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Abstract—This paper proposes a new user-centric base-station
(BS) virtualization strategy aiming to adapt users communica-
tion links to their quality of service (QoS) requirements and
environments. The developed user-centric virtual base stations
(uVBS)s offer substantial improvements in terms of power and
spectral efficiencies while requiring minimum signaling changes
at both user and network sides. They also better leverage new 5G
features such as massive connectivity and extreme densification
as well as new concepts such as massive MIMO and mmWave
spectrum. Furthermore, our uVBSs are able to adapt to multiple
network dimensions such as time, space, etc.

Index Terms—Wireless/radio access virtualization, cloud-radio
access network (C-RAN), user-centric architecture, dynamic
adaptive clustering, massive MIMO, mmWave.

I. INTRODUCTION

Cell-centric architectures are adopted in current 4G radio
access networks (RAN)s where the cell is the network’s focal
point serving several users (i.e., devices: sensors, smartphones,
etc., machines, vehicles) located in its coverage area [1]-[8].
Such conventional networks have limited spectrum resources
and, hence, approach their limits when the services’ data
rate and/or the number of users increase/s. A straightforward
way to circumvent this impediment is to increase the system
capacity by deploying more and more transmission points
(TP)s. This reduces the number of devices competing for
each TP’s resources and, hence, the spectrum reuse across
large geographic areas. However, extreme densification results
in inevitable high inter-cell interference and a poor cell-edge
user experience. Some remedial solutions such as coordinated
beamforming [9]-[11], inter-cell interference coordination, and
fractional frequency reuse have been introduced in 4G RAN to
overcome this liming factor. The latter were unfortunately un-
able to completely remove the cell-boundary effects, although
they offer some performance gains at the cost of increased
overhead and complexity.

In contrast to 4G RANs, future 5G networks will exploit
wireless access virtualization (WAV) to provide boundaryless
communications [1]-[8]. Indeed, using WAV, the coverage is
dimensioned around the user making it the network’s focal
point rather than the cell. The network will then adapt the data
transmission to the user’s quality of service (QoS) requirement
and environment, thereby creating the illusion of a moving
virtual cell following it. As a result, we break away from
the traditional cell-centric RAN by providing boundaryless
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communications where all users do not experience any cell-
edge effects. This would potentially lead to substantial im-
provements in terms of power efficiencies and network’s
spectral and, therefore, to the fulfillment of 5G’s pledge of
ubiquitous user experience [12]. WAV will practically be
enabled by capitalizing on both the massive connectivity and
extreme densification to allow each user to be served by a set
of optimally and carefully selected transmission points (TP)s
forming a user-centric virtual base-station (uVBS).

Various TPs clustering approaches already exist in the
literature and can be classified into two main categories:
static and dynamic [13]-[17]. When static clustering is per-
formed, uVBSs are formed using solely system information
(i.e., TPs’ density and positions, their available resources,
etc.) and, therefore, are predetermined and rarely updated.
This considerably reduces not only the complexity of static
clustering, but also the extra latency, overhead, and power
consumption it requires. Nevertheless, this approach usually
achieves poor performance in terms of both spectral efficiency
and throughput [13]. This occurs mainly because uVBSs
are not adapted to the highly changing users’ environments
owing to the lack of user-side information such as channel
quality indicator (CQI), the user’s channel state information
(CSI), signal-to-interference-plus-noise-ratio (SINR), etc. In
turns, dynamic clustering, which exploits the latter infor-
mation, provides much better performance, but incurs extra
latency, overhead, and power costs that are condemned to
increase even more with the massive connectivity and network
densification foreseen in future 5G networks [14]-[17]. In
addition, the uVBSs are usually formed using iterative greedy
highly-complex algorithms that investigate all potential set
constructions to ultimately settle on network partitions which
are usually far from optimal. As both static clustering’s low
cost and dynamic clustering’s high efficiency features are keys
to enable efficient uVBSs, this work aims to establish a best-
of-the-two-worlds clustering technique that combines these
approaches’ benefits while avoiding their drawbacks.

In this paper, we propose a new user-centric base-station
(BS) virtualization strategy aiming to adapt users communi-
cation links to their quality of service (QoS) requirements
and environments. The developed uVBSs offer considerable
improvements in terms of power and spectral efficiencies and,
further, requires minimum signaling changes at both user and
network sides. They also better leverage new 5G features such
as massive connectivity and extreme densification as well as
new concepts such as massive MIMO and mmWave spectrum.
Furthermore, our uVBSs are able to adapt to multiple network
dimensions such as time, space, etc.



II. NETWORK MODEL

We consider in this paper a cloud-RAN (C-RAN) that
consists of N users and M TPs connected through fiber to
a central unit (CU). Each TP is equipped with K antennas
while users are assumed to have a single antenna. All users
are assumed to be actively communicating with the network
during TP clustering.

Fig. 1: Proposed TPs clustering approach.

III. PROPOSED USER-CENTRIC WAV APPROACH

In order to select the proper TP sets, we propose in
this work to exploit the maximum reference signal received
power (RSRP) available locally at every user (i.e., user-side
information). Let P kmax be the maximum RSRP at the k-th
user given by

P kmax = max {Pi−k, i = 1, . . . ,M} , (1)

where Pi−k denotes the RSRP of the i-th TP at the k-th user.

A. Concept
Let us consider two system parameters α, β ∈ [0, 1]

that encompass system information such as TPs’ and users’
densities, available resources, and positions, etc. Exploiting α
and β along with (1), we can build the following two clusters
from the M TPs deployed in in the C-RAN:

SCk =
{

TPi=1,...,M/s.t. αP
k
max ≤ Pi−k ≤ P kmax

}
, (2)

and

NCk =
{

TPi=1,...,M/s.t. βαP
k
max ≤ Pi−k < αP kmax

}
. (3)

where SCk and NCk are the k-th user’s serving cluster (SC)
and nulling cluster (NC), respectively. Accordingly, using the
proposed clustering approach, TPs with RSRPs at the k-th
user that are large enough to be in

[
αP kmax, P

k
max

]
will serve

it while those with moderate RSRPs in
[
βαP kmax, αP

k
max

[
will perform interference nulling toward it. From the k-th
user perspective, all the selected TPs form then a uVBS
that serve the latter and avoid interfering on it when serving
other users. In turns, using the conventional single-serving TP
selection, target user (TU) is only served by the TP with the
highest RSRP and, hence, is subject to strong interference
from other neighboring TPs. This is in contrast with the
proposed approach that, as illustrated in Fig. 1, turns all high

RSRP signals into useful ones and cancel the moderate RSRP
signals yet strong enough to affect the TU’s performance,
thereby resulting in substantial throughput improvement. As
α and/or β decrease/s, more TPs may join the TU’s SC and/or
NC which better improves its throughput. However, it is not
practically feasible to indefinitely decrease these parameters
without degrading the performance of other users. Indeed, if
α decreases, more TPs are solicited to serve the TU and,
hence, more resources are allocated to a smaller number
of users. Consequently, an increasing number of users and
TPs might be in outage of service or shortage of resources,
respectively. As far as β is concerned, each TP has a limited
nulling capability of (K − 1) and, therefore, it can perform
simultaneous interference nulling toward at most (K − 1)
users. The number of nulling requests received by a TP
increases as β decreases and may exceed this limit, thereby
hindering the performance of other users deprived of these
resources.

Joint optimization of both α and β is, thus, required
to guarantee both optimal resource utilization and system
performance.

B. Computation of α and β

Conventional mathematical methods such as in [16]-[18]
may be adopted to derive the system parameters α and β.
Although having their own merits, these methods rely often
on assumptions/approximations (i.e, simplified throughput ex-
pression, non-overlapping and/or single-user serving clusters,
fixed or single-antenna communication [16]-[18]) that hinder
the accuracy of the objective function and/or its constraints
and, hence, reduce the applicability range of the obtained
solution. Furthermore, this simplified version of the extremely
complex clustering problem is often solved using iterative al-
gorithms. This is actually a critical drawback since optimality
and convergence time dramatically decrease with the numbers
of TPs and users which are expected to be incredibly large in
5G systems. Finally, these algorithms as stated in [18] must
usually run on a central unit that requires not only a high
computational capability, but also the global knowledge of
all network’s CSI. Such information is unfortunately acquired
through a frequent feedback made by all active users, thereby
dramatically depleting their power and increasing the network
overhead.

For all these reasons, this work opts for a purely heuristic
method much more practically appealing and, hence, suitable
for industrial applications. Such method consists in optimizing
α and β offline using a system-level simulator. A set of α
and β values are first picked from the interval [0, 1] with
ideally a small step before running a simulation campaign
for each them. The optimal parameters are those providing
the best overall network performance. This process should
be repeated for different network setups (i.e., different user
and TP densities). Please note that these parameters could
be computed for the whole network (i.e., global parameters)
or for every group of users and TPs (i.e, local parameters).
Since the parameters optimization is made offline, heuristic
method incurs then much lower cost and complexity than its
counterparts. It is noteworthy that α and β could be also
calibrated online by testing the performance gain resulting
from small variations of their values.



TABLE I: uVBS implementation mechanisms.

Implementation
Mechanisms Mechanism 1 Mechanism 2 Mechanism 3

Network Side

• Broadcasts α and β
• Refines or overwrites SC

and NC based on global
information such as traffic
load, priority, QoS/QoE re-
quirements

• Broadcasts α and β
• Is not involved in the TP selec-

tion process

• Does not broadcast α and
β

• Decides on TP clusters
based on the RSRPs feed-
back by all users

User Side

• Selects TP cluster(s) using
the values of α and β pro-
vided by the network

• Only feedbacks the RSRPs
of the TPs in SC and NC
to the network

• Decides local on TP cluster(s)
• Informs the network of its SC and

NC

• Feedbacks all its RSRPs to
the network

• TPs selection is completely
transparent to it

Overhead
• Broadcast of α and β
• Feedback of RSRPs of TPs

in SCs and NCs

• Broadcast of α and β
• Feedback of the IDs of TPs in

SCs and NCs

• Feedback of all users
RSRPs

C. uVBS implementation mechanisms

Tab. I summarizes three possible implementation mecha-
nisms of uVBSs. In Mechanism 1, each user recommends its
own SC and NC selected using α and β values provided by
the network. The latter may refine or overwrite the selected
TPs based on global information. Indeed, it may deny the
access to some TPs for instance when their traffic load is
extremely high or to serve users with higher priority or
QoS requirement. In such a case, some selected TPs could
be substituted or completely removed from SC and/or NC.
Only the RSRPs in SC and NC are feedback using this
mechanism, thereby substantially reducing both the system
overhead and power costs. In turns, with Mechanism 2, the
network broadcasts α and β and let the user make the final
decision on its SC and NCs. The overhead is then further
reduced as user needs to feedback only the selected TPs IDs.
The main drawback of Mechanism 2 is that TPs selection
is completely transparent to the network and, hence, it is
unable to overwrite users’ TP clusters to adapt to particular
conditions, QoS/QoE requirements, or users’ priority. This
responsibility could however be handled by the user itself
at the cost of additional complexity cost at its side. As far
as Mechanism 3 is concerned, it consists of making the TPs
selection completely transparent to the user. The latter must
only to feedback al RSRPs of TPs in its vicinity. In this way,
the broadcast of α and β is avoided but the incurred overhead
remains prohibitive especially in ultra-dense networks context,
where a huge number of users need to feedback the RSRPs
of a huge number of TPs. Consequently, Mechanism 1 and
2 may be preferred at high network density as they allow
substantial overhead savings while Mechanism 3 may be
favored at high traffic loads in order to allow the network
make some adjustments on TP clusters. Furthermore, different
mechanisms could be used with different subnetworks or
even different users or devices. Indeed, the denser is the
subnetwork, more suitable to it will be Mechanism 1 and 2.
The higher is its traffic load, more suitable to it is Mechanism
3. Moreover, privileged users may use Mechanism 2 to allow
them meet their QoS/QoE requirements at any time while the
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Fig. 2: Network throughput gain of the proposed clustering
approach over single-serving TP selection versus α and β for
ρ = 0.31.

rest of subscribers are only entitled to Mechanism 3.

IV. SIMULATIONS RESULTS

In this section, system-level simulations are performed to
analyze the performance of the proposed approach and com-
pare it with the conventional single-serving TP selection and
a static clustering solutions. The static clustering technique
partitions the network into three adjacent TPs set wherein
the user is served by one TP while the others perform
interference nulling towards it. The heuristic method discussed
in Section III-B is adopted here to optimize the parameters α
and β.

In order to highlight the gains provided by uVBSs, we get
rid of any form of multi-user MIMO (MU-MIMO) from our
LTE standard-compliant simulator. In other words, only one
user is associated with each single resource in the spatial and
spectral domains. We consider, in all simulations, a channel
bandwidth of 10 MHz, 7 macro-TPs whose transmit powers
are 46 dBm, and 10 femto-TPs in each macro whose transmit
powers are 20 dBm. In addition, users are initially (i.e., at



t = 0) uniformly distributed in the target area. We also
assume that they are equipped with a single antenna while
all TPs are equipped with two antennas (i.e., K = 2). We
adopt a proportional fair (PF) scheduling locally at each TP.
TP clustering is updated at the same rate of the dynamic
point selection (DPS) (i.e., each subframe) introduced in
LTE release 11 [19]. We consider in this paper that TPs
in SC employ maximum ratio transmission (MRT) to jointly
transmit the users data while TPs in NCs perform zero-forcing
beamforming to avoid interfering on it. Please note that the
choice of these particular signal combining techniques was
only made for the sole sake of simplicity. Our new approach
can, however, support any other advanced signal combining
and/or nulling techniques [10][11].
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Fig. 3: CDFs of the user throughput achieved by the proposed
WAV appraoch, single-serving TP selection, and static clus-
tering when (αopt, βopt) = (0.45, 0.1) and ρ = 0.31.

Fig. 2 shows the network throughput gain achieved by the
proposed approach over single-serving TP selection versus the
parameters α and β for TP density ρ = 0.31. From this figure,
we confirm the existence of optimum values (αopt, βopt) of
the parameters (α, β). We find that (αopt, βopt) = (0.45, 0.1)
when ρ = 0.31. In such a case, the proposed approach
achieves a throughput gain as high as 120%. On the other
hand, from Fig. 2, deviations of until 10% from the optimal
values of α and β results in at most 4% loss in throughput
gains. This very important feature makes αopt and βopt robust
against quantization errors. Therefore, with a low quantization
level turning out to be acceptable, the overhead incurred when
broadcasting α can be further reduced significantly. Therefore,
with a low quantization level turning out to be acceptable, the
overhead incurred when broadcasting αopt and βopt can be
further reduced significantly.

Fig. 3 shows the CDFs of the achieved user throughput
using the proposed approach, single-serving TP selection, and
static clustering. We observe that the throughput achieved
by 55% of the users exceeds 1.5 Mbits/s with our approach
whereas only 3% and 10% of users achieve the same through-
put with single-serving TP selection and static clustering,
respectively. Besides these throughput gains, the proposed
WAV approahc achieves significant coverage gains against its
counterpart, thereby reducing (if not suppressing) the cell-
edge effect.
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Fig. 4: Pie charts of probabilities for the number of serving
and nulling TPs in each user’s SC and NC for (αopt, βopt) =
(0.45, 0.1) and ρ = 0.31.

Figs. 4a and 4b illustrate the pie charts of the number of
TPs in users’ SCs and NCs, respectively. From Fig. 4a, 38%
of users are served by a single TP whereas 56% of them
are served by two TPs, 4% by three, and the rest (about
2%) by four or more. From Fig. 4b, only one TP cancels
its interference towards 66% of the users whereas two TPs
simultaneously cancel their interference towards 15% of them,
three TPs are required for 10% of users and four or more TPs
for the rest (about 9%). Hence, in most cases, each user’s SC
and NC cardinalities do not exceed two and therefore do not
burden the network virtualization cost. Such a very suitable
feature makes the proposed approach an interesting candidate
for the upcoming 5G networks.

Fig. 5 shows the occurrence probabilities of QPSK, 16-
QAM, and 64-QAM obtained with the proposed WAV ap-
proach, single-serving TP selection, and static clustering. We
observe that 64-QAM occurs 95% of the time against 18% and
31% with single-serving TP and static clustering, respectively.
This is hardly surprising since our approach offers a dramatic
SINR improvement by turning the strongest interference links
into useful ones and by canceling the moderate yet still
problematic ones, thereby substantially increasing its link
capacity. Accordingly, our proposed WAV strategy allows
higher-order modulations in 5G networks in order to cope
with the higher rates that better address the unprecedented
demand for mobile data expected in the near future.

Tab. II summarizes the performance of the proposed ap-
proach and compare them with single-serving TP selection
and static clustering. It lists the average throughput and 5-th
percentile coverage performance of all clustering approaches.
We show that the proposed approach dramatically outperforms



TABLE II: Average sum throughput and coverage achieved using the proposed approach, the single-serving TP selection, and
the static approach.

Average Sum
Throughput [Mbps]

5-th Percentile
Coverage [Mbps]

QPSK
modulation

16-Qam
modulation

64-QAM
modulation

Single-serving TP 0.703 0.175 41% 41% 18%
Static approach 0.924 0.218 20% 49% 31%

Proposed approach 1.785 0.669 2% 3% 95%

41%

41%

18%
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(c) Proposed clustering approach for (αopt, βopt) =
(0.45, 0.1) and ρ = 0.31.

Fig. 5: Occurrence probabilities of QPSK, 16-QAM, and 64-
QAM modulations.

the single-serving TP selection in terms of both throughput
and coverage. Indeed, our approach achieves an average
throughput of 1.785 Mbps while single-serving TP and static
clustering does not exceed 0.703 and 0.924 Mbps, respec-
tively. This represents a throughput gain of up to 153.9%
over the single-serving TP and 93.1%, respectively, over static
clustering. Furthermore, according to Tab. II, our proposed
approach achieves a coverage gain over single-serving TP of
282.2% and of 206.9% over static clustering. These huge per-
formance gains highlight the efficiency of the proposed WAV

approach and its significant superiority over its conventional
benchmarks.

V. DISCUSSION AND CONCLUSIONS

The findings of this paper may be articulated around five
desired features of any prospective WAV approach:

• Dynamic, Adaptive: The TP clusters formed using the
proposed approach are overlapping sets whose cardinal-
ities (i.e., the number of TPs in each set) are adjusted
to each user’s environment and situation. This is in
contrast with former approaches wherein the clusters’
cardinalities are fixed and/or the overlapping constraint
is relaxed to simplify the optimization problem [16]-
[18]. Due to its dynamic and adaptive SCs and NCs, the
proposed WAV approach provides dramatic performance
gains in terms of throughput and coverage with respect
to its benchmarks.

• Low complexity: Our approach rely on the optimization
of α and/or β (i.e., at most two parameters) for multiple
users utilization in the same network or subnetwork. As
discussed previously, the optimal values of these primates
could be easily obtained using online calibration and/or
offline simulations. We then avoid the implementation of
iterative sub-optimal greedy highly-complex algorithms
often required by the so far existing techniques. Table. III
shows the complexity of the proposed approach and
the clustering algorithms developed in [16] and [18]
at both infrastructure and user sides. In all clustering
solutions, all user equipments are expected to forward the
information they collect each on the TPs in their vicinity.
Therefore, the user-side complexity is proportional to M .
On the other hand, at the infrastructure side, whereas the
proposed approach require no extra processing since the
parameters alpha and beta are computed offline, once for
all, the conventional clustering techniques suffer from
relatively huge complexity loads significantly increasing
with the numbers of TPs, per TP antennas, and users.

• Low overhead, power and latency costs: Combining
our approach with Mechanism 1 or 2, the decision on
clusters is made locally at each user. This is in contrast
with the existing approaches which often require that the
CU has a global knowledge of all users’ CSIs/SINRs
to be able to form the TP clusters [16]-[18]. Therefore,
the proposed approach offer significant overhead, power,
and latency savings. Indeed, the overhead incurred by the
conventional clustering approaches could be expressed
as Boh = RrKQl

∑N
i=1Mi where Mi ∈ {1, . . . ,M}

is the number of TPs in the i-th user vicinity, Ql
is the quantization level of CSI/SINR, and RCSIr is
the clusters formation refreshment rate. On the other
hand, the overhead incurred by the proposed WAV ap-
proach which requires the broadcast of both α and β is



TABLE III: Complexity comparison between the proposed approaches and some benchmarks available in the literature.

Offline processing Infrastructure-side online processing User-side online
processing

Proposed approaches Yes 0 O(M)
Approach in [16] No O(KNM2 +KM2 + 4KNM + 4KM) O(M)

Approach in [18] No O(141MK2N2 + 141MK2N2 − 39MKN2 +
235KN2 − 38MKN + 470KN − 65N)

O(M)

BPropoh = 2Rα,βr Q́l where Rα,βr is the refreshment rate
of α and β and Q́l is their quantization level. Assuming
for extreme simplification in favor of the conventional
clustering techniques that Ql = Q́l

2 , we have then
Ω = Boh/B

Prop
oh = (RCSIr

∑N
i=1Mi)/2R

α,β
r ). There-

fore, Ω substantially increases not only with the users,
TPs, and antennas’ numbers, but also with RCSIr /Rα,βr .
Note here that the CSI’s refreshment rate is usually in
the range of milliseconds, i.e., in the TTI (transmission
time interval) duration scale in LTE, while that of α
and β is in the range of minutes or even hours since
they depend on the numbers of TPs and users. This is
actually a fundamental difference that drastically reduces
the overhead and power costs. Assuming for simplicity,
again in favor of conventional clustering techniques, that
RCSIr /Rα,βr = 103, we measure Ω = 27.3 103 and
Ω = 35.7 103 when ρ = 0.31 and ρ = 0.44, respectively,
with the simulation setup described in Section IV. This
means that the proposed approach, under the most un-
favorable assumptions to them (i.e., equal quantization
level and much smaller than expected refreshment rate
ratio), still incur as much as 103 times less overhead,
and consequently much less power and latency as well
(following the same rationale) than their conventional
counterparts, making them unambiguously more suitable
for future 5G networks.

• Scalability: The performance gain achieved by the pro-
posed approach obviously increases with the available
network resources. It may then benefit from new 5G
technologies such as massive MIMO and mmWave spec-
trum which provide high degrees of freedoms and huge
spectrum, respectively. It may also benefit from advanced
multi-user strategies that allow using the same resources
to serve more than one user. This again in contrast
with existing approaches whose complexities increase
exponentially with such technologies.

• Flexibility: By associating different parameters to the
different network dimensions, our approach pave the
way towards dramatic improvements in both spectral
and power efficiencies. Indeed, the definition of user-
class-, service-, and application-based parameters al-
lows adequate adaptation of the allocated resources to
different classes of subscribers and network services and
applications. Furthermore, period- and location-based
parameters that properly adjust to the network conditions
at different places and periods would further enhance the
throughput of each user.

All these key observations unambiguously prove that the
proposed approach is efficient and offers substantial per-
formance gains while requiring negligible extra overhead,
power, complexity, and latency costs, making it an interesting

candidate for the upcoming 5G networks.
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