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Abstract—This paper embodies the Fox’s H-transform theory
into a unifying modeling and analysis of HetNets. The proposed
framework has the potential, due to the Fox’s H-functions
versatility, of significantly simplifying the cumbersome analysis
and representation of cellular coverage, while subsuming those
previously derived for all known simple and composite fading
models. The paper reveals important insights into the practice of
densification in conjunction with signal-to-noise plus interference
(SINR) thresholds and path-loss models.

Index Terms—HetNet, coverage, stochastic geometry, radio
signal strength (RSS) cell association (CA), max-SINR CA, Fox’s
H-Fading.

I. INTRODUCTION

Chiefly urged by the occurring mobile data deluge, a radical
design make-over of cellular systems advocating heterogenous
cellular networks (HetNets) is crucial and thus an active re-
search trend [1]-[9]. The random space pattern of HetNets has
been extensively reproduced and analyzed trough stochastic
geometry over different fading channels such as Rayleigh [2],
[3], Nakagami-m [4], [8], Weibull [7] and α-µ [6].

Besides subsuming most of these fading models, the Fox’s
H-distribution is currently being touted for its high flexibility
to adapt different fading behaviors pertaining to emerging
new wireless applications, e.g., device-to-device (D2D) and
intervehicular communications, wireless body area networks,
and millimeterwave (mmWave) communications [10]. Despite
several studies on its applicability in evaluating various wire-
less communication ( [11] and references therein), the Fox’s
H-distribution has thus far not found its way into stochastic
geometry-based cellular communications as a possible fad-
ing distribution. Yet, resorting to the most comprehensive
treatments of the subject [2]- [12], a general analytic solu-
tion for Fox’s H fading seems unlikely, if not impossible.
Indeed, besides being simple special cases, these treatments
rely on approximating the fading distribution (e.g., integer
fading parameter-based power series [8], [9], and Laguerre
polynomial series in [12]) which hamper their generality and
exactness. Moreover, these treatments usually entail compu-
tationally expensive Laplace generation functional evaluation
lending the solution approach itself complicated and more
importantly non applicable to the generalized Fox’s H fading.

To the best of the authors’ knowledge, no work has ever
been found to analyze the coverage of HetNets over the general
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Fox’s H fading channels. The main contributions of this letter
are as follows:

• Novel exact and closed-form expressions are derived for
the coverage of HetNets over Fox’s H-fading under both
range expansion as well as max-SIR cell association (CA)
rules. Our analysis procedure and coverage formulations
are given in unified and tractable mathematical fashion
thereby serving as a useful tool to validate and compare
the special cases of Fox’s H-fading channels.

• Some useful insights regarding the practice of densifica-
tion of HetNets in conjunction with path-loss model are
also provided through the asymptotic coverage analysis.

• The derived results enable to evaluate the impacts of
physical channel and network dynamics such as fading
parameters, density of BSs, SINR thresholds, and path-
loss model on coverage performance.

II. CHANNEL AND NETWORK MODELS

A. The Fox’s H Channel Model

Consider a wireless communication link over a fading chan-
nel where the power gain is distributed according to the Fox’s
H {O,P} distribution with order sequence O = (m,n, p, q),
parameter sequence P = (κ, c, a, b, A,B), and probability
density function (PDF)

fH(x) = κHm,n
p,q

[
cx

∣∣∣∣
(ai, Aj)p
(bi, Bj)q

]
, x ≥ 0, (1)

where c and κ are constants, and (xj , yj)l is a shorthand
notation for (x1, y1), ..., (xl, yl). Hereafter, for notational sim-
plicity, we denote the right-hand side of (1) by Hm,n

p,q (x;P).

B. Special cases

A Fox’s H-function PDF considers homogeneous radio
propagation conditions and captures composite effects of
multipath fading and shadowing, subsuming large variety of
extremely important or generalized fading distributions used
in wireless communications as α-µ1, N -Nakagami-m, (gen-
eralized) K-fading, and Weibull/gamma fading , the Fisher-
Snedecor F-S F , and EGK, as shown in [11], [13] and
references therein. Furthermore, the Fox’s H-function distribu-
tion provides enough flexibility to account for disparate signal
propagation mechanisms and well-fitted to measurement data

1The α-µ distributions can be attributed to exponential, one-sided Gaussian,
Rayleigh, Nakagami-m, Weibull and Gamma fading distributions by assigning
specific values for α and µ.
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collected in diverse propagation environments having different
parameters.

C. Network Model

Consider the downlink of a M-tier HetNet. Each tier is
specified by the tuple (λi, Pi, βi, {Oi,Pi}), i ∈ {1, . . . ,M},
indicating the BS spatial density, transmission power, target
SINR threshold, and the order and parameters sequences of the
H-fading, respectively. The BSs in the i-th tier are spatially
distributed as a homogenous Poisson point process (PPP)
Φi ∈ R

2 with density λi. Let Hxi
be the channel power gain

between BS xi ∈ Φito be distributed according to the Fox’s
H-distribution {Oi,Pi}. Furthermore, we denote L(‖x‖) the
path-loss function and

I =
∑

i∈M

∑

xi∈Φi/xk

PiL(‖xi‖)Hxi
, (2)

the aggregate interference at a typical receiver, assuming that
its serving BS belongs to the k-th tier. The SINR at the typical
receiver can then be formulated as

SINRm
xk

=
PkL(‖xk‖)Hxk

I + σ2
k

, (3)

where σ2
k is the thermal noise power associated with the k-th

tier, and the parameter m ∈ {U ,B} where i) m = U stands
for the unbounded path-loss scenario, i.e., L(‖x‖) = ‖x‖−α

where α is the path-loss exponent and ii) m = B uses the
bounded path-loss model, i.e., L(‖x‖) = (1 + ‖x‖)−α.

III. FOX’S H MODELING OF COVERAGE

A. RSS Cell Association

Let the typical user be associated with the BS that provides
the maximum radio signal strength (RSS). This implies
that the typical user is then in coverage if the set Am ={
∃i ∈ M : i = argmaxj∈M,x∈Φj

PjL(‖xj‖); SINRm
xi

≥ βi

}

is not empty. Let us denote rk = ‖xk‖ and define
the coverage probability by Cm = P{Am 6= ∅}.
Cm ,

∑M

k=1 θkErk{Cm(rk)} where θk = λk∑
j∈M

λj P̃ δ
j

.

Proposition 1: The average coverage probability Fox’s H-
fading with an unbounded path loss model is given by

CU = πδ

M∑

k=1

λk

(
Pk

σ2
k

)δ ∫ ∞

0

1

ξ2+δ
Hn,m

q,p+1

(
ξ,Pk

U

)

H1,1
1,1




(
Pk

σ2
k

)δ

ξδ

∑

j∈M

πλj P̃
δ
j

(
1+δξHn+1,m+2

q+2,p+3

(
ξ,PI

U

))
,Pδ


dξ, (4)

where Pk
U

=
(
κβk,

1
cβk

, 1−b, (1−a, 1),B, (A, 1)
)
, and

PI
U =

(
κ
c2 ,

1
c , (1− b− 2B, 0, δ), (0, 1− a− 2A,−1, δ− 1),

(B, 1, 1), (1, A, 1, 1)
)

, and Pδ = (1, 1, 1− δ, 0, δ, 1).

Proof: See Appendix A.
The new fundamental SINR distribution disclosed in Proposi-
tion 1 provides an exact and numerically inexpensive unifying

tool for coverage analysis in a variety of extremely important
fading distributions (see [13, Table I]). In some particular
cases, the obtained formulas reduces to previously well-known
major results in the literature2 [2], [5], [8].

Corollary 1 (HetNets densification in Fox’s H-fading with
unbounded path-loss model): The average coverage of ultra-
dense networks with RSS under unbounded path-loss scales
as

lim
λ→∞

CU =

M∑

k=1

∫ ∞

0

Hn,m
q,p+1

(
ξ,Pk

U

)
dξ

ξ2
∑

j∈M
P̃ δ
j

(
1+δξHn+1,m+2

q+2,p+3

(
ξ,PI

U

)) . (5)

Proof: Recall that the asymptotic expansion of the Fox’s
H-function near x = ∞ given by [15, Eq. (1.5.9)]

Hm,n
p,q (x;P) ≈

x→∞
κηxd, (6)

where d = max
(

ai−1
Ai

)
, i = 1, . . . , n and η is calculated as in

[15, Eq. (1.5.10)]. Applying (6) to (4) when λk = λ → ∞, k =
1, . . . ,M, yields the result after recognizing that d = −1 and
η = 1

δ .
Corollary 1 shows how the singularity in the unbounded

model can affect the accountability of the conducted analysis,
since the coverage intensity-invariance property of ultra-dense
HetNets still holds under the Fox’s H-fading.

Proposition 2: The coverage probability over Fox’s H-
fading with a bounded path-loss model for a receiver con-
necting to the k-th tier BS located at xk is given by

CB(rk) =

∫ ∞

0

1

ξ2
Hn,m

q,p+1

(
ξ,Pk

B

)
exp

(
− σ2

Pk
ξ(1 + rk)

α

−
∑

j∈M

πλj P̃
δ
j δξ

(
(1 + rk)

2Hn+1,m+2
q+2,p+3

(
ξ,P1,I

B

)

−(1 + rk)Hn+1,m+2
q+2,p+3

(
ξ,P2,I

B

)))
dξ, (7)

where Pk
B

= Pk
U

, P1,I
B

=

(
κ
c2 ,

1
c , (1 − b −

2B, 0, δ), (0, 1−a−2A,−1, δ−1), (B, 1, 1), (1, A, 1, 1)
)

, and

P2,I
B

=

(
κ
c2 ,

1
c ,
(
1−b−2B, 0, δ2

)
,
(
0, 1−a−2A,−1, δ2−1

)
,

(B, 1, 1), (1, A, 1, 1)
)

.

Proof: Appendix B.
Corollary 2: In interference-limited HetNets, the average

coverage probability over Fox’s H-fading with a bounded

2For instance, the Fox’s H distribution with O = (1, 0, 1, 0) and P =
(1, 1, 0, 1, 0, 1) reduces to Rayleigh fading for which indeed (4) matches the
classical results readily available in the literature [7, Eq. (14)], [2, Theorem
1].



path-loss model is obtained as

CB =
∑

k∈M

λk

∫ ∞

0

e−
∑

j∈M
πλj P̃

δ
j δξ(Ψ1−Ψ2)

ξ2
∑

j∈M
πλj P̃

δ
j δξ(Ψ1 +Ψ2)

Hn,m
q,p+1

(
ξ,Pk

B

)
H1,1

1,1

( ∑
j∈M

λj P̃
δ
j (1+δξΨ1)

∑
j∈M

λj P̃
δ
j δξ(2Ψ1+Ψ2)

, P̃δ

)
dξ, (8)

where Ψx = Hn+1,m+2
q+2,p+3

(
ξ,Px,I

B

)
, x ∈ {1, 2} and P̃δ =

(1, 1,−1, 0, 2, 1).
Proof: Since the BS density is typically quite high in

HetNets, the interference power easily dominates thermal
noise. Therefore, thermal noise can often be neglected i.e.
σ2
k = 0, k = {1, . . . ,M}. Then the result follows along the

same lines as in (4) after expanding (1 + rk)
2.

Corollary 3 (HetNets densification in Fox’s H-fading with
bounded path-loss model): The average coverage of ultra-
dense networks with with RSS CA and under bounded path-
loss scales as

lim
λ→∞

CB =
∑

k∈M

∫ ∞

0

e−λ
∑

j∈M
πP̃ δ

j δξ(Ψ1−Ψ2)Hn,m
q,p+1

(
ξ,Pk

B

)

ξ2
∑

j∈M
πP̃ δ

j δξ(Ψ1 +Ψ2)

H1,1
1,1

( ∑
j∈M

P̃ δ
j (1 + δξΨ1)

∑
j∈M

P̃ δ
j δξ(2Ψ1 +Ψ2)

,Pδ

)
dξ. (9)

Contrary to what the standard unbounded path-loss function
predicts, the coverage probability under bounded path-loss
function scales with e−λ and approaches zero with increasing
λ for general values of δ. Recently, the authors in [16] revealed
that the same can be spotted in a single-tier cellular network
over Rayleigh fading. Due to the complexity of the bounded
model, its impact was only understood through approximations
in [8], yet merely for fading scenarios with integer parameters.
In this paper, ultra densification is scrutinized in HetNets over
the Fox’s H-fading, which is to the best of our knowledge
totally new.

B. Max-SINR Cell Association

Under the max-SINR CA rule, the typical user is in coverage

if the set Am =

{
∃i ∈ M; max

xi∈Φi

SINRm
xi

≥ βi

}
is not empty

[8]. Then the average coverage probability follows from [5,
Lemma 1] as

Cm = 2π
∑

k∈M

λk

∫ ∞

0

rkCm(rk)drk , m ∈ {U ,B}. (10)

Proposition 3: The average coverage probability in Fox’s-H
fading is

CU =
∑

k∈M

λk

βδ
kΓ(1 + δ)

H1,1
1,1

(
Pk

σ2
k

; P̃k

)
Λm,n
p,q , (11)

where P̃k =

(
π
∆ ,∆

1
δ , 1, 1, 1, 1δ

)
, with ∆ =

∑
j∈M

πλj P̃
δ
j Γ(1− δ)Λm,n

p,q , and

Λm,n
p,q =

κ

cδ+1

∏m
j=1 Γ (bj + (1 + δ)Bj)∏p

j=m+1 Γ (1− bj − (1 + δ)Bj)

×
∏n

j=1 Γ (1− aj − (1 + δ)Aj)∏p
j=n+1 Γ (aj + (1 + δ)Aj)

. (12)

Proof: See Appendix C.
Notice that in contrary to [8], [12] our analysis procedure

and coverage formulations are not submissive to any restrictive
assumptions or approximation. Indeed the coverage formulas
in (11) is generally enough to cover any fading distribution
by simply tuning the Fox’s H-function parameters, countless
in number. Remarkably, this is the first unified and closed-
form coverage formulas under generalized fading with Fox’s
H-function PDF.

Corollary 4: In an interference-limited network, the average
coverage probability simplifies from (11) as

CU =
π

C(δ)

∑

k∈M

λkβ
−δ
k Λm,n

p,q∑
j∈M

λjP̃
δ
j Λ

m,n
p,q

, (13)

where C(δ) = π2δ csc(πδ).
Proof: When σ2

k ≃ 0 it holds that in (11)

H1,1
1,1

(
Pk

σ2
k

; P̃k

)
≈

σ2
k
≃0

π

∆
, (14)

thereby yielding the desired result.
From (13), it follows that, unless {Oi,Pi} 6= {Oj ,Pj},

∀{i, j} = 1, . . . ,M (non identically distributed tiers), the cov-
erage probability is not affected by fading in an interference-
limited network. Remarkably, (13) is instrumental in eval-
uating the impacts of the number of tiers or their relative
densities, transmit powers, and target SINR over generalized
fading scenarios. Strictly speaking, this result fills the gap of
lacking exact, unified and simple coverage expression over
those fading channels. For instance, under α-µ fading we
obtain

CU ,α−µ =
π

C(δ)

∑

k∈M

λkβ
−δ
k

Γ(µk)
δ−1

Γ
(
µk+

1
αk

)δΓ
(
µk +

δ
αk

)

∑
j∈M

λj P̃
δ
j

Γ(µj)δ−1

Γ
(
µj+

1
αj

)δΓ
(
µj +

δ
αj

) . (15)

Notice that when µ = m and α = 1, (15) boils down to
the coverage of HetNets under arbitrary Nakagami-m fading.
The latter has been tackled in closed-form only when m is
an integer [8], while the general case has been the subject of
several ad hoc approximations [8, Proposition 1], [5, Corollary
1].

Proposition 4: The average coverage probability of max-
SINR CA with a bounded path-loss model over Fox’s-H



fading is obtained as

CB = 2π
∑

k∈M

λk

∫ ∞

0

1

ξ2
Hn,m

q,p+1

(
ξ;Pk

B

) ∫ ∞

0

rk exp

(
− (1+rk)

α

(
σ2
kξ

Pk
+
∑

j∈M

πλjδP̃
δ
j ξHn+1,m+2

q+2,p+3

(
ξ(1+rk)

α,P1,I
B

))
drkdξ.(16)

Proof: We obtain the result by proceeding along the same
lines adopted in Appendix B in combination with (10).

IV. NUMERICAL RESULTS

Fig. 1 shows the average coverage probability CU under
both RSS and max-SINR CA rules vs. λ2. It shows that for a
small density of Tier 1 (λ1 = 10−4), densifying Tier 2 steadily
increases the coverage probability when β1 > β2. Otherwise,
densificatoin of Tier 2 always negatively affects the coverage
probability, even more dramatically when λ1 is small. Fig. 1
also shows that compared to the max-SINR CA rule, the RSS
scheme has much lower coverage performance.

Fig. 2 depicts the average coverage probability Cm, m ∈
{U ,B} with max-SINR CA. It shows that the analysis is
accurate and follows the simulation trends. Fig. 2 further
validates the explanations provided in section III regarding
the impact of densification on the coverage probability, as
well as the impact of the bounded model on the coverage
probability versus the unbounded one. The former provides
generally smaller coverage, particularly in dense scenarios.
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0.15
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Fig. 1. Average coverage probability Cx vs. λ2 over (3, 0, 0, 3)-order Fox’s
H for multipath fading with P = (0.2, 5.5,−, (1.5, 0.4, 4.5),−, 1

2
13).

M = 2, α = 4, P1 = 50 W, P2 = 1 W, and σ2

1
= σ2

2
= 10−6, for:

(a) both RSS and max-SINR CA schemes and x = U , and (b) max-SINR
CA and x ∈ {U ,B}..

V. CONCLUSION

Using a general form, namely the Fox’s H variate of
stochastic variables, we developed a unifying framework to
characterize HetNet communication under both RSS and Max-
SINR CA rules. Our work systemises the use of the Fox’s
H-function to incorporate prominent fading distributions and
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Fig. 2. Average coverage probability Cx vs. λ2 over (3, 0, 0, 3)-order Fox’s
H for multipath fading with P = (0.2, 5.5,−, (1.5, 0.4, 4.5),−, 1

2
13).

M = 2, α = 4, P1 = 50 W, P2 = 1 W, and σ2

1
= σ2

2
= 10−6, for:

(a) both RSS and max-SINR CA schemes and x = U , and (b) max-SINR
CA and x ∈ {U ,B}..

bounded path-loss models. We proposed generic closed-form
expressions for the coverage probability that reveal the actual
impact of densification in conjunction with the path-loss
model, the fading parameters, and the SINR thresholds.

VI. APPENDIX A: PROOF OF PROPOSITION 1

Definition 2 (Fox’s H Transform [14]): The H-transform of
a function f(x) = Hm1,n1

p1,q1 (x;P1 = (κ1, c1, a1, b1, A1, B1)) is
defined by

Hm,n
p,q {f(t);P} (s) =

∫ ∞

0

Hm,n
p,q (t;P)f(ts)dt,

=
1

s
Hm+n1,n+m1

p+q1,q+p1
(s−1;P ⊙ P1), (17)

where

P ⊙ P1,

(
κκ1

c1
,
c

c1
, (1−b1−B1, a), (b

1:m, 1− a1 −A1,

bm+1:q), (B1, A), (B
1:m, A1, B

m+1:q)

)
. (18)

Proof: Follows from the Mellin transform of the product of
two H-functions [14, Eq. (2.3)].

Resorting to [6, Theorem 1] and [7, Eq. (39)] under the in-
dependency of {Φj} and then applying the Fox’s H-transform
in (17), we have

CU(rk) =

∫ ∞

0

1√
ξ
L−1

{
1√
s
Hm,n

p,q {f(t);P} (sξ); s;βk

}

e
−σ2

kξ
rα
k

Pk

∏

j∈M

LIj

(
ξ
rαk
Pk

)
dξ, (19)

where f(t) =
√
tJ1

(
2
√
stξ
)
, J1(x) =

H1,0
0,2

(
x2

4 ; (1, 1, 12 ,− 1
2 , 1, 1)

)
is the Bessel function of



the first kind [17, Eq. (8.402)], and L−1 is the inverse
Laplace transform. Moreover in (23), LIj

is the Laplace
transform of the aggregate interference from the j-th tier
evaluated as in [7, Eq. (43)] as

LIj
(ξ)=exp

(
−πδλj

ξr2−α
k

(1− δ)
Hm,n

p,q {g(t);P} (ξ)
)
, (20)

where g(t) = t 2F2 (1, 1− δ; 2; 2− δ;−ξtr−α) =
tH1,2

2,3 (t;P1), P1 = (1−δ, ξr−α, (0, δ), (0,−1, δ−1),12,13),
and pFq(·) is the generalized hypergeometric function of
[17, Eq. (9.14.1)]. Finally, applying [14, Eq. (1.58)], the H-
transform in (17) and the inverse Laplace transform of the
Fox’s H-function [14, Eq. (2.21)] given by

L−1{x−ρHm,n
p,q (x;P);x; t} = t−ρ−1Hm,n

p+1,q

(
1

t
;Pl

)
, (21)

where Pl = (κ, c, (a, ρ), b, (A, 1), B), the desired result is
obtained after applying the Fox’s H reduction formulae in [14,
Eq. (1.57)]. The coverage probability over Fox’s H-fading3

with unbounded path-loss model for a receiver connecting to
a k-th tier BS located at xk is given by

CU (rk) =

∫ ∞

0

1

ξ2
Hn,m

q,p+1

(
ξ;Pk

U

)
exp

(
− σ2

k

Pk
ξrαk

−πδ
∑

j∈M

r2kλjP̃
δ
j ξHn+1,m+2

q+2,p+3

(
ξ;PI

U

)
)
dξ, (22)

where P̃j =
Pj

Pk
, δ = 2

α , and the parameter se-

quences Pk
U

=
(
κβk,

1
cβk

, 1−b, (1−a, 1),B, (A, 1)
)
, and

PI
U

=

(
κ
c2 ,

1
c , (1− b− 2B, 0, δ), (0, 1− a− 2A,−1, δ− 1),

(B, 1, 1), (1, A, 1, 1)
)

. Recall under the RSS CA that the PDF

of the link’s distance rk in HetNets is given by frk(x) =
2πλk

θk
x exp

(
−∑j∈M

πx2λjP̃
δ
j

)
[1]. Then recognizing that

exp(−x) = H1,0
0,1(x; 1, 1, 0, 1, 1, 1) [14, Eq. (1.125)] in (22),

we apply (17) to obtain the average coverage probability in
(4) after some manipulations.

VII. APPENDIX B: PROOF OF PROPOSITION 2

The proof of this Proposition relies on the very same
approach adopted in Appendix A, yielding

CB(rk) =

∫ ∞

0

1√
ξ
L−1

{
1√
s
Hm,n

p,q {f(t);P} (sξ); s;βk

}

e
−σ2

kξ
(1+rk)α

Pk

∏

j∈M

LIj

(
ξ
(1 + rk)

α

Pk

)
dξ, (23)

3We dropped the index i from Fox’s H-distribution {Oi,Pi} for notation
simplicity.

where rearranging [7, Eq. (39)] after carrying out the change
of variable relabeling (1 + x)−α as x, we have

LIj
(ξ) = exp

(
− πδλjξ

(
(1+rk)

2−α

(1− δ)
Hm,n

p,q {g1(t);P1} (ξ)−

(1 + rk)
1−α

(
1− δ

2

) Hm,n
p,q {g2(t);P} (ξ)

))
, (24)

where g1(t) = t 2F2 (1, 1− δ; 2; 2− δ;−ξt(1 + rk)
−α) and

g2(t) = t 2F2

(
1, 1− δ

2 ; 2; 2− δ
2 ;−ξt(1 + rk)

−α
)
. Finally

applying (17) and plugging the obtained result back into (23),
Proposition 2 then follows after some manipulations.

VIII. APPENDIX C: PROOF OF PROPOSITION 3

Referring to [7], the Laplace transform of the ICI from
tier j under max-SINR CA is evaluated as LIj

(ξ) =
exp

(
−πλjξ

δΓ (1− δ) E [Hδ]
)
, where E [Hδ] is the Mellin

transform of the Fox’s-H function obtained as E [Hδ] = Λm,n
p,q

[14, Eq. (2.8)]. Then following the same lines developed in
Appendix A yields

CU(rk) =

∫ ∞

0

1

ξ2
Hn,m

q,p+1

(
ξ;Pk

U

)
exp

(
− σ2

k

Pk
ξrαk

−
∑

j∈M

r2kπλj P̃
δ
j

(
ξ

c

)δ

Γ(1− δ)Λm,n
p,q

)
dξ. (25)

Finally, substituting (25) into (10) and applying (17) along
with [14, Eq. (1.59)] yield

CU =
∑

k∈M

λkH1,1
1,1

(
1; P̃k

) ∫ ∞

0

1

ξδ+2
Hn,m

q,p+1

(
ξ;Pk

U

)
dξ

=
∑

k∈M

λk

βδ
k

H1,1
1,1

(
1; P̃k

)
Λ̃n,m
q,p+1, (26)

where

Λ̃n,m
q,p+1 =

κ

cδ+1Γ(2 + δ)∏n
j=1 Γ (1− aj − (1 + δ)Aj)

∏m
j=1 Γ (bj + (1 + δ)Bj)∏p

j=n+1 (aj + (1 + δ)Aj)
∏q

j=m+1 Γ (1− bj − (1 + δ)Aj)

=
Λn,m
p,q

Γ(1 + δ)
. (27)
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