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Abstract—In this paper, we investigate maximum likelihood
(ML) time delay (TD) and carrier frequency offset (CFO) syn-
chronization (i.e., estimation and pre-compensation) in decode-
and-forward (DF) cooperative systems operating over time-
varying channels (TVCs). The new technique is embedded at
each relay node in order to avoid the drawbacks of multidi-
mensional ML estimation at the destination and to minimize
the overhead cost. By accounting for a perfect Doppler spread
value, the new synchronization solution delivers accurate TD
and CFO estimates at each relay. The resulting TD and CFO
estimates along with the channel estimates are then exploited
by the MIMO relay for precompensation at each node of the
distributed transmit beamforming signals to ensure constructive
maximum ratio combining (MRC) at the destination. Simulation
results show significant synchronization accuracy improvement
over previous distributed multi-node synchronization techniques
assuming time-constant channels (TCCs). The latter translates
into noticeable gains in terms of useful (i.e., after accounting
for incurred overhead) link-level throughput, more so at higher
Doppler.

Index Terms—Carrier Frequency Offset (CFO), Time De-
lay (TD), Time-Varying Channel (TVC), Doppler Spread, Dis-
tributed MIMO Relay Beamforming, Cooperation, Decode-and-
Forward (DF), Multi-Node Synchronization, Maximum Likeli-
hood (ML).

I. INTRODUCTION

Spatial diversity is a well-known concept allowing to com-
bat the channel fading and increase the overall throughput
of communication systems. Such attracting advantage can be
achieved through multiple solutions. Cooperative networks
provide a distributed solution that avoids some of the diffi-
culties related to traditional MIMO systems [1, 2]. Indeed, in
many situations, some user equipments are not able to embed
multiple antenna sensors due to size and power limitations. As
such, users can cooperate with each other to form a virtual
antenna array. However, some challenges need to be addressed
to ensure constructive cooperation between the relays. One
major problem in cooperative relaying systems is multi-node
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synchronization, both in time and frequency. The latter is cru-
cial for the proper implementation of energy-, spectrum-, and
area-efficient distributed MIMO-relay beamforming between
a given source-destination link having coverage limitations.

There are two basic approaches to alleviate the effect of
TVC distortions in time, frequency, phase, and amplitude:
the closed-loop and the open-loop compensation procedures.
In the closed-loop approach, the destination performs the
estimation of all the synchronization parameters along with
the channel coefficients. Those estimates are later fed to an
equalization block to combat time and frequency asynchro-
nism as proposed in [3,4]. To their credentials, closed-loop
approaches exhibit less overhead as the interaction among
the relay nodes is kept to minimal while the destination
coordinates the synchronization process. However, it may be
difficult for wireless networks without the adequate infrastruc-
ture to handle highly-complex multi-dimensional estimation
algorithms. In open-loop approaches, however, the source
signal to be relayed is shifted in the temporal and frequency
domains before transmission, as proposed in [5]. By doing
so, we ensure that replicas of the same transmitted signal,
originating from different relay nodes, arrive at the same time
and combine constructively at the receiver. In this scenario,
less complex estimation algorithms can be considered at the
nodes with minimal signaling from the destination.

As far as the estimation of the synchronization param-
eters is concerned, multiple techniques exist in the open
literature. On one hand, the works in [6-9] investigate TD
synchronization while neglecting the CFO’s effect. On the
other hand, the solutions introduced in [10-13] deal with
multiple CFOs while neglecting the TD effect. It is also
common to perform joint estimation of all parameters at
the destination in closed-loop cooperative networks [3,14,15].
Although these solutions work very well in practice, they
suffer from high computational complexity since they require
solving a multi-dimensional problem that increases with the
number of relaying nodes. Moreover, the synchronization
task may become costly in terms of overhead. Indeed, after
estimating the TDs and CFOs, the destination node needs to
feed them back to the relays. Such step leads to an additional
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overhead problem along with quantization errors since the
estimated values are quantized before the feedback phase. An
alternative solution can be considered by relying on distributed
TD and CFO synchronization where the estimation process
can be performed at each relay node instead of the receiver. In
[16], a distributed synchronization method was proposed for
dense wireless network using a correlation-based TD and CFO
estimator. Yet, all the above-mentioned techniques rely on
the simplifying TCC assumption. In contrast, fifth-generation
(5G) communication systems are expected to support reliable
communications at very high velocities reaching 500 Km/h
(e.g., in high-speed trains) [17]. For such systems, the con-
ventional TCC assumption leads to severe performance losses.

Motivated by these facts, we develop in this paper a new
decentralized ML synchronization technique that tackles the
challenging TVC case over multi-node relaying transmissions.
The proposed ML TVC solution builds upon a very useful
approximation of the channel covariance matrix by a two-
ray propagation model. It provides accurate ML estimates of
the TDs and CFOs at a reduced computational cost because
it does not require any matrix inversion. Simulation results
show significant synchronization accuracy improvement over
previous distributed multi-node synchronization techniques
assuming TCCs. The latter translates into noticeable gains in
terms of useful (i.e., after accounting for incurred overhead)
link-level throughput, more so at higher Doppler.

The rest of the paper is organized as follows. In Section
II, we introduce the system model. In Section III, we derive
the new ML solution of the underlying estimation problem.
The pre-compensation procedure is presented in Section IV. In
Section V, we run exhaustive computer simulations to assess
the performance of the proposed distributed synchronization
solution both at the component and link levels in terms of
estimation accuracy and throughput, respectively. Finally, we
draw out some concluding remarks in Section VI.

The notations adopted in this paper are as follows. Vectors
and matrices are represented in lower- and upper-case bold
fonts, respectively. Moreover, {.}T and {.}H denote the
conjugate and Hermitian (i.e., transpose conjugate) operators
and det{.} returns the determinant of any square matrix. The
Euclidean norm of any vector is denoted as ||.|| and IN denotes
the (N×N) identity matrix. For any vector x, diag{x} refers
to the diagonal matrix whose elements are those of x. For
any matrix X, [X]q and [X]l,k denote its qth column and
(l, k)th entry, respectively. The element-wise product between
any two vectors x1 and x2 is denoted as x1 ⊙ x2. Moreover,
{.}∗, ∠{.}, and |.| return the conjugate, angle, and modulus of
any complex number, respectively. Finally, E{.} stands for the
statistical expectation, j is the imaginary unit (i.e., j2 = −1),
and the notation , is used for definitions.

II. SYSTEM MODEL

Consider a cooperative DF communication system with
a source, S, a destination, D, and a MIMO relay of K
nodes, R1, R2, . . . RK , as shown in Fig. 1. The K relays are
subject to CFOs and TDs due to the presence of different

local oscillators. We denote the CFOs of the K relays by
(ν̄1, ν̄2, · · · , ν̄K) ⊂ [0, νmax]

K and their respective TDs by
(τ̄1, τ̄2, · · · , τ̄K) ⊂ [0, τmax]

K . The parameters, νmax and τmax,
can be set as large as desired within the vicinity of practical
CFO and TD values. The true unknown parameters will also
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Fig. 1. System model for the distributed MIMO-relay beamforming scheme
illustrated during the DT (data transmission) cycles.

carry the superscripts (.)[sr] and (.)[rd] to indicate the com-
munication link to which they belong, i.e., S to Rk and Rk to
D, respectively. Most importantly, in stark contrast to previous
works on multi-node synchronization which have only dealt
so far with TCCs, all the nodes and/or the destination are
assumed in this work to be in motion. Hence the second-
hop’s communication link between each relay node Rk and
the destination has a TVC characterized by the Doppler spread
σDk

.
At first, during a synchronization period, the final desti-

nation starts by broadcasting a common training sequence,
a
[dr] , [a[dr](1), a[dr](2), . . . , a[dr](L)]T , to all the relays.

Hence, every relay node will be able to estimate its own
synchronization parameters locally and independently of all
others. This approach, in contrast to [3], alleviates the hur-
dles of estimating closely-spaced TDs and/or CFOs when
implemented jointly at the destination. During this pilot trans-
mission (PT) period, the destination broadcasts the following
known signal to all the relays:

s[dr](t) =

L−1∑

l=0

a
[dr][l + 1]g (t− lT ) , (1)

where g(t) is the pulse-shaping function and T is the symbol
duration. The continuous-time received signal at the kth relay
is given by:

x
[dr]
k (t) = h

[dr]
k (t)s[dr]

(
t− τ̄

[dr]
k

)
ej2πν̄

[dr]
k

t + n
[dr]
k (t), (2)

where h
[dr]
k (t) is a flat-fading Rayleigh channel and n

[dr]
k (t)

is the additive Gaussian noise component assumed to be
temporally white. Using its received signal in (2), each relay
will find the estimates, τ̂

[dr]
k and ν̂

[dr]
k , for its channel TD

and CFO, τ̄
[dr]
k and ν̄

[dr]
k , respectively. The signal in (2)

is oversampled by a factor Q = T/Ts where Ts is the
sampling period. The observation sequence corresponding to



the sampling time instants, {nTs}QL−1
n=0 , is given by:

x
[dr]
k (n) = h

[dr]
k (n)

L−1∑

l=0

a
[dr][l+1]g

(
nTs−lT− τ̄

[dr]
k

)
ej2πν̄

[dr]
k

n
Q

+ n
[dr]
k (n), (3)

where the additive white Gaussian noise is denoted by
n
[dr]
k (n) ∼ CN (0, σ2

nk
). Notice in (3) that we keep using the

same notation, ν̄[dr]k , as in (2) for the normalized (by Ts) CFO
between Rk and D, that is for the sake of simplicity.

In order to rewrite (3) in a matrix/vector form, we
denote by x

[dr]
k , [x

[dr]
k (0),x

[dr]
k (1), . . . , x

[dr]
k (QL − 1)]T ,

h
[dr]
k , [h

[dr]
k (0), h

[dr]
k (1), . . . , h

[dr]
k (QL − 1)]T , and n

[dr]
k ,

[n
[dr]
k (0), n

[dr]
k (1), . . . , n

[dr]
k (QL − 1)]T the vectors that con-

tain, respectively, the received samples, the channel coef-
ficients, and the noise components. We also introduce the
following matrix that is parametrized by the generic TD
variable τ :

G(τ),




g(0− T − τ) . . . g(0− LT − τ)
g(Ts − T − τ) . . . g(Ts − LT − τ)

...
...

...
g
(
(QL−1

)
Ts−T−τ) . . . g

(
(QL−1)Ts−LT−τ

)


.

Starting from (3) and resorting to some straightforward alge-
braic manipulations, it can be shown for k = 1, 2, . . . ,K that
we have:

x
[dr]
k = Λ

(
ν̄
[dr]
k

)
Ω

(
τ̄
[dr]
k

)
h
[dr]
k + n

[dr]
k , (4)

where:

Ω (τ) , diag
{
G (τ) a[dr]

}
, (5)

Λ(ν) ,




1 0 . . . 0
0 ej2πν 0 . . . 0
...

...
...

...
...

0 . . . . . . . . . ej2πν(QL−1)/Q


.(6)

For the sake of clarity, we will only focus on the second hop
and assume the first hop’s estimation and transmission tasks
to be ideal. Indeed, the proposed synchronization algorithm
can also be applied at each relay node to obtain the matched
filtered samples required to decode the data locally during the
data transmission (DT) period. As such, we will drop in (4)
and in all the equations of the next section the [dr] superscript
thereby leading to:

xk = Λ (ν̄k)Ω (τ̄k)hk + nk. (7)

III. JOINT TD AND CFO SYNCHRONIZATION

A. Joint TD and CFO ML Estimator

In this section, we start by deriving the log-likelihood
function (LLF) that depends on all the unknown parameters
observed separately at each relay, i.e., νk, τk, hk, σ2

nk
. Since

the noise components are assumed to be temporally white and
Gaussian distributed, i.e., nk ∽ N (0, σ2

nk
IQL), each vector

xk in (7) is also Gaussian distributed. Hence, it can be shown
that the actual LLF at each relay Rk is given by1:

L
(
νk, τk, hk, σ

2
nk

)
= −ln (det{Rxkxk

})−x
H
k R

−1
xkxk

xk, (8)

where Rxkxk
= E

{
xkx

H
k

}
is the covariance matrix of the

zero-mean observation vector xk whose expression follows
from (7) as:

Rxkxk
= Λ (νk)Ω (τk)Rhkhk

Ω (τk)
H
Λ (νk)

H
+ σ2

IQL, (9)

where Rhkhk
= E

{
hkh

H
k

}
. It is obvious that maximiz-

ing L
(
νk, τk, hk, σ

2
nk

)
requires the inversion of a large-size

(QL × QL) covariance matrix and the computation of its
determinant. In the following, we develop a new solution that
avoids these costly calculations. Actually, the new solution
relies on a second-order Taylor series approximation of the
covariance matrix of the channel, as described in [18], which
leads to:

Rhkhk
=

σ2
hk

2
WW

H , (10)

where W is defined as follows:

W = [w w
∗], (11)

and the two vectors in (11) are given by:

w =
[
1 e−jσDk

Ts . . . e−j (QL−1)σDk
Ts

]T
.

Injecting (10) in (9) leads to the following overall covariance
matrix approximation:

Rxkxk
=

σ2
hk

2 Λ (νk)C(τk)C
H(τk)Λ (νk)

H
+σ2

IQL,

in which the matrix C(τk) is defined as follows:

C(τk) , [c1(τk) c2(τk)] = Ω (τk)W. (12)

To find the inverse of Rxkxk
and its determinant, we start

by finding the analytical expressions for the eigenvalues of
C(τk)C

H(τk) and their corresponding eigenvectors. Clearly,
the matrix C(τk)C

H(τk) is of rank two and has the same
non-zero eigenvalues as C

H(τk)C(τk). Since the latter is a
2 × 2 matrix, its eigenvalues can be computed analytically.
Indeed, it can be shown that:

C
H(τk)C(τk) =

(
α(τk) ϕ(τk)
ϕ(τk)

∗ α(τk)

)
, (13)

where:

α(τk) =

QL−1∑

n=0

(
Ωn,n(τk)

)2
, (14)

ϕ(τk) =

QL−1∑

n=0

(
Ωn,n(τk)

)2
e2σDk

(n−1)Ts . (15)

From the roots of the characteristic polynomial of the matrix
C

H(τk)C(τk) in (13), the two eigenvalues are obtained as
follows:

λ1 = α(τk) + |ϕ(τk)| and λ2 = α(τk)− |ϕ(τk)|. (16)

1After dropping the constant terms.



Hence the corresponding unit-norm eigenvectors are given by:

v1 =
1√
2

[
1

ϕ(τk)
∗

|ϕ(τk)|

]T
and v2 =

1√
2

[
1 − ϕ(τk)

∗

|ϕ(τk)|

]T
.

Since λ1 and λ2 are also the two non-zero eigen-values of
C(τk)C(τk)

H , the singular value decomposition (SVD) of
the matrix C(τk) is obtained as follows:

C(τk) = U(τk)Σ(τk)
1/2

V(τk)
H , (17)

where:

Σ(τk) , diag{λ1, λ2} and V(τk) , [v1 v2]. (18)

Moreover, since V(τk)
H
V(τk) = I2, then U(τk) = [u1 u2]

can be expressed as follows:

U(τk) = C(τk)V(τk)
H
Σ(τk)

1/2. (19)

Therefore, it follows that:

u1 =
1√
2λ1

(
c1(τk) +

ϕ(τk)
∗

|ϕ(τk)|

)
, (20)

u2 =
1√
2λ2

(
c2(τk)−

ϕ(τk)
∗

|ϕ(τk)|

)
. (21)

Now, by injecting (17) back into (12), it follows that:

Rxkxk
= σ2

nk

(
ρ
2B (νk, τk)Σ(τk)B (νk, τk)

H
+ IQL

)
,(22)

where B (νk, τk) = Λ (νk)U(τk) and ρk = σ2
hk
/σ2

nk
is the

signal-to-noise ratio (SNR). Using the Woodburry identity
[19], the inverse of (22) can be computed analytically as
follows:

R
−1
xkxk

=
1

σ2
nk

IQL − 1

σ2
nk

B

(
2

ρk
Σ

−1 +B
H
B

)
−1

B
H,(23)

from which, the matrix and vector arguments have been
removed for the sake of simplicity. Next, exploiting the fact
that u1 and u2 are orthogonal with unit norms, the inverse of
the covariance matrix in (23) can be written as follows:

R
−1
xkxk

=
1

σ2
nk

IQL − 1

σ2
nk

B (νk, τk) Γ(τk)B (νk, τk)
H , (24)

where:

Γ(τk) = diag

{
ρλ1

2 + ρλ1
,

ρλ2

2 + ρλ2

}
. (25)

Moreover, from (22), it can be shown that the determinant of
Rxkxk

is given by:

det{Rxkxk
} =

(σ2
n)

QL

4
(ρλ1 + 2)(ρλ2 + 2). (26)

Finally, by injecting (24) and (26) back into (8), the LLF
reduces to:

L
(
ν, τ, σ2

n

)
= − ln ((ρλ1 + 2)(ρλ2 + 2))

+
1

σ2
n

∣∣∣
∣∣∣Γ(τk)1/2B (νk, τk)

H
xk

∣∣∣
∣∣∣
2

. (27)

By expanding the norm in (27), the LLF can be expressed as
follows:

L
(
ν, τ, σ2

n

)
= − ln ((ρλ1 + 2)(ρλ2 + 2))

+
1

σ2
n

2∑

i=1

ρλi

2 + ρλi

∣∣uH
i Λ(ν)Hxk

∣∣2,(28)

and the joint ML estimates of νk and τk, assuming perfect
knowledge of the Doppler spread σDk

, are obtained as the
solution to the following two-dimensional optimization prob-
lem:

[ν̂k, τ̂k] = argmax
ν,τ

L
(
ν, τ

)
. (29)

Note here that the estimates of the SNR and the noise
variance are obtained using the same approach adopted in
[20]. Moreover, by closely inspecting the expression in (28),
we observe that the underlying LLF can be evaluated more
efficiently at each TD candidate value, and all CFO candidate
values using the fast Fourier transform (FFT).

B. Cramer Rao Lower Bound (CRLB)

In the TVC case, the CLRB was previously derived in [21]
for the Doppler spread estimation. In the following, we extend
it to joint CFO and TD estimation for performance bench-
marking. Recall that the covariance matrix of the received
signal is given by:

Rxkxk

= Λ (ν̄k)Ω (τ̄k)E
{
hkh

H
k

}
Ω (τ̄k)

H
Λ (ν̄k)

H
+σ̄2

nk
IQL.(30)

Let ζ = [τ̄k, ν̄k, σ̄
2
nk
]T be a vector that contains all the

parameters of interest, then the (k, l)th element of the Fisher
information matrix (FIM) can be written as follows:

[J(ζ)]k,l = trace

[
R

−1
xkxk

∂Rxkxk

∂ζk
R

−1
xkxk

∂Rxkxk

∂ζl

]
. (31)

The CRLBs for the TD and CFO parameters are obtained by
finding the inverse of the FIM in (31) and then taking its first
and second diagonal entries, respectively.

IV. DISTRIBUTED TRANSMIT BEAMFROMING AT THE

MIMO RELAY

The ML estimator is run at each relay node with the
transceiver illustrated in Fig. 2. During a PT period, each
node performs a channel parameter estimation task. During
the DT period, each relay will transmit the useful data to
the destination while ensuring that the signal is modified
properly using the TD, CFO and channel estimates made
available during the PT period. Note that the synchronization
parameters are expected to vary with time, but actually at a
rate much slower than the channel time-variations. Therefore
the synchronization parameters will be refreshed once each
P consecutive DT periods. Right after the synchronization
period, the destination will periodically transmit to all the
relays, at each pth period, a training sequence ap that only
contains Lch pilot symbols, i.e., a

[dr] = {a[dr]l }Lch
l=1. The
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Fig. 2. Block diagram of the DF transceiver at the kth relay.

latter will be exploited by each relay to update its channel
state information (CSI) with respect to the destination. More
specifically, the corresponding oversampled signal denoted2

here as x̃
[dr]
k is processed by relay Rk to find the ML

estimate of its own complex-valued channel coefficient of the
D−to−Rk link during the {pth}Pp=1 period, as follows :

ĥ
[dr]
k,p =

1
∣∣∣∣r
(
ν̂k, τ̂k

)∣∣∣∣2 r
H
(
ν̂k, τ̂k

)
x̃
[dr]
k , k = 1, 2, . . . ,K,(32)

where:
r(ν, τ) = Λ(ν)G(τ)a[dr]. (33)

To ensure that the signals from all the relays arrive at
the receiver coherently and thus combine constructively, the
relays must adjust their carrier frequencies, carrier phases, and
symbol timings as follows:

• The signal carrying the useful data to be transmitted by
the kth relay is delayed as follows:

s(t− τ̂ (comp)
k ) =

Ldata−1∑

l=0

bp,l+1 g
(
t− lT − τ̂ (comp)

k

)
, (34)

where {bp,l}Ldata
l=1 are the symbols containing the useful

data during the pth period assuming here perfect trans-
mission links between the source and the relays, and
τ̂ (comp)
k = τmax − τ̂

[dr]
k .

• The relay node pre-compensates its CFO by de-rotating
the signal in (34) as follows:

e−j2 π ν̂
[dr]
k

t s
(
t− τ̂ (comp)

k

)
. (35)

• By relying on the channel reciprocity property of time-
division duplex (TDD) schemes, we pre-compensate the
channel phase and match its amplitude with the complex
channel estimate to generate the following transmit signal
yk(t) at each relay:

yk(t) =
ĥ
[dr]
k,p

∗

∣∣∣
∣∣∣ĥ[dr]

p

∣∣∣
∣∣∣
2 e−j2 π ν̂kt s

(
t− τ̂

(comp)
k

)
, (36)

where ĥ
[dr]
k,p is the channel estimate at the kth relay

obtained from (32) and ĥ
[dr]
p = [ĥ

[dr]
1,p , ĥ

[dr]
2,p , . . . , ĥ

[dr]
K,p]

T .

2Note here that x̃[dr]
k

is equivalent to x
[dr]
k

in (7) using, however, another
training sequence transmitted specifically for channel estimation purposes.

In (36), we need to have the channel estimates over
all D − R links available at each relay node for the
sole purpose of calculating the square norm of the K-
dimensional D − R vector channel. The latter can be
fed back by the destination. Alternatively, to avoid any
additional overhead, it can be simply approximated by
its average value K as follows:

yk(t) ≈
ĥ
[dr]
k,p

∗

K
e−j2 π ν̂kt s

(
t− τ̂ (comp)

k

)
. (37)

At the destination, the received signal, x[rd]
p (t), which is the

superposition of all the pre-synchronized signals transmitted
by the K relays, can be expressed as follows:

x[rd]
p (t) =

K∑

k=1

h
[rd]
k,p (t) e

−j2 π νkt yk(t− τk) + w(t), (38)

where h
[rd]
k,p (t) is the true time-varying channel pertaining to

the kth relay. By substituting yk(t) in (38) with its expression
in (36), the received signal is rewritten as follows:

x[rd]
p (t) =

K∑

k=1

h
[rd]
k,p (t)

ĥ
[dr]
k,p

∗

∣∣∣
∣∣∣ĥ[dr]

p

∣∣∣
∣∣∣
2 ej2 π (ν̂

[dr]
k

−ν
[dr]
k

)t

s
(
t− τ̂ (comp)

k − τ
[dr]
k

)
+ w(t). (39)

V. SIMULATION RESULTS

In the following, we discuss our simulation results at both
the component and link levels when all previous works would
stop short from moving to the more time consuming yet much
more insightful link level. In all our simulations, we assume as
would be expected in practice that the K relays are co-located
at about the same distance and moving at the same relative
speed from the destination whether the latter is stationary or
also in motion itself. Under this assumption, the average SNR
and the Doppler frequency are assumed to be the same over all
R-D and D-R links. Nevertheless, both the SNR and Doppler
frequency values could be different from one second-hop link
to another. In the following, we will investigate in different
scenarios the estimation accuracy of the tested synchronization
parameter estimators in terms of the normalized mean square
error (NMSE) before assessing their link-level performance.

A. Component-Level Simulations

In all component-level simulations, we consider a training
sequence, a[dr], of Lsync = 32 QPSK symbols and a square
root raised-cosine shaping-pulse filter (SRRC) with a roll-off
factor ρ = 0.3. In Fig. 3, we compare the proposed technique
against the SAGE algorithm in [3], the sole benchmark
available in the literature dealing with multi-node TD and
CFO synchronization, and the CRLBs derived in Section
III.B in terms of NMSE performance. We see that all the
mentioned techniques approach the CRLB under the TCC
assumption nearly achieved at FD = 0.1 Hz. Indeed, since the
SAGE technique is built upon such approximation, it provides
accurate estimates with a small degradation at high SNRs.
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Fig. 3. CRLB and NMSE vs SNR of the ML TVC, ML TCC, and SAGE
techniques vs the SNR with FDk

= 0.1 Hz and uniform Jakes’ model for:
(a) the TDs and (b) the CFOs.

This degradation is caused by the error floor resulting from
this approximation made to avoid grid search maximization.

In Fig. 4, we tackle a more challenging case with sig-
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Fig. 4. CRLB and NMSE vs SNR of the ML TVC, ML TCC, and SAGE
techniques vs the SNR with FDk

= 500 Hz and uniform Jakes’ model for:
(a) the TDs and (b) the CFOs.

nificantly higher Doppler value FD = 500 Hz. We observe
that the new technique outperforms the TCC-based technique
(i.e., SAGE) in terms of CFO and TD estimation accuracy,
especially at medium and high SNR values. Clearly, the TCC
assumption does not hold for high Dopplers. As such, the
SAGE algorithm fails to converge to the global maximum and
exhibits poor performance. Moreover, the perfect knowledge
of the Doppler spread allows the ML TVC-PD technique to
provide better estimates.

To better investigate the effect of Doppler frequency on
the synchronization accuracy, we plot in Fig. 5 the NMSE
of all techniques against the Doppler. Obviously ML TVC-
PD outperform the TCC-based technique (i.e., SAGE) over a
wide Doppler range (i.e., FDk

≤ 100 Hz). As the Doppler
increases, the TCC-based technique start experiencing serious
difficulties to converge to the global maximum that translate
into extremely poor TD and CFO estimation accuracies.

0 500 1000 1500

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

(a)

FD [Hz]

N
M
S
E

 

 

0 500 1000 1500
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

(b)

FD [Hz]

N
M
S
E

 

 

SAGE
TVC-PD
CRLB

Fig. 5. CRLB and NMSE vs FD of the ML TVC and SAGE techniques
with SNR = 20 dB and uniform Jakes’ model for: (a) the TDs, and (b) the
CFOs.

B. Link-Level Simulations

Our link-level simulations were run using the key setup
parameters listed in Table I.

TABLE I
SIMULATION PARAMETERS

Parameters Symbol Values
Symbol period T 1/14 ms
Number of relays K 2
Maximum Doppler shift {FDk

}K
k=1 {0.1, 500} Hz

Oversampling factor Q 2
Roll-off factor ρ 0.3
TDs τk Uniformly random (i.i.d.)
CFOs νk Uniformly random (i.i.d.)
Rk − D channel hk Rayleigh random (i.i.d.)

Fig. 6 depicts the resulting throughput for three different
modulation orders (QPSK, 16-QAM and 64-QAM) and K
relays. We consider in Figs. 6 (a) and 6 (b) the case where all
K relay-destination links have the same maximum Doppler
frequency shift of 15 and 100 Hz, respectively. For a given
modulation order M , the throughput is obtained from the
symbol error rate (SER) as follows:

Throughput =
1

T
log2(M)(1− SER)(1−R), (40)

where R is the overhead ratio. Note here that the latter is
computed over a period that spans Lsync symbols for synchro-
nization and P periods each of which includes Lch = 2 pilot
symbols followed by Ldata = 12 information-bearing symbols.
As such, the overhead ratio is given by:

R =
Lsync + LchP

Lsync + (Lch + Ldata)P
. (41)

Our simulations were obtained for Lsync = 32 and P = 3.
Note here that the overhead ratio associated with the synchro-
nization period becomes negligible for such large value of P .
The latter cannot, however, be increased indefinitely as it is
dictated by the required refreshment rate P that better copes
with the time variations of the synchronization parameters.

We see from Fig. 6 (a) that QPSK transmissions, among the
different considered modulations, provide higher throughput
for SNR values below 9 dB. When the SNR ranges between 10
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Fig. 6. Link-level throughput vs SNR for ML TVC-PD at K = 2 relays
and a refreshment rate P = 100 for: (a) {FDk

}K
k=1 = 0.1 Hz, and (b)

{FDk
}K
k=1 = 500 Hz.

dB and 19 dB, 16-QAM becomes more suitable whereas 64-
QAM dominates when the SNR exceeds 20 dB. The resulting
throughput curve assuming an adaptive (i.e., SNR-dependent)
modulation is depicted by the black curve.

In Fig. 6 (b), we show the performance of the proposed dis-
tributed beamforming scheme at a higher Doppler FDk

= 500
Hz (i.e., fast TVCs). We see that QPSK transmissions become
more appropriate over a large range of SNR (i.e., SNR = 17
dB). Indeed, at low Doppler values, the phase estimates of (32)
provide accurate values since the channel varies slowly during
the same period. Hence, the decoder at the destination is able
to accurately estimate the transmitted symbols. In the case
of high mobility, the channel varies rapidly during the same
period, leading to a more severe degradation of the channel
estimates. Such results affect the decoding process especially
with high modulation which are more sensitive to phase shifts.

VI. CONCLUSION

In this paper, we addressed the problem of time and
frequency synchronization in cooperative systems over time-
varying channels. For the proposed technique, we assume
perfect knowledge of the Doppler spread to provide accurate
TD and CFO synchronization estimates. We showed under
the TCC assumption that all techniques exhibit approximately
the same performance. However, when the Doppler increases,
the TCC-based technique exhibit poor performances while the
new ML TVC continues to provide accurate estimates.
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