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Abstract—We propose a novel range-free localization
algorithm for wireless sensor networks (WSN)s that is
robust against the anisotropic signal attenuation induced
by fading, shadowing, and interference, etc., present in any
wireless channel, and hereby develop a new distance estima-
tion (DE) approach able to efficiently derive distances’ esti-
mates in closed form. Exploiting artificial neural networks
(ANN)s, we also develop a power-efficient DE correction
mechanism that properly accounts for anisotropic signal
attenuation. Simulation results show that the proposed
algorithm significantly outperforms most representative
range-free localization algorithms, not only in accuracy,
but also in robustness against anisotropic attenuation.

Index Terms—Localization, wireless sensor networks
(WSN)s, artificial neural networks (ANN)s, radio propa-
gation pattern (RPP), anisotropic signal attenuation, cost
and power efficiencies, robustness.

I. INTRODUCTION

Localization is crucial for many WSN applications

such as environment monitoring, disaster relief, and

target tracking [1]. So far, several localization algorithms

have been proposed in the literature. These algorithms

can be roughly classified into two categories: range-

based and range-free [3]- [5]. To properly localize the

regular or position-unaware node positions, range-based

algorithms exploit the measurements of some specific re-

ceived signals’ characteristics such as the time of arrival

(TOA), the angle of arrival (AOA), or the received signal

strength (RSS). These signals are, in fact, transmitted

by nodes aware of their positions called anchors (or

landmarks). Although range-based algorithms are very

accurate, in general, they are unsuitable for WSNs.

Indeed, these algorithms require high power to en-

sure communication between anchors and regular nodes

which are small battery-powered units. Furthermore,

additional hardware is usually required at both anchors

and regular nodes, thereby increasing the overall cost

of the network. Unlike range-based algorithms, range-

free algorithms, which rely on the network connectivity

to estimate the regular node positions, are more power-

efficient and do not require any additional hardware and,
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hence, are suitable for WSNs. Due to their practical

merits, range-free localization algorithms have garnered

the attention of the research community. The range-

free techniques developed so far fall in two classes:

heuristic and analytical [6]-[8]. Heuristic algorithms are

more or less a variation of the well-known DV-HOP [6]

whose implementation in WSNs requires the overhead-

burdened calculation (by input reception) and broadcast

(by output transmission) of a correction factor by each

anchor. Such undesired impediment incurs prohibitive

overhead and power consumption thereby increasing the

overall cost of the network. On the other hand, analytical

algorithms evaluate theoretically the distances between

the anchors and regular nodes [7] [8]. These distances

are in fact locally computable at each node, thereby

avoiding the above-mentioned impediments of heuristic

algorithms. In spite of their valuable contributions, these

techniques rely on the unrealistic assumption that nodes

have a circular radio propagation pattern (RPP) [7] [8].

However, due to real-world phenomena such as fading,

shadowing, and interference, etc., present in any wireless

channel, anisotropic signal attenuation (i.e., different

from a direction to another) occurs, thereby resulting in

practice to irregular nodes’ RPPs [9]. Hence, if the latter

are not properly taken into account, distance estimation

(DE) errors increase significantly and severely hinder

localization accuracy.

In this letter, we propose a novel analytical algorithm

robust against the anisotropic signal attenuation and

develop a new DE approach able to efficiently derive dis-

tances’ estimates in closed form. Exploiting ANNs, we

also develop a power-efficient DE correction mechanism

that properly accounts for anisotropic signal attenuation.

Simulation results show that the proposed algorithm

outperforms most representative range-free localization

algorithms, not only in accuracy, but also in robustness

against anisotropic attenuation.

II. NETWORK MODEL

Fig. 1 illustrates the system model of N WSN nodes

uniformly and independently deployed in a 2-D square

area S. Due to the high cost of the global positioning

system (GPS) technology, only a few nodes commonly

known as anchors are equipped with it and, hence,978-1-5386-3531-5/17/$31.00 c© 2017 IEEE



are aware of their positions. The other nodes, called

hereafter position-unaware or regular nodes for the sake

of simplicity, are oblivious to this information. In Fig. 1,
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Fig. 1. Network model

the anchor nodes are marked with red triangles while the

regular ones are marked with blue discs. Without loss of

generality, let (xi, yi) , i = 1, . . . , Na be the coordinates

of the anchor nodes and (xi, yi) , i = Na + 1, . . . , N
those of the regular ones. All nodes are assumed to have

the same transmission capability (i.e., range) denoted by

R. An anisotropic signal attenuation (i.e., varies from a

direction to another) is also assumed, due to phenomena

such as fading, shadowing, and interference, etc., present

in any wireless channel. This leads, as illustrated in

Fig. 1, to irregular RPPs. Hence, the green curves there

represent the nodes’ irregular RPPs while the black

circles represent their idealistic ones (i.e., without ac-

counting for fading, shadowing, and interference, etc.).
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Fig. 2. Distance estimation

In what follows, we propose an efficient localization

algorithm which accounts for the nodes’ irregular RPPs

when estimating the regular nodes’ positions. Such an al-

gorithm requires that these nodes estimate their distances

to 3 anchors, at least, and be aware of their coordinates

[6]-[8]. The more accurate is DE, the more reliable is

localization. Hence, we propose in the next section a

novel DE approach for proper integration later in our

proposed WSN localization algorithm.

III. PROPOSED DE APPROACH

So far, in most previous algorithms, the i-th regular

node (i.e., (Na+ i)-th node) estimates its distance to the

k-th anchor di−k as

d̂i−k = ni,khav, (1)

where ni,k is the number of hops between the two

nodes and hav is a predefined average hop size (AHS).

Unfortunately, this approach exhibits a major drawback.

Indeed, AHS is usually derived either analytically by

exploiting the Poisson Limit Theorem valid for high

nodes densities [7] [8] or heuristically by computing the

mean hop size of all the shortest paths between anchors

[6]. It is, however, very likely that AHS be different from

the mean hop size of the shortest path between the k-

th and (Na + i)-th nodes (i.e., hav 6=
(
∑ni,k

l=1 hl

)

/ni,k

where hl is the l-th hop’s size). Hence, large DE errors

may occur, thereby hindering the i-th regular node’s

localization accuracy. In order to circumvent this issue,

we propose in this paper to directly estimate di−k

without resorting to the AHS. Indeed, it was shown that

the minimum mean square error (MMSE) of the distance

estimation can be obtained if [8]

d̂i−k = E {Z|ni,k} , (2)

where Z denotes the random variable that represents

the real distance di−k , and E {·|ni,k} is the expectation

conditioned on ni,k. However, due to the randomness

of the nodes’ irregular RPPs, the derivation of d̂i−k in

closed form is a priori a very tedious task, if not impos-

sible. For the sake of both simplicity and tractability, we

assume herein, only temporarily, idealistic circular RPPs

(i.e., there is no interference, fading or shadowing) when

computing d̂i−k . In the next section, we will propose

a correction mechanism that properly accounts for the

effects of the nodes’ irregular RPPs in the calculation of

d̂i−k.

Assuming idealistic circular nodes’ RPPs, it is

straightforward to show that the i-th regular node is

located, as illustrated in Fig. 2, in the area

A = D (k, ni,kR) ∩D (i, R) , (3)

where D(⋆, x) is the disc having the ⋆-th node as a center

and x as a radius. An in-depth look at this figure reveals

that di−k is strongly dependent on A. Indeed, the smaller



is di−k the wider is the area A, and vice-versa the larger

is the former the narrower is the latter. d̂i−k could be

then obtained by averaging di−k over all possible values

of A and, hence, we have

d̂i−k =

∫ AMax

AMin

Ψ(A) fA(a) da, (4)

where Ψ(A) is the functional relationship between di−k

and A, AMax and AMin are the maximum and mini-

mum value of the latter, respectively, and fA(a) is its

probability density function (pdf). According to (4), it is

clear that Ψ(A) and fA(a) are crucial to obtain d̂i−k’s

expression. First, let us focus on Ψ(A). Using some ge-

ometrical properties and trigonometric transformations,

one can show that [10]

A = Φ(di−k) = R2 cos−1

(

d2i−k +R2
(

1− n2
i,k

)

2Rdi−k

)

+

n2
i,kR

2 cos−1

(

d2i−k −R2
(

1− n2
i,k

)

2ni,kRdi−k

)

−

1

2

√

(

R2(1+ni,k)2−d2i−k

)(

d2i−k−R2(1−ni,k)2
)

, (5)

where Φ = Ψ−1 is the inverse function of Ψ. As

Φ(di−k) is a complex function of di−k , Ψ(A) cannot

be unfortunately obtained in closed form. We will, how-

ever, prove in the sequel that it is possible to compute

the integral in (4) by solely exploiting the right-hand-

side (RHS) of (5). Now let us turn our attention to

fA(a). From (5), the computation of the latter in closed

form turns out to be impossible, to the best of our

knowledge. For the sake of mathematical tractability, in

what follows, A is assumed to be uniformly distributed

in [AMin, AMax]. Despite this simplifying assumption,

we will shortly see in Section V that the proposed

algorithm provides much better accuracy than the most

representative range-free algorithms currently available

in the literature. Using (5) alongside the fact that AMax

occurs when d = (ni,k − 1)R and AMin occurs when

d = (ni,k)R, we have

fA(a) =
1

∆A
=

1

Amax −Amin

=

(

R2

(

π−cos−1

(

1

2ni,k

)

−n2
i,k cos

−1

(

1−
1

2n2
i,k

)

+
1

2

√

4n2
i,k − 1

)

)

−1

.(6)

In order to compute d̂i−k , we propose to resort to the

variable change z = di−k = Ψ(A) in the integral of (4).

This implies that dz = Ψ(1)(A) da where Ψ(1) is the

first derivative of Ψ given by

Ψ(1)(A) =
(

Φ(1)
(

Ψ(1)(A)
))

−1

=
(

Φ(1) (z)
)

−1

=

−z
/

√

2
(

1+n2
i,k

)

R2z2−
(

n2
i,k−1

)2

R4−z4, (7)

where Φ(1) is the first derivative of Φ. Actually, this

key property - that the inverse function’s first derivative

depends only on the original function’s first derivative -

is the one to allow us compute d̂k−i as

d̂i−k =
1

∆A

∫ ni,kR

(ni,k−1)R

(

2
(

1 + n2
i,k

)

R2z2

−
(

n2
i,k − 1

)2
R4 − z4

)
1

2

dz. (8)

In (8), please note that we account for the fact that if

A = AMax (or, A = AMin), then z = (ni,k − 1)R (or,

z = ni,kR). It is also noteworthy that the integral in (8)

can be easily obtained in closed form expressed using

Elliptic functions. It follows from (8) that d̂i−k depends

solely on R and ni,k which will be shown to be locally

available at every regular node in the next sections.

IV. PROPOSED LOCALIZATION ALGORITHM

We propose in this section a novel three-step localiza-

tion algorithm. In the first step, the regular nodes receive

in a multi-hop fashion all the information required to

estimate their respective distances to all anchors using

the DE approach developed in (8). In the second step,

a correction mechanism that properly accounts for the

effects of the real irregular nodes RPPs is locally per-

formed at each node in order to minimize the DE errors.

In the third and last step, the regular nodes’ positions

are computed using the obtained distances alongside the

anchors positions by resorting to conventional multilat-

eration. Due to space limitation, only steps one and two

are described in the following. Interested readers can

be, however, referred to [3] for ample details on the

multilateration process.

A. Step 1: Initialization

As a first step of any anchor-based localization algo-

rithm, the k-th anchor broadcasts through the network a

packet which consists of a header followed by a data pay-

load. The header contains the anchor position (xk, yk)
while the data payload contains the hop-count value n
initialized to one. When a node receives this packet, it

stores the k-th anchor position as well as the received

hop-count nk = n in its database, increments the latter

(i.e., n = n + 1), and then broadcasts the resulting

message. Once this message is received by an another

node, its database information is checked. If the k-th

anchor information is already available and the received

hop-count value n is smaller than the one previously

stored nk, the node updates the latter, increments n by

1, then broadcasts the resulting message. If nk is smaller

than n, the node discards the received message. However,

when the node is oblivious to the k-th anchor position,

it adds this information to its database and forwards

the received message after incrementing n by 1. This



mechanism will continue until all nodes become aware of

all anchors’ positions and their corresponding minimum

hops’ numbers. Using its available information, the i-
th regular node is then able to compute an estimate

d̂i−k of its distance to the k-th anchor using the DE

approach developed in (8). Unfortunately, since this

approach does not account for the real irregular nodes’

RPPs significant errors occur, thereby hindering severely

localization accuracy. In the sequel, we propose a new

DE correction mechanism that properly accounts for the

effects of the real irregular nodes’ RPPs.

B. Step 2: Distance correction

An important feature that might allow substantial

reduction of DE errors, if properly exploited, is that

anchors are fully aware of their true inter-distances

and, further, could easily estimate them from (8). In

order to capitalize on these data (i.e., true and estimated

anchor inter-distances), we propose the exploitation in

this paper of ANNs due to their ability to build the

complex relationship between the true and estimated

distances. ANNs consist of groups of interconnected

artificial neurons. Depending on the nature of these

neurons’ connections, several types of ANNs exist in the

literature [11]-[13]. In this letter, we only consider the

multi-layer perceptron (MLP)-type feed-forward back-

propagation ANNs whose efficiency has been already

proven in the context of WSN localization [11]. Using

all the estimated distances between anchors as inputs

and the true distances as outputs of the ANN during the

learning phase, we are able to generate a model or a

set of parameters also known as weights and biases that

governs the ANN’s input-output relationship or function.

It is the use of the latter through the very same ANN type

at the regular nodes during the so-called generalization

phase, i.e., over previously unobserved data, that allows

extrapolation - through the very same linkage established

over anchor inter-distances - any new ANN-input dis-

tances d̂i−k estimated at the regular nodes assuming

idealistic circular RPPs into ANN-output calibrated ones

d̄i−k that properly account for real irregular RPPs.
Nevertheless, one pending issue needs to be addressed

before of our new ANN-based distance correction mech-

anism can be implemented properly. Indeed, as discussed

above, the latter imperatively requires a training phase

that must necessarily be performed at a node with large

power resources. In this letter, we propose that one

of the anchors, called hereafter super anchor, play this

role (i.e., generation through training then broadcast for

generalization at other nodes the obtained generic ANN

model throughout the network). The main reason for this

choice is that an anchor already stores a good part of

the required training data and, hence, allows substantial

overall reduction of overhead, hardware complexity, and

power. Actually, in many applications some anchors are

nothing but access points (AP)s with large-enough power

resources. Should such APs be unavailable, the so-called

super anchor could be equipped with a longer lifetime

battery (and/or even energy-harvesting capabilities) that

maintains an adequate power level for all its tasks to be

achieved.
Furthermore, to be able to perform ANN training, the

super anchor needs to be aware of all true and estimated

anchor inter-distances (i.e., Na(Na − 1) distance pairs).

Each anchor should be then solicited for a second

power and overhead consuming broadcast to share its

data with the super anchor. To avoid this situation, we

propose in what follows a power-efficient information

sharing protocol where anchors periodically broadcast

their positions alongside the training data. In fact, during

the first time slot, only the super anchor should broadcast

its position while the (Na−1) other anchors only execute

the tasks described in Section IV-A. At the second

time slot, one of the latter calculates its pair true (e.g.,

GPS-based) and estimated (as described in Section III)

distances to the super anchor then broadcast it along with

its own position throughout the network. Upon reception

of these information, all nodes become a priori aware

of the super anchor and first anchor positions and their

inter-distance pairs. A second anchor then calculates its

true and estimated inter-distances to both the super and

first anchors and broadcasts them along with its position

throughout the network. Within Na time slots, all nodes,

including the super anchor, become a priori aware of

all the anchors’ positions and all Na(Na − 1)/2 inter-

distance pairs (i.e., true and estimated). Please note here

that each anchor broadcasts information only one time,

thereby allowing huge overhead and power savings with

respect to the protocol adopted in [11]. This benefit

comes, however, at the cost of a reduced training data

size. Indeed, with our protocol, the super anchor is able

to progressively accumulate up to
(

N2
a +Na − 2

)

/2
distance pairs while a relatively larger training data could

be collected if each anchor were to broadcast separately

its position and distances as done in [11]. Nevertheless,

we will show below that the one gathered through the

proposed power-efficient information sharing protocol is

more than enough for the proposed ANN-based WSN

localization technique to outperform most representative

range-free algorithms currently available in the literature.

V. SIMULATIONS RESULTS

Monte-Carlo simulations are provided in this section

to support the theoretical and analytical results estab-

lished previously. These simulations are conducted to

compare, under the same network settings, the proposed

algorithm with three of the best benchmarks currently

available in the literature, namely, DV-Hop [6], LAEP

[7], and MLPNN-CGFR [11]. All simulation results are

obtained by averaging over 500 trials. In all simulations,

nodes are uniformly deployed in a 2-D square area

S = 104m2 and R and Na are, respectively, set to 18m
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Fig. 3. Localization NRMSE achieved by the proposed algorithm and
its counterparts for different values of N and DoI.

and 20. Furthermore, a nodes’ RPP model characterized

by a degree of irregularity (DoI) similar to that in [9]

is considered. As a performance metric, we propose the

normalized root mean square error (NRMSE) defined as

NRMSE =

∑N−Na

i=1

√

(xi − x̂i)
2
+ (yi−ŷi)

2

(N −Na)R
. (9)

Fig. 3 plots the localization NRMSE achieved by

the proposed algorithm, LAEP, DV-Hop, and MLPNN-

CGFR for different values of N and DoI. As can be

observed there, the proposed algorithm always outper-

forms its counterparts as it turns out to be until about

four, three, and two times more accurate than LAEP,

DV-Hop, and MLPNN-CGFR, respectively. In Fig. 3(b),

the localization NRMSE achieved by all algorithms de-

teriorates as expected with DoI. However, the proposed

algorithm show much more robustness to DoI and its

accuracy losses than its counterparts.

Figs. 4(a) and 4(b) plot the NRMSE’s standard devia-
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Fig. 4. NRMSE’s standard deviation achieved by the proposed
algorithm and its counterparts for different values of N and DoI.

tion achieved by all localization algorithms for different

values of N and DoI, respectively. They show that

it decreases as expected for all algorithms when the

node density increases. However, the one achieved by

our algorithm, in contrast to its counterparts, remains

relatively very small and even approaches zeros when

N becomes large enough. Furthermore, Fig. 4(b) shows

that the NRMSE’s standard deviation’s increase with the

DoI is relatively slow and moderate with the proposed

algorithm, but steep and significant with all three bench-

marks.

Fig. 5 illustrates the NRMSE’s CDF achieved by

all algorithms and suggests that 99% of the sensors

could estimate their position within a NRMSE value

of less than 1 with the proposed technique. In contrast,

only 61% of the nodes achieve the same accuracy with

MLPNN-CGFR, 43% with Dv-Hop, and only 30% with

LAEP. This further proves the superiority of our new

WSN localization algorithm over its counterparts in the

presence of anisotropic signal attenuation.
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VI. CONCLUSION

In this letter, we proposed a novel range-free local-

ization algorithm robust against the anisotropic signal

attenuation induced by fading, shadowing, and interfer-

ence, etc., present in any wireless channel. To do so, we

developed a new DE approach able to efficiently derive

distance estimates in closed form. We also developed

an ANN-based power-efficient DE correction mecha-

nism that accounts for anisotropic signal attenuation.

The proposed algorithm significantly and unambiguously

outperforms most representative range-free localization

algorithms, not only in accuracy, but also in robustness

against anisotropic attenuation.
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