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ABSTRACT

In this paper, we tackle the problem of joint angles and time
delays estimation (JADE) in a non-data aided (NDA) sce-
nario where the transmitted signal is unknown at the receiver.
We do so by applying the maximum likelihood (ML) in or-
der to obtain the best performance achievable. The impor-
tance sampling (IS) technique is used to reduce the multi-
dimensionality of the maximization problem without recur-
ring to an iterative option. Computer simulations show that
the new ML IS solution approaches the DA techniques and
the Cramér-Rao lower bound (CRLB) at medium and high
SNR levels.

1. INTRODUCTION
The joint angles and time delays estimation (JADE) prob-
lem finds application in diverse domains ranging from indoor
positioning [1,2], RADAR systems [3], etc., to broadband
wireless communications [4]. So far, a number of JADE
techniques have been reported in the literature and except
for the MI-MUSIC approach proposed [5], all the existing
solutions are either geared toward data-aided estimation or
rely on an estimate of the channel matrix. Roughly speak-
ing, they can be broadly categorized into two major cat-
egories: subspace-based and ML-based estimators. Most
of the subspace-based techniques are built upon the well-
known MUSIC and ESPRIT algorithms [4,6,7]. In practice,
subspace-based approaches are more attractive due to their
reduced computational load. However, they are usually sub-
optimal and suffer from severe performance degradation for
low SNR levels. ML approaches [3,8,9], however, are known
to enjoy higher accuracy. In the specific JADE context, to
the best of our knowledge, the ML approach has not been
addressed so far.

In this paper, we develop a non-iterative ML estima-
tor for the JADE problem under the NDA scenario that is
based on the importance sampling (IS) concept. In this work,
we design a separable (i.e., factorisable) joint angle-delay
pseudo-pdf which allows a very easy generation of the re-
quired vector realizations. Computer simulations show that
the technique has a comparable performance when compared
to the fully DA technique in terms of estimation accuracy.

The rest of the paper is organized as follows: In Section
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Award from NSERC.

2, we introduce the system model. In Section 3, we derive the
new NDA ML solution for the underlying estimation prob-
lem. In Section 4, we provide the required details regarding
the IS technique. In Section 5, we use exhaustive computer
simulations to assess the performance of the proposed ap-
proach. Finally, we draw out some concluding remarks in
Section 6.

The notations adopted in this paper are as follows. Vec-
tors and matrices are represented in lower- and upper-case
bold fonts, respectively. Moreover, {.}T and {.}H denote the
conjugate and Hermitian (i.e., transpose conjugate) operators.
The Euclidean norm of any vector is denoted as ||.||. For any
matrix X, [X]q and [X]l,k denote its qth column and (l, k)th

entry, respectively. For any vector x, diag{x} refers to the
diagonal matrix whose elements are those of x. Moreover,
{.}∗, ∠{.}, and |.| return the conjugate, angle, and modulus
of any complex number, respectively. bxc is the ceil function
defined as bxc = max{n ∈ Z|n ≤ x}. Finally, j is the pure
imaginary number (i.e., j2 = −1), and the notation , is used
for definitions.

2. SYSTEM MODEL
Consider a single input multiple output (SIMO) system
equipped with P antenna elements at the receiver side. The
transmitted signal goes through a multipath channel consist-
ing ofQ different paths that impinge on the receiving antenna
array from Q different angles {θq}Qq=1, respectively. Each
path is also characterized by a propagation delay {τq}Qq=1 as-
sumed to be unknown but constant and a path gain {γq}Qq=1.
Note that (τ1, τ2, · · · , τQ) ⊂ [0, τmax]Q where τmax≤T . At
the destination, the received signal at the output of the pth

antenna element is given by:

yp(t) =
Q∑
q=1

γqe
jϕp(θq)

K−1∑
k=0

ckh(t− τq − kT ) + wp(t), (1)

where ϕp(θ) is a real-valued angular transformations that de-
pend on the array geometry and wp(t) is an additive white
Gaussian noise (AWGN) with zero mean and variance σ2.
h(t) is the shaping pulse, T is the symbol duration and c =

[c0, c2, . . . , cK−1]
T is the vector containing theK transmitted

symbols. The latter are generated randomly from a M−ary
constellation alphabet, CM . Moreover, we assume that all the
transmitted symbols are unknown at the receiver side. The
received signal is sampled at the rate ζ = T

Ts
where Ts is

the sampling period, leading to the following samples at the
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output of the pth antenna element:

yp(n) =
Q∑
q=1

γqe
jϕp(θq)

K−1∑
k=0

ckh(tn−τq−kT )+wp(n), (2)

where {tn}Nn=1 are the time samples. We now group all the
unknown multipath parameters in the following three vectors:
θ = [θ1, θ2, · · · , θQ]T , τ = [τ1, τ2, · · · , τQ]T , and γ =
[γ1, γ2, · · · , γQ]T . We further gather the samples collected
across all the antenna elements at a given time instant into a
single vector, y(n) = [y1(n), y2(n), · · · , yP (n)]T , given by:

y(n)=
Q∑
q=1

γqa(θq)
K−1∑
k=0

ckh(tn − τq − kT ) + w(n), (3)

where w(n) = [w1(n), w2(n), · · · , wP (n)]T

is the corresponding noise vector and a(ϕ) ,[
1, ejϕ1(θ), ejϕ2(θ), · · · , ejϕP (θ)

]T
is the array steer-

ing vector defined for any direction θ. Our goal in the
remainder of this paper is to jointly estimate the parameters
{θq}Qq=1 and {τq}Qq=1 using K symbols that are unknown to
the receiver. To that end, we gather all the receiving samples
in a single matrix Y = [y(1),y(2), . . . ,y(N)] as follows:

Y = A(θ)diag{γ}H(τ )C + W, (4)

where W is the (P × N) noise matrix with elements
[W]p,n = wp(tn), C = IN ⊗ c is a (KN ×N) matrix of the
transmitted symbols, and A(θ) = [a(θ1),a(θ2), ...,a(θQ)]
is a (P × Q) matrix containing the Q steering vectors. The
delayed samples of the pulse shape h(t) are gathered into a
(Q × KN) matrix, H = [H1,H2, ...,HN ], where Hn for
n = 1, ..., N is given by:

Hn,


h(nTs − τ1) . . . h(nTs − τ1 − (K − 1)T )
h(nTs − τ2) . . . h(nTs − τ2 − (K − 1)T )

...
...

...

h(nTs − τQ) . . . h(nTs − τQ − (K − 1)T )

.

3. BLIND JADE
We start by deriving the log-likelihood function (LLF) for the
estimation problem that depends on all the unknown param-
eters θ, τ , γ, c, and σ2. Then, we focus on the compressed
likelihood function (CLF) that depends solely on the delays
and the angles. Since the noise components are Gaussian dis-
tributed and assumed to be spatially and temporally white, it
follows that the LLF that depends on τ , θ, γ, c, and σ2 is:

L
(
θ, τ ,γ, c, σ2

)
=−PN ln(πσ2)

− 1

σ2

N∑
n=1

∣∣∣∣∣
∣∣∣∣∣y(n)−

Q∑
q=1

γqa(θq)

K−1∑
k=0

ckh(nTs−kT−τq)

∣∣∣∣∣
∣∣∣∣∣
2

. (5)

We can reduce the number of unknown parameters that char-
acterize the LLF by maximizing it with respect to the noise
variance. To do so, we differentiate te LLF in (5) with respect

to σ2 and inject it back into (5) to obtain the LLF that depends
only on θ, τ ,γ and c:
L
(
θ, τ ,γ, c

)
=

N∑
n=1

∣∣∣∣∣
∣∣∣∣∣y(n)−

Q∑
q=1
γqa(θq)

K−1∑
k=0

ckh(nTs−kT−τq)

∣∣∣∣∣
∣∣∣∣∣
2

. (6)

Now, owing to the Parseval’s identity, the LLF can be ex-
pressed in the frequency domain as follows:
L
(
θ, τ ,γ, c

)
≈

N∑
n=1

∣∣∣∣∣
∣∣∣∣∣y(ωn)−

Q∑
q=1

γqa(θq)
K−1∑
k=0

ckh(ωn)e−jωn(kT+τq)

∣∣∣∣∣
∣∣∣∣∣
2

, (7)

where
{
ωn = n−1

NTs

}N
n=1

is the nth frequency bin and y(ωn)
and h(ωn) are the DFTs of y(n) and h(n), respectively. The
frequency samples of the delayed signals can be written in the
following form:

Φn(τ ) , h(ωn)diag{fn(τ )} ⊗f (K)
n

T
, (8)

where fn(τ ) = [e−jωnτ1 , e−jωnτ2 , · · · , e−jωnτQ ]T and
f
(K)
n = [1, e−jωnkT , · · · , e−jωn(K−1)T ]T . It follows that the

LLF in (7) can be written in a matrix form as:

L
(
θ, τ ,γ

)
≈
∣∣∣∣∣∣y − [IN ⊗A(θ)

]
Φ(τ )γ̄

∣∣∣∣∣∣2, (9)

where y =
[
y(ω1)Ty(ω2)T · · · y(ωN )T

]T
, γ̄ = γ ⊗ c, and

Φ(τ ) =
[
Φ1(τ )T Φ2(τ )T · · · ΦN (τ )T

]T
is a (NQ×KQ)

matrix. By differentiating the LLF in (9) and setting the result
to zero, we obtain the ML estimate of γ̄ which is given by:̂̄γMLE =

[ [
IN ⊗A(θ)

]
Φ(τ )︸ ︷︷ ︸

, D

]†
y, (10)

where D† is the Moore-Penrose pseudo-inverse of D given
by D† =

(
DHD

)−1
D. Injecting ̂̄γMLE back into (9) leads to

the CLF which depends only on θ and τ :
Lc
(
θ, τ

)
= yHD(DHD)−1DHy, (11)

and the joint ML estimates of θ and τ are hence obtained as
the solution to the following optimization problem:

[θ̂, τ̂ ] = argmax
θ,τ

Lc
(
θ, τ

)
. (12)

Note that the CLF, Lc(θ, τ ), is a non-linear function of
the delays and the angles. Hence, finding its maximum ana-
lytically is intractable. Therefore, to find a non-ietrative solu-
tion to the estimation problem in (12), we use the maximiza-
tion theorem introduced by Pincus in [10]. The latter, when
applied to our estimation problem, leads to the following ML
estimates (MLEs) of the delays and angles:

τ̂q =

∫
· · ·
∫
τq L̄c

(
θ, τ

)
dθdτ , q = 1, 2, · · · , Q (13)

θ̂q =

∫
· · ·
∫
θq L̄c

(
θ, τ

)
dθdτ , q = 1, 2, · · · , Q (14)
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where L̄c(θ, τ ) is the normalized CLF defined as:

L̄c(θ, τ ) ,
eρ0Lc(θ,τ )∫

· · ·
∫
eρ0Lc(θ,τ )dθdτ

. (15)

Intuitively, as ρ0 tends to infinity, L̄c(θ, τ ) becomes a Dirac
delta function centered at the true maximum of Lc(θ, τ ).
By noticing that L̄c(θ, τ ) in (15) is nonnegative and inte-
grates to one, the normalized CLF can be considered as a
pdf. Taking this observation under consideration, the MLEs
in (13) and (14) can be seen as statistical expectations, i.e.,
for q = 1, 2, · · · , Q, which leads to the following results:

τ̂q = 1
R

∑R
r=1 τ

(r)
q and θ̂q = 1

R

∑R
r=1 θ

(r), (16)

where {τ (r)}Rr=1 and {θ(r)}Rr=1 are R random realizations
generated according to L̄c(θ, τ ).

In the case where the number of paths is unknown, it
needs to be estimated before proceeding to AoAs and TDs
acquisition. A heuristic approach that allows the exact esti-
mation of Q is proposed in [8].

4. IMPORTANCE SAMPLING CONCEPT
Since L̄c(θ, τ ) is 2Q−dimensional and extremely non-linear,
one interesting solution to generate the required realizations is
by using a different distribution than the one of interest [11-
13]. The importance sampling concept allows us to practi-
cally apply such idea to generate {τ (r)}Rr=1 and {θ(r)}Rr=1.
In fact, we can rewrite (13) and (14) in the following equiva-
lent forms, for q = 1, 2, · · · , Q:

τ̂q =

∫
· · ·
∫
τq
L̄c(θ, τ )

Ḡ(θ, τ )
Ḡ(θ, τ )dθdτ , (17)

θ̂q =

∫
· · ·
∫
θq
L̄c(θ, τ )

Ḡ(θ, τ )
Ḡ(θ, τ )dθdτ , (18)

where Ḡ(θ, τ ) is a new function to be chosen as close as pos-
sible to L̄c(θ, τ ) and allowing at the same time an easy gen-
eration of the required realizations {τ (r)}Rr=1 and {θ(r)}Rr=1.
In this case, both θ and τ can be alternatively considered as
jointly distributed according to Ḡ(θ, τ ). Hence, the MLEs in
(17) and (18) are rewritten as:

τ̂q = 1
R

R∑
r=1

η
(
θ(r), τ (r)

)
τ
(r)
q , θ̂q= 1

R

R∑
r=1

η
(
θ(r), τ (r)

)
θ
(r)
q ,(19)

where η(θ, τ ) is defined as the following ratio:

η(θ, τ ) ,
L̄c(θ, τ )

Ḡ(θ, τ )
. (20)

The importance function Ḡ(θ, τ ) must be separable in
terms of the Q angle-delay pairs

{
(θq, τq)

}Q
q=1

. In other
words, we aim to find a function Ḡ(θ, τ ) that can be written
as follows:

Ḡ(θ, τ ) =

Q∏
q=1

ḡq(θq, τq). (21)

Consequently, each of {(θq, τq)}Qq=1 are generated indepen-

dently using their corresponding pdfs
{
ḡq(θq, τq)

}Q
q

instead
of using Ḡ(θ, τ ) to generate Q−dimensional random vectors
θ and τ . However, we have always to keep in mind that
Ḡ(θ, τ ) should be as close as possible to the original CLF,
L̄c(θ, τ ), in order to obtain the best achievable performance.
Since IN ⊗

[
A(θ)HA(θ)

]
is a block-diagonal matrix, it fol-

lows that:

DHD =
∑N
n=1 Φn(τ )HA(θ)HA(θ)Φn(τ ). (22)

The {lth}KQl=1 column of A(θ)Φn(τ ) can be written as:

[A(θ)Φn(τ )]l = a(θl′)h(ωn)e−jωn(τl′+l
′′T ), (23)

where {l′ = b(l − 1)/Kc + 1} and l′′ is the remainder of
dividing l − 1 by the number of symbols K (i.e., l′′ = (l −
1)modK). It follows that the (l,m)th entry of DHD is given
by:

[DHD]l,m =
(∑N

n=1 |h(ωn)|2ejωn(τl′−τm′+(l′′−m′′)T )
)
×(∑P

p=1 e
j(ϕp(θm′ )−ϕp(θl′ ))

)
, (24)

where m′ = b(m − 1)/Kc + 1 and m′′ = (m − 1) mod K.
Note that the diagonal elements of DHD have the same ex-
pression:

[DHD]l,l = P
∑N
n=1 |h(ωn)|2. (25)

Due to the destructive superposition (for l 6= m) of the com-
plex exponentials in (24), the off-diagonal entries of DHD
are expected to be very small compared to its diagonal ones
[2,14]. Thus we obtain the following useful approximation:

DHD ≈ PEhIKQ, (26)

where Eh =
∑N
n=1 |h(ωn)|2 is the energy of the pulse shap-

ing filter. Next, we inject it in (11) to obtain the following
approximation for the CLF:

Lc(θ, τ ) ≈ 1
PEh

∑Q
q=1

∑K
k=1 Ik(θq, τq), (27)

in which Ik(θ, τ) is the periodogram of the signal at the kth

symbol period given by:

Ik(θ, τ)=

∣∣∣∣∣ P∑p=1
ejϕp(θ)

N∑
n=1

h(ωn)y∗p(ωn)e−j2πωn(τ+(k−1)T )

∣∣∣∣∣
2

.(28)

Owing to the decomposition of the approximate CLF in
(27) into separate contributions pertaining each to one of the
Q angle-delay pairs at each symbol period, we exploit it be-
low as a new pdf:

Ḡ(θ, τ )=
exp

{
ρ1
∑Q
q=1

∑K
k=1 Ik(θq, τq)

}
∫
· · ·
∫

exp
{
ρ1
∑Q
q=1

∑K
k=1 Ik(θ′q, τ

′
q)
}
dθ′dτ ′

.(29)
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The factor 1
PEh

involved in (27) is absorbed within the new
design parameter, ρ1 6= ρ0.

Due to the linear decomposition in (27), Ḡ(θ, τ ) is sep-
arable in terms of the angle-delay pairs. Indeed, it can be
easily shown that Ḡ(θ, τ ) factorizes as follows:

Ḡ(θ, τ ) =

Q∏
q=1

ḡθ,τ (θq, τq), (30)

where:

ḡθ,τ (θ, τ) =
eρ1

∑K
k=1 Ik(θq ,τq)∫∫

eρ1
∑K

k=1 Ik(θ
′,τ ′)dθ′dτ ′

. (31)

From (30), the Q angle-delay pairs,
{

(θq, τq)
}Q
q=1

, are inde-
pendent and identically distributed (iid). Therefore, to gener-
ate each couple of realizations θ(r) and τ (r) according to the
multidimensional distribution Ḡ(θ, τ ), one can easily gener-
ate, independently, Q couples of realizations (θ

(r)
q , τ

(r)
q ) ac-

cording to the common bivariate distribution ḡθ,τ (θ, τ) and
forms the realizations vector θ(r) =

[
θ
(r)
1 , θ

(r)
1 , · · · , θ(r)Q

]
and

τ (r) =
[
τ
(r)
1 , τ

(r)
1 , · · · , τ (r)Q

]
. As far the generation of the

couple (θ
(r)
q , τ

(r)
q ) is concerned, we start by computing the

marginal pdf, ḡθ(θ), that is evaluated as follows:

ḡθ(θ) =

∫
ḡθ,τ (θ, τ)dτ. (32)

The latter is used to generate the R angle realizations,{
θ(r) =

[
θ
(r)
1 , θ

(r)
2 , · · · , θ(r)Q

]T}R
r=1

. The generated angles

can be used to compute the qth conditional delay pdf:

ḡτ |θ

(
τ |θ = θ(r)q

)
=
ḡτ,θ

(
τ, θ

(r)
q

)
ḡθ

(
θ
(r)
q

) , for q = 1, 2, · · · , Q. (33)

The conditional pdf in (33) is used to generate the R angle

realizations,
{
τ (r) =

[
τ
(r)
1 , τ

(r)
1 , · · · , τ (r)Q

]}R
r=1

.
After generating the realizations for all the Q paths, the

TDs and AoAs are estimated by using the circular sample
mean which are given by:

τ̂q=τmax

(
1
2π∠

[
R∑
r=1

η
(
θ(r), τ (r)

)
exp

{
j2π

(
τ(r)
q

τmax
− 1

2

)}]
+1

2

)
, (34)

θ̂q=
1
2∠

[
R∑
r=1

η
(
θ(r), τ (r)

)
exp

{
j
(

2θ
(r)
q − π

)}]
+ π

2 . (35)

Recall that the weighting coefficient η
(
θ(r), τ (r)

)
was earlier

defined in (20). In order to greatly reduce the computational
load of this coefficient, we can use the following normalized
weighting coefficient:

η
(
θ(r), τ (r)

)
= exp

{
ρ0Lc

(
θ(r), τ (r)

)
−ρ1

∑Q
q=1I

(
θ
(r)
q , τ

(r)
q

)
− max

1≤r≤R

[
ρ0Lc

(
θ(r), τ (r)

)
− ρ1

Q∑
q=1

I
(
θ
(r)
q , τ

(r)
q

)]}
.(36)

5. SIMULATION RESULTS
In the following we assess the performance of the proposed
IS-based ML estimator in terms of the root mean square error
(RMSE) with a total number of Monte-Carlo runs Mc = 500.
In our simulation, we consider a SIMO system composed of
one source, one destination and Q = 2 paths. The trans-
mitted sequence consists of 128 symbols taken from a QPSK
constellation. The pulse shaping function is a SRRC with a
roll-off factor α = 0.5. The design parameter, ρ1, is set to 60,
and ρ0, which must be sufficiently high, is set to 8000.

In Fig. 1, we compare the proposed technique against the
DA CRLB [6] and the DA algorithm (i.e., DA IS) presented in
[8]. We observe that NDA ML IS performs nearly the same as
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Fig. 1. RMSE for TDs and AoAs joint estimation vs SNR
with K = 128 symbols, α = 0.51, Q = 2, and QPSK: (a)
RMSE of the AoAs, and (b) RMSE of the delays.

the DA technique at medium and high SNR values. However,
we can observe some performance deterioration at low SNR.
The latter stems from the fact that the periodogram in (27)
exhibits higher secondary lobes due to the relatively stronger
presence of noise. At extremely low SNR, the amplitudes of
the secondary lobes can be reduced by adjusting the parame-
ter ρ1. However, at high SNR, larger values of ρ1 can affect
the main lobes of the periodogram leading to some perfor-
mance deterioration. Hence, the value of ρ1 should be care-
fully selected to achieve best trade-off between the low and
high SNR regimes.

6. CONCLUSION
In this paper, we proposed a new JADE ML estimator that
takes advantage of the powerful importance sampling con-
cept. The new estimator achieves the global maximum of
the likelihood function in a blind scenario. Simulation re-
sults showed that clearly, the new IS-based ML estimator can
achieve the same performance as the DA techniques over a
wide range of useful SNR values.
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