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Abstract—In this paper, we tackle the problem of Multipath
detection for joint angle and delay estimation (JADE) purposes.
By exploiting the sparsity feature of a carefully designed pseudo-
pdf, we propose a novel approach that enables the accurate
estimation of the unknown number of paths over a wide range
of practical signal-to-noise ratios (SNRs). Computer simulations
show the distinct advantage of the new solution over state-of-
the art techniques in terms of accuracy. Most remarkably, they
suggest that the proposed technique provide accurate estimates
even when the number of paths exceeds the antenna size.

Index Terms—JADE, signal detection, maximum likelihood,
importance sampling, antenna arrays.

I. I NTRODUCTION

In parametric multipath propagation models, a source signal
impinges on an antenna array through a number of rays, each
described by an angle-of-arrival (AoA), a time delay (TD),
and a path gain. The joint angle and delay estimation (JADE)
problem consists then in jointly estimating all the AoAs and
their corresponding TDs from a finite number of received
samples. The JADE problem arises in many practical situations
ranging from military applications (e.g., radar and sonar)to
broadband wireless communication systems.

Typically, the power to characterize each path with its own
angle and delay endows the system with stronger sensorial
capabilities leading, for instance, to more robust beamforming
techniques [2] and enhanced equalization performance [3].
In comparison with disjoint estimation techniques which first
estimate the delays and then the corresponding angles, the
joint estimation of these space-time parameters (i.e., JADE)
is more accurate in cases where multiple rays have nearly
equal delays or angles [2]. Moreover, contrarily to JADE, the
number of estimated angles in direction of arrival (DOA) only
estimation must be smaller than the number of antennae. Thus
DOA-only estimators would require large-size antenna arrays
in highly dense multipath environments.

A number of JADE techniques have been reported in the
literature [4-8]. All the proposed solutions requires thatthe
number of paths to be known. This information is usually
unavailable in real-life scenarios and needs to be estimated.
One solution is to use a method for detecting the number
of signals such as Akaike’s information criterion (AIC) [9],
minimum description length (MDL) [10], and the eigenvalue
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forms of AIC and MDL [11]. However, these techniques are
unable to provide estimates when the number of paths exceeds
the number of antennas elements.

In this paper, we propose a new technique for detection of
the number of paths. It builds upon a very accurate approxi-
mation of the true compressed likelihood function (CLF). In
fact, by exploiting the sparsity of the proposed pseudo-pdf,
the new approach is able to estimate accurately the number of
paths.

We organize the rest of this paper as follows: In section II,
we introduce the system model that will be used throughout
the article. In section III, we derive the CLF of the system. In
section IV, we develop the new approach for the estimation of
the number of paths. In section V, we assess the performance
of the new approach and benchmark it against both AIC
and MDL techniques. Finally, we draw out some concluding
remarks in section VI.
We define beforehand some of the common notations that will
be adopted in this paper. Vectors and matrices are represented
in lower- and upper-case bold fonts, respectively. Moreover,
{.}T and{.}H denote the conjugate and Hermitian (i.e., trans-
pose conjugate) operators anddet{.} returns the determinant
of any square matrix. The Euclidean norm of any vector is
denoted as||.|| and IN denotes the(N × N) identity matrix.
For any matrixX, [X]q and [X]l,k denote itsqth column
and(l, k)th entry, respectively. The kronecker product of any
two matricesX and Y is denoted asX � Y. In addition,
{.}∗, ∠{.}, and |.| return the conjugate, modulus, and angle
of any complex number, respectively. Finally,E{.} stands for
the statistical expectation,j is the pure complex number that
verifiesj2 = −1, and the notation, is used for definitions.

II. SYSTEM MODEL

Consider an antenna array consisting ofP antenna elements
immersed in a homogeneous medium in the far field of one
source that is transmitting a planar wave. The transmitted
signal undergoes multiple reflections and impinges on the
antenna array from̄Q different angles(ᾱ1, ᾱ2, · · · , ᾱQ̄) with
associated time delays(τ̄1, τ̄2, · · · , τ̄Q̄) ⊂ [0, τmax]

Q̄ where
τmax can be as large as desired. Note here that we use the
overbar symbol to distinguish the true AoAs and TDs,{ᾱq}q
and{τ̄q}q, from the unknown generic1 ones,{αq}q and{τq}q.

1For the same reasons, we useQ̄ to denote the true unknown number of
paths that will be estimated later in Section IV.



By assuming ideal frequency synchronization, the continuous-
time received signal at thepth antenna,p = 1, 2, · · · , P , can
be modeled as follows:

xp(t) =

Q̄∑

q=1

γ̄qs(t− τ̄q)e
jπϕp(ᾱq) + wp(t), (1)

where {γ̄q}
Q̄
q=1 are the true complex path gains which are

assumed to be unknown as well and{ϕp(α)}Pp=1 are some
real-valued angular transformations that depend on the geom-
etry of the planar array configuration. Typically, uniform linear
arrays (ULAs) and uniform circular arrays (UCAs) remain by
far the most studied cases in the open literature. For these two
popular configurations, the angular transformations are given
by:

ϕp(α) =





(p− 1) sin(α), (ULA)

cos
(
α− 2[p− 1]π/P

)

2 sin(π/P )
. (UCA)

The noise components,wp(t), are assumed to be spatially and
temporally white and modeled by zero-mean complex Gaus-
sian random processes with independent real and imaginary
parts each of varianceσ2/2. The known transmitted signal,
s(t), is a linear chirp signal which is generally expressed as
s(t) = A sin

(
2π[f0 + υt]t

)
. Here,A is the amplitude and

υ = fmax−f0
tmax

with f0 andfmax being, respectively, the minimum
and maximum frequencies of the chirp attained at time instants
t0 = 0 andtmax which define the boundaries of the observation
window [0, tmax]. After sampling the continuous-time received
signal in (1) at time instants{tm = mTs}

M−1
m=0 , with sampling

period Ts, one obtains the followingM samples over each
{pth}Pp=1 antenna:

xp(tm) =

Q̄∑

q=1

γ̄qs(tm − τ̄q)e
jπϕp(ᾱq) + wp(tm), (2)

with m = 0, 2, . . . ,M −1. For mathematical convenience, we
group all the unknown multipath parameters in the following
three vectors:̄α = [ᾱ1, ᾱ2, · · · , ᾱQ̄]

T , τ̄ = [τ̄1, τ̄2, · · · , τ̄Q̄]
T ,

andγ̄ = [γ̄1, γ̄2, · · · , γ̄Q̄]
T . We further gather the samples col-

lected across all the antenna elements at eachmth time index
(known assnapshot in array signal processing terminology)
into a single vector,x(tm) = [x1(tm), x2(tm), · · · , xP (tm)]T ,
given by:

x(tm) =

Q̄∑

q=1

a(ᾱq)γ̄qs(tm − τ̄q) +w(tm), (3)

wherew(tm) = [w1(tm), w2(tm), · · · , wP (tm)]T is the cor-
responding noise vector and:

a(α) ,
[
ejπϕ1(α), ejπϕ2(α), · · · , ejπϕP (α)

]T
, (4)

is the arraysteering vector defined for any directionα. Our
goal in the remainder of this paper is to estimate the parameter
Q̄ given theM snapshots

{
x(tm)

}M−1

m=0
.

III. D ERIVATION OF THE COMPRESSED LIKELIHOOD

FUNCTION (CLF)

In this section, we will derive the CLF that depends on the
parameters of interest only [12], namelȳτ , ᾱ. In fact, since
w(m) ∽ N (0, σ2

IP ), it can be shown that the actual log-
likelihood function (LLF) (after dropping the constant terms)
is given by where:

L
(
α, τ ,γ

)
=

M∑

m=1

∣∣∣∣∣∣

∣∣∣∣∣∣
x(tm)−

Q̄∑

q=1

γqa(αq)s(tm − τq)

∣∣∣∣∣∣

∣∣∣∣∣∣

2

. (5)

Furthermore, owing to the Parseval’s identity, it follows that
L
(
α, τ ,γ

)
can be alternatively expressed in the frequency

domain as follows:

L
(
α, τ ,γ

)

≈
M∑

m=1

∣∣∣∣∣∣

∣∣∣∣∣∣
x(ωm)−

Q̄∑

q=1

γqa(αq)e
−jωmτqs(ωm)

∣∣∣∣∣∣

∣∣∣∣∣∣

2

, (6)

where
{
ωm = m−1

MTs

}M
m=1

is the mth frequency bin and
{x(ωm)}m and {s(ωm)}m are the DFTs of{x(tm)}m and
{s(tm)}m, respectively, with the approximation stemming
from the fact that{τq}

Q̄
q=1 are not necessarily integer multiples

of the sampling periodTs. Now let A(α) denote the array
steering matrix that is defined for anyα = [α1, α2, · · · , αQ̄]

T

as follows:

A(α) , [a(α1) a(α2) · · · a(αQ̄)], (7)

in which a(α) is the steering vector given in (4). Then, by
defining the following (̄Q× Q̄) diagonal matrix:

Φm(τ ) , s(ωm) diag
(
e−jωmτ1 , e−jωmτ2 , · · · , e−jωmτQ̄

)
, (8)

for m = 1, 2, · · · ,M , it can be shown that (6) is equivalent
to:

L
(
α, τ ,γ

)
≈

M∑

m=1

∣∣∣∣x(ωm)− s(ωm)A(α)Φm(τ )γ
∣∣∣∣2

=
∣∣∣
∣∣∣x−

[
IM � A(α)

]
Φ(τ )γ

∣∣∣
∣∣∣
2

, (9)

where x =
[
x(ω1)

T
x(ω2)

T · · · x(ωM )T
]T

, � denotes the
Kronecker product, andΦ(τ ) is the following (MQ̄ × Q̄)
matrix:

Φ(τ ) =
[
Φ1(τ )

T
Φ2(τ )

T · · · ΦM (τ )T
]T

. (10)

Yet, significant computational savings follow from the use of
least square (LS) to obtain the channel gains estimates:

̂̄γMLE =
[ [

IM � A(α)
]
Φ(τ )

︸ ︷︷ ︸
, D

]†
x, (11)

whereD
† is the Moore-Penrose pseudo-inverse ofD given

by D
† =

(
D

H
D
)−1

D. Now, by substitutinĝ̄γMLE for γ in
(9) and after some straightforward algebraic manipulations,



we obtain as an objective function the so-called CLF which
depends solely onα andτ :

Lc

(
α, τ

)
= x

H
D(DH

D)−1
D

H
x. (12)

By revisiting (12), one can easily recognize that the original
CLF cannot be directly expressed as a separable function due
to the presence of the matrix inverse(DH

D)−1. Fortunately,
we show in the sequel thatDH

D can be accurately approxi-
mated by a diagonal matrix. In fact, by recalling the expression
of D in (11) and using some basic properties of the Kronecker
product, it follows that:

D
H
D = Φ(τ )H

[
IM � A(α)H

][
IM � A(α)

]
Φ(τ ),

= Φ(τ )H
(
IM �

[
A(α)HA(α)

])
Φ(τ ). (13)

Then, by noticing thatIM �
[
A(α)HA(α)

]
is a block-

diagonal matrix, it can be shown that:

D
H
D =

M∑

m=1

Φm(τ )HA(α)HA(α)Φm(τ ). (14)

Next, by recalling from (7) and (8) that thelth column of
the steering matrix is

[
A(α)

]
l
= a(αl) and thatΦm(τ ) is

a diagonal matrix, we immediately have[A(α)Φm(τ )]l =
[Φm(τ )]l,l [A(α)]l = s(ωm)e−jωmτla(αl). The (l, k)th entry
of DH

D is thus obtained as:

[DH
D]l,k =

(
M∑

m=1

|s(ωm)|2ejωm(τl−τk)

)
×

(
P∑

p=1

e
jπ(p−1)[cos(αk)−cos(αl)]

)
. (15)

In particular, the diagonal elements obtained by settingk = l
in (15) all have the same following expression:

[DH
D]k,k = P

M∑

m=1

|s(ωm)|2. (16)

Due to the destructive superposition (forl 6= k) of the complex
exponentials2 in (15), one could expect the off-diagonal entries
of D

H
D to be very small compared to its diagonal ones

thereby allowing the following much useful approximation:

D
H
D ≈ P Es IQ̄, (17)

whereEs =
∑M

m=1 |s(ωm)|2 is the energy of the transmitted
signal. To corroborate our claim, we define the ratio of the off-
diagonal over diagonal entries of the matrixDH

D as follows:

βl,k,















M∑

m=1

|s(ωm)|2ejωm(τl−τk)





























P∑

p=1

ej(p−1)π(cos(αk)−cos(αl))















P

M∑

m=1

|s(ωm)|2

,

(18)

2This is reminiscent of multipath fading in wireless channels.

then generate a very large number of couples(τl, τk) and
(αl, αk) uniformly distributed in[0, τmax]

2 and [0, π]2. After
injecting these realizations into (18), we compute and plot
in Fig. 1 the complementary cumulative distribution function
(CCDF) of |βl,k|, i.e.,Fc(x) = Pr

[
|βl,k| ≥ x

]
.
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Figure 1. CCDF of the magnitude of the ratio between the off-diagonal and
diagonal entries of the matrixDH

D.

Clearly, Fig. 1 suggests that the off-diagonal elements of
D

H
D can indeed be neglected compared to its diagonal ones

since|βl,k| has an almost-zero probability to exceed 0.1 for all
l 6= k. Therefore, (17) is a valid and accurate approximation
for D

H
D which is used in (12) to obtain the following

accurate approximation for the CLF:

Lc

(
α, τ

)
≈

1

PEs

x
H
DD

H
x. (19)

Then, by recalling from (11) thatD =
[
IM �A(α)

]
Φ(τ ), it

follows from (19) that:

Lc

(
α, τ

)
=

1

PEs

∣∣∣∣Φ(τ )H
[
IM � A(α)H

]
x
∣∣∣∣2 . (20)

Now, by recalling thatx =
[
x(ω1)

T
x(ω2)

T · · ·x(ωM )T
]T

and using (10) it can be shown that:

Φ(τ )H
[
IM � A(α)H

]
x =

M∑

m=1

(
A(α)Φm(τ )

)H
x(ωm).

Therefore, it follows from (20) that:

Lc

(
α, τ

)
≈

1

PEs

Q̄∑

q=1

∣∣∣∣∣

M∑

m=1

[
A(α)Φm(τ )

]H
q
x(ωm)

∣∣∣∣∣

2

.

After some straightforward algebraic manipulations, we obtain
the following much useful approximation for the CLF:

Lc(α, τ )≈
1

PEs

Q̄∑

q=1

I(αq, τq), (21)



in which I(α, τ) is the periodogram of the signal given by:

I(α, τ) =

∣∣∣∣∣

P∑

p=1

ejπ(p−1) cos(α)
M∑

m=1

s(ωm)x∗
p(ωm)e−j2πτωm

∣∣∣∣∣

2

,(22)

wherexp(ωm) is thepth element of the vectorx(ωm). Owing
to the decomposition of theapproximate CLF in (21) as the
superposition of the separate contributions pertaining tothe Q̄
angle-delay pairs, we exploit it below as a pseudo-pdf (upon
normalization):

Ḡ(α, τ ) =
exp

{
ρ1
∑Q̄

q=1 I(αq , τq)
}

∫
· · ·

∫
exp

{
ρ1
∑Q̄

q=1 I(α
′
q, τ

′
q)
}
dα′dτ ′

. (23)

Note here that the factor 1
PEs

involved in (21) is absorbed
within the new design parameter,ρ1. Interestingly, due to the
linear decomposition in (21),̄G(α, τ ) is found to beseparable
in terms of the angle-delay pairs as originally required. Indeed,
it can be easily shown that̄G(α, τ ) factorizes as follows:

Ḡ(α, τ ) =

Q̄∏

q=1

ḡᾱ,τ̄ (αq, τq), (24)

where

ḡᾱ,τ̄ (α, τ) =
e
ρ1I(α,τ)

∫∫
e
ρ1I(α′,τ ′)dα′dτ ′

. (25)

This simply means, under this particular choice forḠ(α, τ ),

that theQ̄ angle-delay pairs,
{
(αq, τq)

}Q̄
q=1

, are independent
and identically distributed (iid)

[
i.e., with common bivariate

distribution ḡᾱ,τ̄ (α, τ)
]
. from which the marginal pdf of the

delays is computed as follows:

ḡτ̄ (τ) =

∫
ḡᾱ,τ̄ (α, τ)dα. (26)

IV. ESTIMATING THE NUMBER OF PATHS

As mentioned earlier, all the existing JADE techniques
require thea priori knowledge of the number of paths̄Q. In
practice, this parameter is unknown and needs to be estimated
before proceeding to AoAs and TDs acquisition. In this
contribution, we propose a new heuristic approach that allows
the exact estimation of̄Q over a wide range of practical SNRs.
In fact, it relies on a sparsity feature inherent to the marginal
delay pdf, ḡτ̄ (τ), depicted in Fig. 2. Indeed, by properly

3 4 5 6
0

0.01

0.02

0.03

τ

T

ḡ τ̄
(τ
)

true delay τ̄2true delay τ̄1

Figure 2. Marginal pdf ofτ , illustrated in a single-carrier system, ULA,
P = 5, Q̄ = 2 and SNR =30 dB.

selecting thesparsity-promoting design parameterρ1, it is
possible to reduce the sizes of the secondary lobes that are due
to the noise contribution. In this way, one obtains a pseudo-
pdf whose energy is almost totally concentrated under the main
lobes that are located around the true delays. Precisely, just
after evaluatinḡgτ̄ (τi) in (26) over[0, τmax], the following two
simple steps are performed:

1) STEP 1: Get the points,{ ◦

τq}Qtot.
q , corresponding to all

the peaks in
{
ḡτ̄ (τi) ∀τi ∈ [0, τmax]

}
with Qtot. being

the total number of peaks. Note here thatQtot. is always
greater thanQ̄ due to the presence of secondary lobes.

2) STEP 2: Sort the squared magnitudes,{|ḡτ̄ (
◦

τq)|2}Qtot.
q ,

corresponding to{ ◦

τq}Qtot.
q and obtain an estimate,̄̂Q (for

the actual number of paths) as the first number of peaks,
Q, whose combined energy fractions is above a certain
threshold, i.e.:

ρ(Q) =

∑Q

q |ḡτ̄ (
◦

τq)|2

∑Qtot.

q |ḡτ̄ (
◦

τq)|2
≥ κ, (27)

ρ(Q − 1) =

∑Q−1
q |ḡτ̄ (

◦

τq)|2

∑Qtot.

q |ḡτ̄ (
◦

τq)|2
< κ, (28)

whereκ is some threshold level to be designed offline
as explained subsequently.

As mentioned above, the threshold level,κ, can be eas-
ily optimized offline in order to obtain the lowest possible
Q̄−estimation error for all the practical values of̄Q. To do
so, for eachQ̄, the mean value of the ratio in (27), is denoted
here as:

ρ̄(Q) , E {ρ(Q)} , (29)

is evaluated by Monte-Carlo simulations for all1 ≤ Q ≤ Qtot..
Then, the appropriate value forκ is selected based on these
mean values as suggested by Fig. 3 (note here that Fig. 3(b)
depicts a zoom of Fig. 3(a) around the specified region along
the y−axis). These results are obtained from10000 Monte-
Carlo runs for everȳQ while assuming equi-powered paths at
an SNR= −10 dB.
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Figure 3. The mean value ofρ(Q) for different values ofQ̄, SNR= −10
dB.
At such extremely low SNR level, and as suggested by Fig.
3(b), an appropriate choice for the threshold level would be



κ = 0.96. In fact, with such threshold, it is seen for̄Q = 2 that
the first valueQ at whichρ(Q) exceedsκ = 0.96 (on average)
is Q = 2, i.e., “exact estimation”. The same observation holds
for Q̄ = 3, 4, 5 and 6 as seen from Fig. 3(b). For̄Q = 7,
however, the first valueQ that verifies (27) and (28) on average
is Q = 6, i.e., “under-estimation” and the same observation
holds as well forQ̄ = 8 and Q̄ = 9.

V. SIMULATION RESULTS

In this section, we assess the performance of the new by
plotting the error probability on detecting the number of paths.
The number of receiving antenna elements is fixed toP = 5
and the number of samples is set toM = 245. The design
parameter,ρ1, required by our new algorithm is set toρ1 = 4.

In Fig. 4, we gauge our proposed approach for estimating
the number of paths,̄Q, against the two widely used signal
detection schemes, namely MDL and AIC [11]. There, it is
seen that the proposed approach outperforms both benchmarks
in terms of the probability of detection error. This is mainly
due to the use of the sparsity-promoting design parameter,ρ1,
whose appropriate selection allows to reduce the contributions
of the spurious lobes stemming from the background noise.
We emphasize, however, the fact that both MDL and AIC are

1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)

Q

P
r(
Q̂

6=
Q
)

 

 

1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a)

Q

P
r(
Q̂

6=
Q
)

 

 

AIC
MDL
New approach

Figure 4. Error Probability on detecting the number of pathsfor a single-
carrier system employingM = 245 samples at SNR= 0 dB with P = 5
and ρ1 = 4: (a) equi-powered paths and (b) paths with power generated
randomly.

applicable only when the actual number of paths,Q̄, is smaller
than the number of receiving antenna elementsP since their
cost functions can be evaluated for1 ≤ Q ≤ P only. In
contrast, the proposed approach takes advantage of the spatio-
temporal model to detect all the involved paths even when
P < Q shown earlier by Van der Veenet al. in [6] as apposed
to both MDL and AIC which were both developed for the
case of DOA-only estimation. This clearly observed from Fig.
4, as our technique succeeds in detecting all theQ paths for
Q = 7, 8, 9 using onlyP = 5 antenna elements, contrarily to
both MDL and AIC. Clearly, other JADE techniques such as
TST-MUSIC or the initialisation step of the SAGE algorithm
are good candidates for paths detection even whenP < Q.
Unfortunately those techniques have no control on the noise
component. Indeed, those techniques cannot define a threshold
between the pics related to the true paths and those linked

to the noise component since the latter changes from one
realisation to another.

VI. CONCLUSION

In this paper, we proposed a new path detection technique.
By exploiting the sparsity feature of a pseudo-pdf, the new
approach is able to accurately estimate the number of paths
over a wide range of practical SNRs. Computer simulation
results show the clear superiority of the new technique over
state-of-the-art approaches especially when the number paths
exceeds the size of the antenna array.
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