and 2 receive antennas at the mobile station. We present some
of the used link-level parameters in table I. Our new MIMO
CTR aims to switch between the best channel prediction
algorithm (LS or ML) and the best pilot-use mode (DA pr
NDA with pilot) for any of the given propagation channel



Fig. 2. MIMO cognitive transceiver throughput gain percentages (our bench-
mark is the DA LS) and decision rules (best channel estimation algorithm
and pilot-use mode) for different propagation channel conditions (SNR/CQI,
channel types and mobile speeds).

parameters: SNR, channel model type, mobile speed, and CQI
value. For that purpose, we consider a Pedestrian slow-fading
channels for a mobile speed of 2 km/h and a Vehicular fast-
fading channels for mobile speeds of 30 km/h and 100 km/h.
We simulate type A and B channels for respectively flat-
fading and frequency selective channels. The CQI carries the
information about the modulation order and the channel coding
rate to be used to the base station during each subframe. The
CQI values range from 1 to 15 defining six, three, and six
coding rates for QPSK, 16QAM, and 64QAM modulations,
respectively. We assume a perfect knowledge of the SNR and
CQI parameters on the receiver side. Only throughput results
of CQI 1 (QPSK), CQI 7 (16QAM) and CQI 10 (64QAM) are
shown due to lack of space. As shown in Fig. 1.A) , the ML
outperforms the DA LS estimator for all modulation schemes.
Fig. 2 shows that the perfect NDA ML with pilot reaches a
throughput gain as high as 300% in the low SNR region over
the PedA channel. This is because modelling the channel with
Taylor series remains accurate when the channel experiences
flat fading. Fig. 1.B) shows that the ML estimator outperforms
the DA LS for QPSK and 16QAM modulation schemes with
a throughput gain over 600% in low SNR region as shown
in Fig. 2. Fig. 2 shows that for a medium mobile speed with
flat fading (VehA) channel, DA ML offers a gain as high as
200% in low SNR region. We also note that the perfect NDA
with pilot channel estimate schemes (both ML and RLS) offer
a significant throughput gain for this type of channel. This is
due to the fact that relying on data symbols jointly with pilot
symbols enhances channel estimation when time variations are
significant. The same conclusions are deduced for the VehB
(frequency selective) channel with medium mobile speed as
shown in Figs. 1.D) and 2. Figs. 1.C) and 2 show that the
perfect NDA with pilot RLS reaches a throughput gain over
60% for VehA channel for high mobile speed. For the VehB
channel and a mobile speed of 100 km/h, Fig.2 reveals a gain
as high as 100% that is offered by the perfect NDA with pilot

RLS as compared to DA LS in terms of link-level throughput,
in the low SNR region. For the same channel type and mobile
speed, Figs 1.C) and 2 suggest that the perfect NDA with
pilot ML version offer throughput gains rising up to 30% in
the high SNR region for 16QAM modulation scheme.

IV. CONCLUSION

In this paper, we were able to generalize the new cognition
concept developed for the SIMO transmission mode to the
MIMO case. The simulation results show that our new MIMO
CTR offers a significant link-level throughput gains by switch-
ing between two different channel estimators (ML and LS) and
two different pilot-use modes (conventional DA and NDA with
pilot) depending on different propagation channel conditions
in terms of channel speed, channel type, SNR, and CQI. The
throughput gains achievable by the new context-aware CTR
are noticeable in most operating conditions reaching as much
as 100% at low SNR and high mobility.
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