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Abstract—In this paper, we investigate the problem of
fast time-varying multipath channel estimation over orthogo-
nal frequency-division multiplexing (OFDM)-type transmissions.
We do so by tracking each complex gain variation using a
polynomial-in-time expansion. To that end, we derive the log-
likelihood function (LLF) in the non-data-aided (NDA) case.
Since the LLF is extremely nonlinear, we opt for the expectation
maximization (EM) concept to find its global maximum. Simu-
lation results show that the new estimator is able to converge to
the global maximum within few iterations only and to provide
accurate estimates for all multipath gains, thereby resulting in
significant BER and link-level throughput gains.

Index Terms—Maximum likelihood (ML), expectation maxi-
mization (EM), channel estimation, time-varying channel (TVC),
OFDM.

I. INTRODUCTION

Orthogonal frequency-division multiplexing (OFDM)

showed its effectiveness in current 4th generation wireless

technology (4G). A scalable variety of CP-OFDM is already

included in 5th generation (5G) new radio (NR) standards

by the 3rd Generation Partnership Project (3GPP) [1].

The adopted waveform will include multiple sub-carrier

spacings that depend on the type of deployments and service

requirements. Despite its attractive features such as robustness

to frequency selective channels, OFDM-type radio interface

technologies (RITs) are already very sensitive to time-varying

channels due to the resulting loss of orthogonality between

the subcarriers. Channel estimation, hence, becomes at very

high mobility a daunting task [2].

So far, a number of channel estimation techniques have

been reported in literature. All available solutions go

under one of two major categories: i) the data-aided (DA)

approach where the transmitted symbols are assumed to be

perfectly known at the receiver. Such solutions provide higher

performance at a significant cost in terms of overhead; ii) the

blind or non-data-aided (NDA) approach where the receiver

has no a priori information about the transmitted sequence.

Hence, accurate channel tracking is possible at the receiver

with minimal overhead.

Under the DA category, and for fast time-varying channels,

many techniques use a basis expansion model (BEM) to

estimate the equivalent discrete-time channel taps [3-5].

In [3], BEM methods such as Karhunen-Loeve BEM
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were designed with low mean square error (MSE). They

are, however, sensitive to statistical channel mismatch.

The complex-exponential BEM, also proposed in [3], is

independent from channel statistics but then suffers from

large modeling errors. The polynomial BEM (P-BEM)

investigated in [4] provides accurate performance, but only

at low Doppler. In [5], the complex gain variation of each

path was approximated by a polynomial function of time

then estimated by least square (LS) technique. This solution

offers accurate performance even at high Doppler. However,

it requires that the number of paths be lower than the inserted

pilot symbols in each OFDM time slot.

Under the NDA category, time-varying channel estimation

was also investigated over OFDM-type radio access. In [9],

the authors used the discrete Legendre polynomial BEM

along with the space alternating generalized expectation

maximization-maximum a posteriori probability SAGE-MAP

technique to estimate the channel coefficients in the time

domain. Whereas the authors of [6] opted for the EM

technique to estimate the signal-to-noise ratio (SNR) in

the case, however, of single-carrier SISO transmissions.

Both the EM and LS techniques were also proposed in [7]

and [8], respectively, to estimate, however, the SNR over

single-carrier SIMO systems.

In this paper, we develop an iterative ML EM estimator of

fast time-varying channels over OFDM-type radio interfaces.

By relying on the polynomial approximation of the multipath

channel gains in [10] and introducing instead of LS the

powerful EM technique, our solution offers a much more

accurate ML-type acquisition of the polynomial coefficients

and the resulting time-varying channel gains. To avoid local

convergence that is inherent to EM-type iterative algorithms,

we initialize it with the LS technique. Moreover, despite its

accurate performances under high interference level, the ML

EM technique provides even more accurate channel gains

estimates with the use of inter carrier interference (ICI)

cancellation technique.

The rest of the paper is organized as follows: In Section II,

we introduce the system model. In Section III, we derive the

new ML EM solution of the underlying estimation problem.

In Section IV, we run exhaustive computer simulations to

assess the performance of the proposed fast time-varying

channel estimator. Finally, we draw out some concluding

remarks in Section V.

The notations adopted in this paper are as follows. Vectors



and matrices are represented in lower- and upper-case bold

fonts, respectively. Moreover, {.}T and {.}H denote the

conjugate and Hermitian (i.e., transpose conjugate) operators.

The Euclidean norm of any vector is denoted as ||.||. For any

matrix X, [X]q and [X]l,k denote its qth column and (l, k)th

entry, respectively. For any vector x, diag{x} refers to the

diagonal matrix whose elements are those of x. Moreover,

{.}∗, ∠{.}, and |.| return the conjugate, angle, and modulus

of any complex number, respectively. Finally, E{.} stands for

the statistical expectation, j is the imaginary number (i.e.,

j2 = −1), and the notation , refers to definitions.

II. SYSTEM MODEL

Consider an OFDM single input single output (SISO)

system with N subcarriers and a cyclic prefix (CP) of a length

Ncp. The wireless link between the transmitter and receiver is

modeled as a multipath Rayleigh fading channel as follows:

h(t, τ) =

L∑

l=1

αl(t)δ(τ − τlTs), (1)

where L is the number of paths. For each path, the delay

τl is normalized by the sampling period Ts and the com-

plex gain αl(t) is generated with variance σ2
l . The mul-

tipath power profile (i.e., the channel) is assumed to be

normalized (i.e.,
∑L

l=1 σ
2
l = 1). We adopt the approxima-

tion in [10] of the sampled complex gain of the lth path

within the duration of Nc consecutive OFDM blocks, αl =
[αl(−NcpTs), . . . , αl(NbNc − Ncp − 1)]T , by a polynomial

model of order Nc − 1 as follows:

αl(pTs) ≈

Nc∑

d=1

cd,lp
(d−1) + ζl[p], (2)

where p ∈ [−Ncp, . . . , NbNc − Ncp − 1], cl =
[c1,l, c2,l, . . . , cNc,l]

T is the approximating polynomial coef-

ficients vector of the lth path and ζl[p] is the approximation

error. T = NbTs denotes the OFDM block duration where

Nb = N + Ncp. At the destination, after removing the CP

and applying a N−point fast Fourier transform (FFT), the

collected OFDM symbols at each local approximation window

of Nc OFDM blocks (i.e., n = 1, 2, . . . , Nc), can be written

in a matrix form as follows:

yk = Hkak +wk, (3)

where yk = [yk[1], yk[2], . . . , yk[N ]]
T

is the received kth

OFDM block, and wk = [wk[1], wk[2], . . . , wk[N ]]
T

is

a complex white Gaussian noise vector with covariance

σ2IN where IN is the N -dimensional identity matrix.

The N transmitted symbols during the kth OFDM block,

ak = [ak[1], ak[2], . . . , ak[N ]]T , are generated randomly from

a M−ary constellation alphabet, CM , with a probability

{P [am] = 1
M
}am∈CM . The N×N matrix, Hk, is the channel

frequency response whose elements are given by:

[Hk]m,n=
1

N

L∑

l=1

[
e−j2π( k−1

N
− 1

2
)τl

N−1∑

q=0

αk,l(qTs)e
j2π n−m

N
q

]
, (4)

where {αk,l(qTs)}
Nb+N−1
q=kNb

are the complex gains of the lth

path within the duration of the kth OFDM block. With the

above approximation [10], the polynomial coefficients, cl, of

lth path and corresponding to the Nc consecutive OFDM

blocks can be obtained using the time average of the channel

gain over the effective duration of each OFDM time slot

({ᾱk,l =
1
N

∑kNb+N−1
q=kNb

αk,l(qTs)}
Nc−1
k=0 ) as follows:

cl = T−1ᾱl, (5)

where:

ᾱl = [ᾱ0,l, ᾱ2,l, . . . , ᾱNc−1,l]
T ,

T=



1 N−1

2
(N−1)(2N−1)

6

1 N−1
2 +Nb

(N−1)(2N−1)
6 +(N − 1)Nb+N2

b

1 N−1
2 +2Nb

(N−1)(2N−1)
6 +2(N − 1)Nb+4N2

b


 .

Using these coefficients, the samples of the complex gain of

each channel path over the interval [−Ncp, . . . , NbNc−Ncp−
1], cl = [c1,l, c2,l, . . . , cNc,l], can be obtained as follows:

αl = ST cl, (6)

where S is Nc ×NbNc matrix whose elements are given by:

{{
[S]d,p′ = (p′ −Ncp − 1)d−1

}NbNc

p′=1

}Nc

d=1

. (7)

The channel gains can be estimated in (6) from the channel

coefficient estimates whose estimation in (5) ultimately re-

quires an estimate for the channel gain time averages vector

ᾱ.

In [10], ᾱ is estimated by DA LS over Np pilot sym-

bols inserted in each OFDM block. Two more processing

blocks of i) iterative ICI cancellation and ii) frequency-domain

smoothing (to take advantage of the previous Nc−1 estimates

of {ᾱk,l}
Nc−2
k=0 ) then follow to improve estimation accuracy

and speed up convergence. However, increasing performance

requires a relatively large number of pilot symbols per block.

In the following, we address the problem of estimating

ᾱ using all data symbols available at each OFDM block,

not only pilots. By doing so, we develop a new ML-type

EM solution that is able to significantly improve performance

while keeping the same overhead or otherwise reducing it.

Accuracy can be further enhanced as in [10] by suppressing

the ICI components from the received signal.

III. NDA ML EM CHANNEL GAINS ESTIMATION

The probability density function (pdf) of the re-

ceived samples {{yk(n)}
N
n=1}

Nc−1
k=0 conditioned on the

transmitted symbol ak[n] and parametrized by ψk =[
[ᾱk,1, ᾱk,2, . . . , ᾱk,L], σ

2
]T

, is expressed as follows:

p(yk(n)|ak[n] = am;ψk)

=
1

2πσ2
exp

{
−1

2σ2

∣∣∣∣yk(n)−am[Hk]n,n

∣∣∣∣
2
}
, (8)



where:

[Hk]n,n =
1

N

L∑

l=1

[
e−j2π(n−1

N
− 1

2
)τl

N−1∑

q=0

αl,k(qTs)

]
, (9)

Note here that we neglect the effect of the ICI components and

we also assume that normalized delays,{τl}
L
l=1, are perfectly

known to the receiver. The nth diagonal element of the matrix

Hk in (9) can also be written as follows:

[Hk]n,n = ϕ̄T
kFn, (10)

where ϕ̄k = [ᾱk,1, ᾱk,2, . . . , ᾱk,L]
T and Fn is a vector

containing the elements of the nth row of the N × L matrix

F defined as:

[F]m,l = e−j2π(m−1

N
− 1

2
)τl . (11)

By injecting (10) back into (8), we obtain the following result:

p(yk(n)|ak[n] = am;ψk)

=
1

2πσ2
exp

{
−1

2σ2

∣∣∣∣yk(n)− amϕ̄
T
kFn

∣∣∣∣
2
}
.(12)

Now, by averaging (12) over the alphabet, the pdf of the

received samples can be written as follows:

p(yk(n);ψk)=
1

2Mπσ2

M∑

m=1

exp

{
−

1

2σ2

∣∣∣∣yk(n)−amϕ̄
T
kFn

∣∣∣∣
2
}
.(13)

It is obvious at this stage that maximizing (13) with respect

to ψk is analytically intractable. Thus, we will resort to the

EM concept to find the maximum of the multidimensional

likelihood function (LF). First, we define the log-LF (LLF),

L(ψk|ak[n] = am) , ln(p(yk(n)|ak[n]= am;ψk), of yk(n)
conditioned on the transmitted symbol ak[n] for the kth

OFDM symbol which can be written as:

L(ψk|ak[n]=am)=−ln(2πσ2)−
1

2σ2

(
|yk(n)|

2+
∣∣amϕ̄T

kFn

∣∣2

− 2ℜ
{
yk(n)

∗amϕ̄
T
k Fn

})
. (14)

During the first step of the EM algorithm, known as the

“Expectation step”, we start by computing the expectation of

LLF in (14) over all possible transmitted symbols, {am}Mm=1.

Then, the resulting expectation is maximized with respect to

the unknown coefficient ψk. By relying on an initial guess,

ψ̂
(0)
k , of the channel estimates, the cost function, at the rth

EM iteration is given by:

Q
(
ψk|ψ̂

(r−1)
k

)

=
N∑

n=1

Eam

{
L(ψk|ak[n] = am)

∣∣∣∣yk(n); ψ̂
(r−1)
k

}
,(15)

where Eam
{.} is the expectation over all possible transmitted

symbols {am}Mm=1 and ψ̂
(r−1)
k =

[
ϕ̂

(r−1)
k , σ̂2

(r−1)

k

]T
con-

tains the estimate of ψk at the (r − 1)th EM iteration. The

equation in (15) can be further simplified as follows:

Q
(
ψk|ψ̂

(r−1)
k

)
= −N ln(2πσ2)

−
1

2σ2

(
Z2,k +

N∑

n=1

γ
(r−1)
n,k

∣∣∣∣ϕ̄T
k Fn

∣∣∣∣
2

− 2β
(r−1)
n,k

)
,(16)

where:

Z2,k =

N∑

n=1

|yk(n)|
2, (17)

γ
(r−1)
n,k = Eam

{
|am|2

∣∣∣∣yk(n); ϕ̄
(r−1)
k

}
, (18)

β
(r−1)
n,k = Eam

{
ℜ
{
yk(n)

∗amϕ̄
T
k Fn

} ∣∣∣∣yk(n); ϕ̄
(r−1)
k

}
.(19)

Using the Bayes formula, the a posteriori probability of am ,

P
(r−1)
m,n,k = P

(
am|yk(n); ψ̂

(r−1)
k

)
, at the (r− 1)th iteration is

given by:

P
(
am|yk(n); ψ̂

(r−1)
k

)
=

P [am]P
(
yk(n)|am; ψ̂

(r−1)
k

)

P
(
yk(n); ψ̂

(r−1)
k

) . (20)

Since the transmitted symbols are equiprobable (i.e., P [am] =
1
M

), we have the following result:

P
(
yk(n); ψ̂

(r−1)
k

)
=

1

M

N∑

n=1

P
(
yk(n)|am; ψ̂

(r−1)
k

)
. (21)

For normalized-energy constant-envelope constellations, note

that we have γ
(r−1)
n,k = 1. Exploiting then the fact that

ϕ̄k = ℜ{ϕ̄k} + ℑ{ϕ̄k} and Fn = ℜ{Fn} + ℑ{Fn}, the

cost function in (16) can be written as follows:

Q
(
ψk|ψ̂

(r−1)
k

)
=−N ln(2πσ2)−

1

2σ2

(
Z2,k+

N∑

n=1

γ
(r−1)
n,k ×

(
FH

n G1,kFn+ℑ{Fn}
TG2,kℜ{Fn}+ℜ{Fn}

TG3,kℑ{Fn}

)

− 2

M∑

m=1

P
(r−1)
m,n,kη

(m)
k,n

)
,(22)

where:

G1,k = ℜ{ϕ̄k}ℜ{ϕ̄k}
T + ℑ{ϕk}ℑ{ϕ̄k}

T ,

G2,k = ℜ{ϕ̄k}ℑ{ϕ̄k}
T −ℑ{ϕ̄k}ℜ{ϕ̄k}

T ,

G3,k = ℑ{ϕ̄k}ℜ{ϕ̄k}
T −ℜ{ϕ̄k}ℑ{ϕ̄k}

T ,

η
(m)
k,n = ℜ{yk(n)

∗amFT
n}ℜ{ϕ̄k}−ℑ{yk(n)

∗amFT
n}ℑ{ϕ̄k}.

In the maximization step, we start differentiating the cost

function in (22) with respect to ℜ{ϕ̄k} and ℑ{ϕ̄k} then

setting it to zero to obtain the following results:

N∑

n=1

γ
(r−1)
n,k

(
J1,nℜ{ϕ̄k} − J2,nℑ{ϕ̄k}

)
=

N∑

n=1

µ1,n, (23)

N∑

n=1

γ
(r−1)
n,k

(
J1,nℑ{ϕ̄k}+ J2,nℜ{ϕ̄k}

)
= −

N∑

n=1

µ2,n,(24)



where:

J1,n = ℜ{Fn}ℜ{Fn}
T + ℑ{Fn}ℑ{Fn}

T , (25)

J2,n = ℜ{Fn}ℑ{Fn}
T −ℑ{Fn}ℜ{Fn}

T , (26)

µ1,n =

M∑

m=1

P
(r−1)
m,n,kℜ{yk(n)

∗amFT
n}, (27)

µ2,n =

M∑

m=1

P
(r−1)
m,n,kℑ{yk(n)

∗amFT
n}. (28)

Now, using the identity ϕ̄k = ℜ{ϕ̄k}+ jℑ{ϕ̄k} leads to the

following result:

N∑

n=1

(J1,n + jJ2,n)γ
(r−1)
n,k ϕ̄k =

N∑

n=1

µ1,n − jµ2,n.(29)

Hence, the estimated time average of the channel gains at the

rth iteration can be obtained as follows:

̂̄ϕ(r)

k =

(
N∑

n=1

γ
(r−1)
n,k (J1,n+jJ2,n)

)−1

× (30)

N∑

n=1

(
M∑

m=1

P
(r−1)
m,n,ky

∗
k(n)amFT

n

)H
. (31)

Similarly, by differentiating the cost function in (22) with

respect to σ2, we obtain the following estimate of the noise

variance:

σ̂2
(r)

=

Z2,k +

N∑

n=1

∣∣∣FT
n
̂̄ϕ(r−1)
k

∣∣∣ γ(r−1)
n,k − 2β

(r−1)
n,k

2N
.(32)

Finally, at convergence of the EM algorithm (i.e., after REM

iterations), the channel estimates corresponding to Nc consec-

utive OFDM symbols are given by:

α̂l = ST ĉl = STT−1 ̂̄α(REM )
l , (33)

where ̂̄α(REM )
l = [̂̄α(REM )

l,1 , ̂̄α(REM )
l,2 , . . . , ̂̄α(REM )

l,Nc
]T is an

estimation vector for the complex channel gain time averages

of the lth path over Nc OFDM data symbols. The channel gain

estimates in (33) can be further as in [10] by implementing

an iterative ICI suppression technique such as successive

interference cancellation (SIC). Indeed, the channel estimates

at the output of the EM technique can be used to reconstruct

then remove the ICI components from the received signal

and the resulting samples can be re-injected once again as

new inputs of the new EM solution to increase accuracy.

The process can be repeated over RICI iterations until no

additional improvements can be achieved.

IV. SIMULATION RESULTS

In this section, we assess the performance of the new ML

EM channel estimator at the component level in terms of the

mean square error (MSE) of the channel gains, but also in

terms of link-level bit error rate (BER) and throughput. In

all simulations, we consider an OFDM RIT with N = 128
subcarriers, a central frequency fc = 5 GHz, and a sampling

frequency Ts = 0.5 µs. The channel between the transmitter

and receiver is modeled as a multipath Rayleigh fading

channel and the complex gains {αl(t)}
L
l=1 are generated with

variance {σ2
l }l=1 at any given Doppler using a uniform Jake’s

model. The channel parameters adopted in all simulations are

summarized in the following table:

TABLE I
CHANNEL PARAMETERS

Path number 1 2 3 4 5 6

Average Power [dB] -7.219 -4.219 -6.219 -10.219 -12.219 -14.219

Normalized Delay 0 0.4 1 3.2 4.6 10

We start by investigating the effect of the number of EM

iterations on the estimation accuracy. To do so, we plot in Fig.

1 the MSE of the EM technique along with the low bound

(LB) derived in [10] against REM at two different SNR levels.
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Fig. 1. MSE of ML EM vs its number of iterations with Nc = 3 and Np = 8

at: (a) SNR = 10 dB, and (b) SNR = 30 dB.

Obviously, at a fixed SNR level, the convergence rate of the

EM technique (REM ) is affected by the ICI level corrupting

the received samples. In fact, the EM technique is able to

converge much faster when the ICI level is reduced with an

ICI cancellation technique. For instance, when using QPSK

modulation, ML EM is able to provide the same accuracy

either with 1 or 5 EM iterations when ICI cancellation is

applied. However, for high modulation order (i.g., 64-QAM)

that are usually more sensitive to ICI component, the same

technique requires at least 3 EM iterations to converge when

no ICI cancellation procedure is used.

In Fig. 2, we assess the robustness of the proposed tech-

nique to ICI and compare it to both the LS technique and LB

derived in [10]. We observe a clear advantage of the ML EM

technique at both low and high Dopplers. We also observe

that the ICI cancellation block enhances the performance of

both techniques. However, the ML EM benefits from much

larger gains and approaches the LB at high SNR values.

In Fig. 3, we see that the gap between the two techniques

increases when reducing the number of pilots per OFDM

block from Np = 16 to Np = 8, more so at high Dopplers.
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Fig. 2. MSE of ML EM and LS vs. the SNR with Nc = 3 and Np = 8

at: (a) FDT = 0.02, and (b) FDT = 0.1.
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Fig. 3. MSE and BER of ML EM and LS vs. the SNR with Nc = 3 in
terms of: (a) MSE at FDT = 0.02, (b) BER at FDT = 0.02, (c) MSE at
FDT = 0.1, and (b) BER at FDT = 0.1.

Indeed, the LS technique’s performance deteriorates when

reducing Np while the NDA technique keeps exactly the same

performance at medium or high SNR values. Actually, the ML

EM provides approximately the same BER as LS, yet with a

lower number of pilots. Consequently, the new technique can

achieve a higher throughput since the overhead is reduced by

half.

In Fig. 4, we plot the link-level throughput curves of both

ML EM and LS assuming the adoption of an adaptive (i.e.,

SNR-dependent) modulation scheme.

Here, we observe a clear advantage of the ML EM tech-

nique especially at high mobility (i.e., FDT = 0.1) and higher

modulation order (i.e., 16- and 64-QAM). Note that both

techniques, ML EM and LS, use the SIC block to decode the

received symbols. As reported previously, the LS technique

provides less reliable channel estimates since it uses pilot
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Fig. 4. Link-level throughput vs. the SNR for ML EM and LS at: (a) FDT =

0.02, and (b) FDT = 0.1.

symbols only. Those estimates, which are injected later in

the SIC block, lead to a higher BER. Moreover, from Fig.

4 (b), we observe that the performance of the LS technique

significantly deteriorates when the number of pilots is reduced

by half from 16 to 8. Such behaviour stems from the fact

that poor channel gain estimates results in less reliable ICI

cancellation, especially at higher modulation orders. However,

the ML EM maintains approximately the same performance

in terms of MSE whether initialization is with Np = 8 or 16
pilot symbols. Hence, it exhibits a higher link-level throughput

than LS, more so at medium and high SNR levels, with best

performance at high Doppler achieved with Np = 8 pilots.

V. CONCLUSION

In this paper, we addressed the problem of channel esti-

mation under time-varying channels for OFDM systems. The

proposed approach is based on a polynomial approximation

of the complex channel gains and take advantage of all

the available data symbols to provide reliable channel gains

estimates. It is shown through simulations, that the proposed

solution provides better performance than the DA technique.

The latter translates into a net advantages of the proposed

ML EM technique in terms of BER and link-level throughput

gains, especially at medium and high SNRs, more so at

relatively higher Doppler frequencies.
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