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An Algorithm for Multisource 
eamforming and Multitarget Tracking 

Sofikne Affes, Saeed Gazor, and Yves Grenier, Member, IEEE 

Abstract- A new algorithm for simultaneous robust multi- 
source beamforming and adaptive multitarget tracking is pro- 
posed. Self-robustness to locations errors or variations is intro- 
duced by a source-subspace-based tracking procedure of steering 
vectors in the array manifold. This LMS-type procedure is 
generalized from a former work we developed in the single 
source case. Two beamforming structures are actually proposed. 
The first is adaptive and optimal for uncorrelated sources and 
correlated noise. The second is conventional and optimal for 
correlated sources and uncorrelated white noise. The proposed 
algorithm and MUSIC show an identical asymptotic variance in 
localization for immobile sources, whereas for the mobile case, 
the proposed algorithm is highly advantageous. Then, it is shown 
that the additional use of some kinematic parameters (Le., speed, 
acceleration, etc.) inferred from the reconstructed trajectories 
improves the tracking performance and overcomes some of the 
problems of crossing targets. The efficiency of multitarget track- 
ing and the robustness of multisource beamforming are proved 
and then confirmed by simulation. The number of sources can 
be initialized and tracked by a marginal proposed procedure. 
The beamforming performance is shown to be optimal as the 
single source case. Finally, the algorithm has a very low order of 
arithmetic complexity. 

I. INTRODUCTION 
ECENTLY, we proposed in [1]-[3] a robust adaptive 
beamformer based on a LMS-type subspace algorithm 

for the tracking of a single source by allowing the steering 
vector of a classical beamformer to be time adapted in the 
array manifold. This algorithm proved to be self-robust to 
strong localization errors without introducing any signal-to- 
noise ratio (SNR= $) loss and to have an efficient tracking 
behavior when in the presence of mobile sources (target and 
jammers). This concept of self-robustness with adjusted robust 
adaptive beamforming is explained in more detail in [1]-[3]. 

In this paper, our purpose is to generalize this algorithm to 
the simultaneous extraction and tracking of multiple desired 
sources [4]. To do so, we particularly assume that the number 
and the location parameters of desired point sources, among 
all present sources including jammers, are initialized by an ap- 
proximate localization technique or simply given with errors. 
Those jammers not localized will have relatively small power 
and will be confused with noise. 
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Localization methods may be used in the case of a stationary 
environment to reliably estimate the correct source positions 
and the corresponding steering vectors. However, they use a 
time average for the estimation of the covariance matrix that 
does not yield an adequate estimator when in the presence 
of fast moving targets (i.e., nonergodic observations). Conse- 
quently, the performance of such techniques drastically deteri- 
orates. Several estimation techniques such as Kalman filtering 
have been combined with localization algorithms and applied 
in target motion analysis to estimate the trajectory of an object 
[6]-[ll]. However, all these methods are expensive in terms 
of computational complexity. Another class of techniques 
propose adaptive or batch implementations of these algorithms 
by subspace-based tracking procedures (e.g., [17] and [ 181). 
With m sensors, the computationally efficient methods of 
subspace tracking require at least O ( m p )  operations for every 
update where p is the number of all present sources without 
the location parameter search, whereas the proposed algorithm 
requires only 0 ( m p )  operations, including localization, where 
p denotes the number of desired sources among all present 
sources. In addition, unlike most of these techniques, it does 
not require the knowledge of the noise covariance matrix nor 
the number of all present sources. 

The simulations confirm the results we expected from the 
generalization of the convergence and performance analyzes. 
Indeed, the algorithm has the same robustness regarding 
location errors. However, two problems that were expected 
theoretically are encountered. First, the location estimator is 
biased whenever the location parameter increment is not zero 
mean (e.g., in the presence of maneuvering targets). Second, 
the algorithm cannot deal with crossing targets, as the presence 
of a unique source in the spread of a locking range is a 
major hypothesis for the convergence proof in [ 11-[3]. We 
thus introduce an additional procedure based on the use of 
some kinematic parameters such as the speed. It is shown that 
this procedure removes the bias and overcomes some of the 
problems of crossing targets by prediction of crossover points 
on trajectories and by blocking the tracking procedure during 
crossover intervals. 

After making a mathematical formulation in Section 11, 
we present the different steps of the algorithm in Section 
111. Actually, the proposed algorithm in a first version fails 
in tracking the crossing sources. This problem is addressed 
in Section 111-D, where an efficient solution is given. We 
briefly address both the detection and initialization of a newly 
appeared source and the detection of a vanishing source as 
a marginal proposition in Section 111-E. In Section IV, we 
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make convergence and performance analyzes and show that the 
algorithm has a better tracking/localization behavior than the 
asymptotic behavior of MUSIC [18], [19] even for immobile 
sources (see [I] and [3]) .  The simulation results are presented 
in Section V. In Section VI, we shall draw our conclusions. 

11. MATHEMATICAL FORMULATION 
We consider the following model of signals received by a 

linear array 

where Xt is the m-dimensional observation vector, St = 
 SI,^, s 2 , t , .  . . , sp,tIT is the vector of p desired narrowband 
signals to be extracted (p 5 m) among all present sources, 
Nt is an additive noise vector, and Gt is the transfer function 
(i.e., the mn x p steering matrix) between the emitted sources St 
and the m-sensor antenna array. All the quantities considered 
herein are complex. F is a parametric modeling function deter- 
mining the propagation law and the configuration geometry, 
and Ot = [K I  t .  n2 t .  . . . , K ~ , ~ ] ’  is the location parameter of 
interest. K,,t represents the DOA or the spatial coordinates of 
the source S , . t .  The subscript t stands for time index. 

We consider here the case of a plane-wave propagation 
model and a linear array, for the sake of simplicity, though 
a 2-D or a 3-D array could be considered in general (e.g., 
see [24] for a 2-D array). Consequently, the parameterizing 
function F is given by 

where the wavenumber K 4 represents a single source 
location parameter. q5 E [-../a, 7r /2 ]  is the DOA, and X is the 
wavelength. The array center is considered to be at the origin 
(i.e., xElxL = 0, where [ I C ~ , X ~ , . . . , X , ] ~  is the sensor 
positions vector; see [1]-[3] for more details). We make the 
following further assumptions: 

A l :  G, N ,  and S are mutually independent. 
A2: Channel G is slowly time varying in comparison with 

the variations of N and S .  Hence, we are able to 
properly estimate G and then update it. 

A3: The number of desired sources is initially known and 
a possibly erroneous approximation of 0 0 ,  say Oo, 
is initially provided either by an approximate a priori 
guess or by a given localization technique. 

A4: The DOA’s are far enough apart to make the source 
separation possible. The validity of this assumption 
is tested continuously in a second version of the 
algorithm. Whenever it is invalid, we will use an 
alternative procedure presented in Section 111-D. 

In Al ,  source signals in S can be mutually correlated, 
whereas no particular assumption is made over the spatial 
structure of noise. In A3, it should be noted that p does not 
necessarily denote the number of all present sources. 

a Multi-Source Beamforming 1 st - 
wt 

and Target Tracking 

Fig. 1. Structure of the multi-source algorithm in three steps: Beamforming, 
identification of channels, and projection over the array manifold and target 
tracking. 

111. PROPOSED ALGORITHM 
Given these assumptions, the main purpose in this paper is to 

constantly correct the estimated wavenuimbers and time adapt 
the beamformers to the new look directions. The algorithm 
should thus provide a robust multisource beamforming, and 
an efficient method for multitarget tracking. The LMS-type 
algorithm can be summed up by the steps presented in the 
following sections, as shown in Fig. 1. 

A. Multisource Beamforming 

The adaptive beamformer proposed in [ 11-[3] could be suc- 
cessfully used in parallel to track each selected desired source 
and to adaptively cancel all the present jammers (possibly 
including those unlocalized sources) when in the presence of 
no coherent source interference and spatially correlated noise. 
The idea is to simultaneously time adapt all the steering vectors 
in the same way as in [1]-[3] with a separate projection of 
each vector on the array manifold. 

Instead of several adaptive beamformers in parallel, a set 
of conventional beamformers could be used that have an 
optimal performance in the presence of uncorreliated white 
noise. Although the unlocalized sources are not specifically 
cancelled, the performance remains bzrely unchanged since 
we assumed these sources to be confusled with noise. In this 
case, p necessarily denotes the number of all locali2:ed sources. 
The advantage of these beamformers of being nonadaptive is 
that they avoid source signal cancelation, even in the presence 
of partially coherent interference. 

At iteration t ,  we suppose that an estimation of Gt-l ,  say 
Gt-;, is available from the previous iteration or initialized 
by Go = F ( 6 o ) .  As assumption A2 states that (: is slowly 
time varying, it is possible to estimate St with lhe steering 
matrix Gt approximated by et-l at time t .  In the: following, 
we first present an adaptive beamformer with a GSC structure 
based on a LMS algorithm as a generalization of the proposed 
algorithm in [l]. Afterwards, in Section 111-A2), we propose 
the use of conventional beamforming instead. 

1)  Adaptive Beamformers with GSC Structure: For the es- 
timation of with G;;t-l as the steering vector, adaptive 
beamformers could be used as in [l] to adaptively cancel 
the other emitted sources (possibly unlocalized) with optimal 
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reduction of correlated noise. For each desired source 1 5 z 5 
p ,  we consider an adaptive beamformer with a GSC structure 
[5]  based on the LMS algorithm [22] as follows: 

jammers in the mainlobe of the array. Further results regarding 
complexity reduction and the general case of optimal coherent 
source extraction in correlated noise were recently given in [3]. 

B. Channel Identi3cation 

The resulting estimate of St obtained by one of the above 
methods ( 3 ) - ( 3 ,  say St ,  can be used in a LMS-type procedure 
to track or identify the steering matrix variations by 

T x:,, = c ~ i a g . [ G F ~ - ~ ] ~ ~  a [ x ; , ~ , ~ :  . . ; x:,,,,] 
1 

Yi . t  = - XCj,, 

X“ z . t  

,i,;t = ?ji,t - W;;,”x;t 

1=1 
T ( 3 )  

[x; , ,  1 t ,X;. i . t ,  ’ ’ ’ . X:-l,{.J - ?h, f1n7-1 

G, = et-1 + ( X t  - G f - l S , ) ( p s t ) H  (6) 
- A  

W?t+l = WTt - 7];,fi$X;:t. where Gt = [GI,,: ( ; 1 2 , t , .  . . , It should be noted at this 

r J H  denotes the conjugate transpose of U, and W/:t and 
17n,-1 2 [l, 1, . . , 1IT are two (m, - 1)-dimensional vectors. 
We note that W:t is initially set to 0. The step-size of the 
GSC v , , ~  could be constant (i.e., a 70 for LMS-GSC) or 
could include a normalization factor (e.g., q2;t 7o/lIXztl/* 
for NLMS-GSC) to improve the convergence behavior of the 
array in the presence of fast-moving jammers. The estimated 
signal vector S, [ b ~ ; ~ ,  b z , ~ ,  . . . , ip,t]T will be used later in 
the estimation of steering vectors and source locations. 

2 )  Conventional Beamforming: It is shown in [2] and [3] 
that conventional beamformers defined by 

(4) 

are optimal for the minimization of the output distortion in the 
presence of localized sources (possibly mobile with partially 
coherent interference) and spatially white noise. Wt in (4) 
denotes the m x p beamforming matrix and is used instead of 
(3). It must be noted that under the assumption A4, the matrix 
(.lt is full column rank and that GFGf is invertible. Moreover, 
the “nonmixture and distortion-less constraint” WFGt- 1 = I?, 
is fulfilled (see [1]-[3]). Hence, for each one of the p sources, 
say s , , ~ ,  the corresponding column beamformer WZ,, (i.e., 
Wt = [ W I , ~ !  . . . , Wp,t]) considers the remaining sources sj . ,  

( , j  # i) as jammers and rejects them. 
Unlike adaptive beamformers for a given G?-I, the per- 

formance of signal separation in (4) is not affected by the 
coherence between two sources s,;, and s j . ,  ( j  # i ) .  More- 
over, it shows a better performance than the GSC beamformers 
in the presence of fast mobile targets. However, the arithmetic 
complexity in flops of the conventional beamforming and 
GSC are, respectively, equal to n$ + m p  + p 3  + p 2  and 
4rnp. In addition, unlike adaptive beamformers, conventional 
beamforming is not optimal for the reduction of spatially 
correlated noise. 

When the output SNR is high, a modification in (4) could 
be introduced to further reduce the arithmetic complexity to 
m ( p  + 1) at the expense of an output SNR loss as follows: 

$ 2  GEIRXt ( 5 )  

where 62 is a diagonal matrix representing a weighting window 
such as Kaiser’s with an improved mainlobe to sidelobe ratio 
[23]. A well-selected window could also improve the locking 
range of the algorithm and reduce the sidelobe effects. We 
point out that unlike (3) and (4), the beamformer in (5) 
cannot efficiently remove the interference of possibly present 

stage that the column vectors G.i,, do not necessarily belong to 
the array manifold. For this reason, we denote them, at present, 
by Gt in (6). The step size j-1 is a scalar but could be, in general, 
a diagonal matrix for regulating the time constants of the 
sources separately. Equation (6), combined with a multisource 
beamformer (presented in the previous subsection), represents 
a source subspace tracking algorithm (see [1]-131) similar to 
the procedure given by Yang [17]. In the single source case, 
it is similar to the algorithm proposed by Oja [6]. We note 
that (6) can be interpreted as the result of a LMS procedure 
obtained by the minimization of the energy of the observed 
signals after projection on the noise subspace orthogonal to 
Gtp1. More details can be found in [11-[3]. 

The convergence analysis and simulations show that (6) 
does not correctly track the steering vectors when assumption 
A4 is not fulfilled. This is actually due to the fact that the 
noise covariance matrix defined for one selected source can 
no longer be approximated by the “nice” form aK.1 when one 
or more sources are present in its locking range (see [1]-[3]). 
To overcome this problem, we will introduce a new procedure 
presented later in Section 111-D. 

C. DOA Estimation and Source Tracking 

At present, we consider that assumption A4 is valid. In this 
case, the estimator Gi,t of Gi,f (ith column of G,) can be 
improved by a DOA adjustment with respect to a projection 
over the array manifold, performed separately for each source 
as in [1]-[3]. The ith location parameter k7.t is then updated 
as follows for 1 5 i 5 p :  

where Gq,% is the qth component of the ith column vector 
GL,,  of the matrix et at time t ,  and where Im{,} denotes 
the imaginary part of a complex number. It must be noted 
that another alternative is also presented in 141 instead of (7). 
Hence, we finally reconstruct the steering matrix 

D. Speed Estimation and Tracking of Crossing Targets 

We notice that the above algorithm gives unbiased location 
estimators, unless the location increments are not zero mean 
(see (17)). Hence, in this section, we present an additional step 
in the algorithm to improve its performance regarding the bias 
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Speed Estimation 3 

and DOA Prediction 

i I 

Fig. 2. 
detection. 

Block diagram of the algorithm with speed estimation and crossover 

of the location parameters and to avoid some of the problems 
of crossing targets. This step is based on the prediction of 
the target trajectories thanks to the extra information obtained 
on their kinematics. Park et al. [14] modified a multiple 
target angle tracking algorithm presented by Sword et al. 
[12]. They showed that the use of predicted angles and 
the estimation of the target speeds improve the tracking 
performance of the algorithm for crossing targets. Rao et al. 
[ 11 J proposed an algorithm to set up a correspondence between 
estimates and targets by the prediction of future positions 
based on previous trajectories. These algorithms, like ours, 
have the attractive feature of simple structure and avoid data 
association problems. In accord with the literature of target 
motion analysis [6]-[9], [14], we use the estimated kinematic 
parameters to rule the behavior of the targets during the 
crossover interval, whereas outside this interval, we propose 
the use of these parameters to remove the bias of the location 
estimators as shown in Fig. 2. 

Let us assume the speed or the target motion increment of 
the zth source noted by k L  2 K,,~+I - K , , ~  to be slowly time 
varying. We are then able to estimate the speeds for 1 5 z 5 p 
by replacing (7) by the following procedure: 

ki,t = (1 - a)&,t-1 + a(i i , t  - k+l) 

Ri;t  = k , t  + k , t  
(10) 

(1 1) 

where ki>o = 0. The speed is estimated in (10) via a smooth 
lowpass AR filtering of an intermediate location estimator k i ~  
with a smoothing factor 0 5 a 5 1. This factor must be 
chosen with respect to the stationarity and the bandwidth of 
6, and the time constants of the algorithm. 

It can be seen that the intermediate location estimator in (9) 
as in (7) tracks the targets with a delay equal to the product of 
the speed by the corresponding time constant. For trajectories 
with slowly time-varying increments, this delay is negligible, 
and, therefore, ( i i , t  - k i , t - l )  could be considered to be an 
estimator of the target speed k;-i,t. Hence, the final location 
estimator in (11) catches up with the bias due to the target 

speeds at convergence under some stability condit' l ions on cu 
and p. Details are given in Section IV. 

However, when two targets are not (distant enough (when 
they are in the same locking range), .the source separation 
is no longer possible. Consequently, the algorithm fails to 
track them properly, For each source, we therefore define the 
following test of validity of assumption A4: 

0, 
1, otherwise 

i f l j  # i s.t. lKi . t - l  - k j : t - l l  5 t Tz,t A { 
Tt 4 [Tl,t; T2,t, ' . . , Tp.tjT. (12) 

We note that Ti,t is initially set to one. The value of E 

should be chosen with respect to the array resolution. If 
this assumption is not valid, the adaptation of the channel 
identification based on the estimated signals in (6) should 
be blocked for the corresponding crossing targets. Hence, we 
modify it as follows: 

G, = Gt-l + ( X t  - Gt- lSt ) (p  diag[Tt]St)*. (13) 

We are now able to keep tracking crossing trajectories, even 
during the crossover intervals, where we can see that the 
speed estimates remain constant. This is actually a good and 
reasonable approximation for targets locally crossing with 
uniform speed. In the case where the motion of the targets is 
more complex (e.g., uniformly accelerated trajectories, etc.), 
we may estimate higher order increments by an alternative 
procedure as shown in [2] and [3] (i.e., acceleration, third 
derivative, etc.). It should be noted that the estimation and the 
use of higher order increments do not significantly improve the 
precision of the source localization, but they do enable a better 
prediction of the target trajectory during the crossover interval 
(see Fig. 8). These additional steps could improve the target 
tracking performance in real situations and do no1 introduce a 
high order of computational complexity. 

The global algorithm can be summed up by the following 
steps (see Fig. 2): 

First, one of (3), (4), or ( 5 )  is useid for beamforming. 
0 Equation (12) predicts local crossover pointri. 

Then, (13) identifies the steering vectors. 
The results are followed by the speed and position esti- 
mation procedure in (9)-( 11). 
Finally, to close the tracking loop, the steering matrix 
updated by (8) will be feedbacked in the beamforming 
unit for the next iteration. 

E. Source Number Trucking 

This section proposes two marginal procedures for adap- 
tively detecting the number of sources p when additive noise 
is almost white and uncorrelated. By the results of these 
procedures, the dimension of the steering matrix should be 
properly modified if necessary. More elaborate methods for 
estimating the number of sources do exist (e.g.. in [20] and 
[211). 

I )  Presence Verification of the Trached Sources: Let us de- 
fine Nt = ( X t  - Gt - l s,). The presence of each tracked source 
could be verified by an energy detection criterion. To do so, we 
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may estimate the energy of the emitted sources for 1 5 i 5 p 
by a simple recursive algorithm 

covariance of R )  equal to 

where 0 < a, < 1 is a smoothing factor. If the ith source 
is well localized, e,,t represents a time-smoothed estimator of 
its signal input power. On the other hand, in the absence of 
the ith source, e,,l should be close to zero in average. Hence, 
the detection could be made by comparing e,,t with a well 
defined threshold. 

2) Detection and Initialization of a New Appearing Source: 
We may apply a simple adaptive tracking procedure to identify 
the eigenvector corresponding to the highest eigenvalue of 
E [ f i t f i F ]  (e.g., [15] and [17]). In particular, we propose the 
procedure of Oja [16] 

When an unlocalized source appears, Gp+l converges to 
a new steering vector, and after the convergence, ?jf is an 
estimate of the new source signal. Hence, we may estimate 
the energy of a potential source by the following equation: 

where Zt = Nt - G,+l,t-ljjt. Finally, the detection could 
be made as above by comparing e,+l,t with a well-defined 
threshold. We note that although Gp+l,t is considered to be 
an initialization for the nonprojected steering vector on the 
array manifold for a new detected source, the recursive DOA 
estimation in (7) could not be applied immediately. In this 
case and only in the first iteration after the detection of a new 
source, Rp+l, l - l  could be initialized by a search minimization 
of 116,+1,f - F ( ~ ) l l  over m uniformly distributed points in 
the range of K .  

Iv .  CONVERGENCE AND PERFORMANCE ANALYSES 

In this section, we consider here the convergence of lo- 
calization errors. The performance analysis of the proposed 
algorithm for incoherent sources and cv = 0 shows for the ith 
source (1 5 Z 5 p )  that (see [2] and [3]) 

E[&] = E [ k ,  r , t - ~ ]  (1 - w:,) + ~ f l ; ~ E [ ~ i . t ]  (17) 

where is the variance of si , t .  This equation proves that 
the algorithm is able to track each target in the temporal 
mean with a time constant given by TTE[AI = &. To show 
the efficiency of this algorithm, we compare it with the 
well-known algorithm of MUSIC for DOA estimation for 
an immobile single source. In [1]-[3], for Q = 0, it was 
shown (when /*. is small) that this algorithm converges in 
covariance with a time constant equal to T C ~ ~ ( ~ )  = & and 
a misadjustment of the localization error (i.e., the steady-state 

From [18] and [19], we observe that the asymptotic variance 
of the DOA estimate is given for MUSIC by 

where T, >> 1 is the number of snapshots. We clearly see 
from (18) and (19) that the asymptotic variances of the DOA 
estimates given by MUSIC and the proposed algorithm are 
equal when the number of snapshots is equal to T, = 4rc0v(c), 
the time in which initial errors are reduced up to 1.83% (see 
the simulations in [l]). 

Let us now consider the case where 01 # 0, and define the 
following state vector for the estimated localization error of 
each target by 

and A k L  A k, - K , > t + l .  It has been shown in [1]-[3] that 
a necessary condition for convergence is that the localization 
errors lhk., t )  must be smaller than the mainlobe width of the 
array patterns. Under such a condition, we obtain in Appendix 
A for 1 5 z 5 p 

where r;.t and u;.t are given in Appendix A. The angular 
accelerations of the targets lci,t 2 ~ . , , +  - K . , , ~ - ~  - and 
u,,t are the inputs of these systems for 1 5 i 5 p .  Nt and 
s, , t  have zero mean as assumed in [2] and [3] for the need of 
analysis and are mutually independent from $;.f-l. Thus, it is 

and E [ u ; , ~ ]  = 0. Hence, we have 
clear that E[r;.t4+1] = E[r;,t]E[$;,,-1] = w*:Jqq+l], 

' E[.4~i.t] AiE[$i,t-l] + Bi,t (22) 

where BZjt [O: E[lc,jt]]T, and 

is the transition matrix. The dynamics of these two-pole 
systems (22) are of time-invariant second-order lowpass AR 
filters with the mean angular accelerations at the input. Thus, 
they have adequate responses for the tracking of lowpass target 
trajectories. 

Fig. 3 shows the eigenvalue positions of A, for a given 
pof, as a function of a on the complex plane. The stability 
condition implies that the eigenvalues of A, have the absolute 
values smaller than one. Accordingly, we obtain the following 
condition for convergence in the mean: 

2 

f l% 
0 < Il-po,271 < 1 * 0  < < 2' (23) 

Hence, under the stability condition and when the temporary 
mean of K,  is equal to zero, the mean of the state vector in 
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, 
,*.*--I-- .,,,, 

a = l  

Fig. 3. Eigenvalue positions of A, for 0 5 U 5 1 and a given po:" < 1. 

the steady state will converge to zero. The convergence of the 
mean state vector to zero shows that the algorithm is capable of 
tracking the target angles and their speeds. The time constants 
of the convergence are determined by the eigenvalues of A, 
as functions of n and pa:,. However, these time constants of 
E[k, , , ]  are limited between &? and &; for Q E [O, 11. 

Let us now define the covariance state vector by 

In Appendix B, the iterative state (36) for the covariance of 
localization errors is derived by 

Q,,t = &Q,,t-l + R, 
where the matrix E, and the vector R, are, respectively, given 
by (37) and (38). The time constants and the stability of the 
algorithm are determined by the eigenvalues of the matrix 
E,. For the zth source, the following results are obtained by 
numerical calculation with the theoretical expressions of C, 
and RL. 

* The convergence condition obtained by the covariance 
analysis given by 

0 5 a < 1 (25) 

is stronger than (23) and is identical to [1]-[3] for c): = 0. 
* Under this stability condition, for 0 < N 5 ao(p) where 

cvo(p) = +[1 - A], the time constants are almost 
equal to 

A 1  

LT2 ' 0 < 1-1 < Pmax 1 
4% + 2 

L L 2  

LL,,, 

In this case, ~ c ~ ~ l  corresponds to the time constant of 
the speed estimation. For 010(p) 5 a < 1, both time 
constants are almost equal to 

(26) 
1 

r c o v  -. 
Zc):O(bL) 

This expression of ' ~ ~ p ~ 2 1  shows the time constant of the 
algorithm to be infinitely large when the step size p is 
very small or close to the stability bound pmax and lower 

bounded as a function of p i.e., rcov 2 dm). This 
bound improves with a higher SNR or sensor number m 
for a faster convergence. 

* Equation (36) implies that the misadjustment of local- 
ization error (i.e., the steady-state covariance of &) 
converges to the sum of two terms, respectively, resulting 
from the variations of noise and souirce position. The first 
term shows the intrinsic localization error for immobile 
targets due to noise perturbations. It shows the immediate 
effect of SNR, the number of sensors m, imd sensor 
positioning x,, The second term increases the localization 
error in 6 for accelerating sources (maneuvering targets). 
It reduces with a smaller time constant and shows the 
effect of $, where 02 = E[k;] .  Both tenns show a 
compromise to be found over p and 01 between a faster 
convergence rate and a smaller misadjustment of steady- 
state localization. As a function of p and a,  a lower bound 
for misadjustment can be found. This bound decreases 
with a higher SNR or smaller variations of solurce speed. 

( 

V. SIMULATION RESULTS 
In this section, we consider an equidistant linear array where 

the number of sensors is m = 16, and xl+l - 2, = 1. We take 
X = 2 and a fixed step size p = 0.005. Spatially diffuse white 
noise is added at a SNR of 10 dB. 

To illustrate the efficiency of the allgorithm proposed in 
Section 111-A2), we first considered in Fig. 4(a) the case 
of four plane-wave narrowband and uncorrelated moving 
sources with a unit power emitting from separate initial 
angles. Simulation results show that thle algorithim applying 
Section ITI-A2) has a better performance than the algorithm 
based on adaptive beamformers presenled in Section 111-AI) 
regarding beamfonning and tracking behavior. Thi s improved 
performance is due to the fact that adaptive beamformers 
introduce an extra misadjustment. 

Fig. 4(c) shows that the output signal distortion converges 
to optimal performance in source signal extraction 22 dB 
(101og,,(16) + SNR; see [1]-[3]). Fig. 4(d) shows that the 
mean interference in source separation over all estimated 
signals C:"=, Cy=l,af? I lWZGt,tl I 2 / p  is efficiently reduced 
down to -33 dB. Moreover, the time coinstant in Fig. 4(b) cor- 
responds practically to &. However, we see in Fig. 4(b)-(d) 
that the tracking and the source signal extraction are disturbed 
when two of the targets are either too close or cross. 

To illustrate the performance of the speed estimation pro- 
cedure, we considered the case of two1 crossing targets with 
uniform speeds as shown in Fig. 5(a). Without the speed 
estimation procedure, both trackers produce an estimation 
delay and turn back at the crossover point, Allhough both 
sources remain tracked, the result is not satisfactory: 

The estimated tracks have a bias of 2" (see Fig. 5(a) and 

The mean signal distortion in source extraction converges 
to 19 dB (3  dB loss in SNR). 
Regarding the classification of the targets, the estimated 
tracks are permuted after the crossover (see Fig. 5(a) and 
@>I. 



1518 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 44, NO. 6, JUNE 1996 

I 1 
0 2000 4000 6000 8000 10000 

Iteration index. 

(4 

"'"0 2000 4000 6000 8000 10000 

(b) 

<-- Crossover intervals --> 

m - 1 5  a 

(ij -25 M 

2000 4000 6000 8000 10000 0 

<-- Crossover intervals --> 

m - 1 5  a 

(ij -25 M 

2000 4000 6000 8000 10000 0 
Iteration index. 

(c) 

5 0  
8 -6 <-- Crossover intervals --> 

5 - 1 8  
2 -24 

-30 

E-12 

a,-36 
G O  2000 4000 6000 8000 10000 

(d) 

Fig 4 (a) DOA trajectories and estimated tracks of four sources, (b) mean 
of localization crrors E:='=, lot t - 13, i ] / p ,  (c) mean of signal distortion 
E:=, 16, - J~ t I L / p ,  (d) mean of the interference in source separation 

Iteration index 
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On the other hand, the speed estimation procedure removes 
the bias and maintains the tracking during and after the 
crossover, where the values of t in (12) and Q in (10) are 
experimentally chosen, respectively, equal to 0.08 and 0.01. 
Fig. 5(b) and (c), respectively, show 34 dB improvement in 
source localization and 3 dB enhancement in beamforming 
(optimal output SNR). Of course, when the targets are too 
close around the crossover point, the sources are confused and 
cannot be separated. Fig. 5(d) and (e) show that the speeds are 
estimated with a very small error of about 10-40/sample. We 
also notice, in Fig. 5(b), (d), and (e), the second order nature 
of the global algorithm in tracking where the corresponding 
time constants belong to [ & , &]. We finally notice a better 
capability of the algorithm to cancel fast mobile jammers in 
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Fig. 5. (a) DOA trajectories and estimated tracks of two crossing sources 
(linearly moving targets; first-order crossover) with and without speed es- 
timation; (b) performance of target tracking, mean of localization errors xfxl [qz,t - o , , t l / p ;  (c) performance of source separation, mean of total 
distortion ET=, E[ld, , t  - - s , , t / ' ] / p ;  (d) speed estimation (in degree per sam- 
ple): (e)  mean absolute error of estimated speeds ET='=, I s(&,t - & , t ) / / p  
(in degrees per sample). 
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Fig 6 Adaptive normalized LMS beamformers with GSC structure (a) 
DOA trajectories dnd estimated tracks of two crossing sources (linearly 
moving targets, first-order cro\sover) with speed estimation, (b) performance 
of taigct tiacking, mean of Iocalizdtion errors Er='=, IdL t -dL t / / p .  (c) pedor- 
mance of source separation, mean of total distortion E:=, E[/.% I - qZ t I 2 ] / p  

comparison with adaptive beamformers like the GSC structure 
[22] in Fig. 6. 

To illustrate the performance of source number tracking, 
in Fig. 7, we added a third source appearing at t = 1500 
and vanishing at t = 4500 with the same scenario (oz3 = 2 ,  
a = b d  = 0.01). This source is effectively detected after a time 
delay that corresponds to the sum of the initial localization 
delay q n i t  in (15) and the energy estimation delay rePtl in 
(16). On the other hand, its extinction is detected with a time 
delay equal to re3 = 

In Fig. 8(a), we considered two targets that have equal 
speeds during crossover. The tracking in this case is made 
possible using the estimation of the second-order increments 
(see [2] and [3]). Fig. 8(b) confirms the intuitive expectation 
regarding the tracking of third-order crossovers using the 
estimation of the third-order increments. In all experiments, 
we saw that the estimation of higher order increments does 

= 60. 

38 I I- 
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Iteration index. 

I 
n 

(b) 

Fig. 7. Detection and initialization of a new appearing source at t = 1500 
and detection of its disappearance at t = 1500. (a) Trajestorier; and estimated 
tracks. (b) Energy-based detection curve. 

not improve the tracking behavior except duriing complex 
crossovers. 

In Fig. 9, we considered two zero mean source signals 
with variances equal to 1 and a correlation factor equal to 
p = 0.9. The sources are immobile at 40" and 70". DOA's 
are initialized with a 8" error. Althouglh the partial coherence 
between the sources could produce a bias and/or sin extra time 
constant in tracking, Fig. 9(a) and (b) shows that the algorithm 
is capable of tracking the partially coherent sources with a 
same order of localization error as the incoherent sources. We 
observe in Fig. 9(c) that the algorithm is not robust to coherent 
interference with the adaptive beamfonners, whereas it avoids 
the signal cancelation with conventional beamformers. In this 
case, the output signal distortion converges to the optimal 
value -22 dB. Finally, further tests successfully made with 
full coherent sources were recently described in [3]. 

VI. CONCLUSIOIV 

We presented, in this paper, a new algorithm for robust 
multisource beamforming and multitarget tracking. First, we 
described the generalization made of the work recently pre- 
sented in the single source case. It should be noted here 
that adaptive beamformers such as the GSC could be used 
to extract the desired source signals with optimal reduction 
of spatially correlated noise when no coherent interference 
is present. Given the assumption that the number and the 
approximate initial locations of the mo!jt significant sources are 
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complex crossovers. (a) Second-order crossover. (b) Third-order crossover. 

Target tracking with the estimation of higher order increments for 

known (the sources may be adaptively detected and initialized 
by a marginal proposed procedure), we proved that the use 
of conventional beamformers is optimal in the presence of 
uncorrelated white noise and correlated sources. The beam- 
forming algorithm has the same robustness with regard to 
location errors. We also showed that the resulting localization 
algorithm offers the same asymptotic localization performance 
as the MUSIC algorithm for immobile targets. On the other 
hand, it is highly advantageous for mobile and maneuvering 
sources (see also [l]). 

Particularly in the case where the time increment of a 
location parameter is not zero mean, the location estimate is 
biased. Hence, we proposed a new procedure based on the use 
of certain estimated kinematic parameters (e.g., the speed), 
which is proved to yield unbiased estimates. Simultaneously, 
the estimated kinematic parameters are shown to solve some 
of the problems of crossing targets via the prediction of their 
trajectories. Although the signal separation is not possible for 
the targets during their crossover, the target tracking is made 

Estimated tracks (Conventional beamforming) 
Estimated tracks (NLMS-GSC) 

0 1000 2000 3000 4000 5000 
Iteration index. 

(4 

10’ 
2 a 

lo00 2000 3000 4000 5000 
Iteration index. 
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G-22 
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Fig 9 (a) DOA trajectories and estimated tracks of two coherent immobile 
sources (b) Mean of localization errors I$z,t - & t l / p  (c) Mean of 
signal distortion CT=’=, Ib, t - s, t / ’ / p  

possible by the apriori information collected on the kinematics 
of their trajectories (i.e., speed, acceleration, etc.). 

All the steps of the algorithm involve a computational com- 
plexity of order O(mp) ,  where p and m are, respectively, the 
number of sources and array sensors (except O(mp2 + mp + 
p 3  + p 2 )  when using (4)). Hence, it can be implemented quite 
easily. Finally, further results regarding complexity reduction 
and an optimal structure for coherent source extraction in cor- 
related noise were recently given among other generalizations 
~31,  ~ 4 1 ,  PI. 

APPENDIX A 
ITERATIVE EQUATION OF LOCALIZATION ERROR 

For convergence analysis, we consider the case of a single 
source and white noise, where RN = aXI. The origin is 
defined at the array center (i.e., xq = 0). As in [2] 
and [3] ,  we can see that 

A k Z , t  = - r t , t ) A k Z , t - l  + z L k , t  (27) 

where 
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Re { F H  ( k ,  t - 1 ) DNt s$ } . iJ +- 
E T = l  x; 

D diag[~z,] 

where Re{.} denotes the real part of a complex number. To 
proceed, we first replace (11) in (27). The result of (27) is 
then replaced in (lo). By the definition of G2,t in (20), we may 
rewrite the results of (27)) and (10) in matrix form. Thus, we 
obtain (21) 

where k,,t != 2 ~ , , ~ - 1  - t C , , ?  - K , , ~ - ~  is the target angular 
acceleration. 

APPENDIX B 
ITERATIVE EQUATION FOR THE 

COVARIANCE OF LOCALIZATION ERROR 

In this Appendix, the covariance of u‘/;.t in (21) is computed. 
Using (27), we have 

where 

By (1 1) and (lo), we, respectively, obtain 

where a,” = E[ii:], and 

Defining Q, = [E[lAk, , t /2] ,  E[lAiC,,t12], E [ A k ~ , ~ A k ~ , t l ] ~  
and rewriting the results of this Appendix given by (28)-(35) 

in a matrix form, we obtain 

where 

1 

2Q 

0 
2 4 1  - (2) 2 4 1  - 2a) 

-a (1-a!) ( 1 - 2 a )  

(37) 

(38) 
1 + [d (1 -a!)Z - 2 4 1  - 2 a )  

0 0 0 

0 0 0 

R = [Q,, 0; + cy2&, ,  aQLIT. 
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