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Abstract-We consider the problem of locating and extracting 
sources received by an array of sensors in two significant cases. 
In one case, sensor positions are partially unknown. In the 
other one, the propagation to a subset of sensors is unknown. 
The core of the algorithm is partially blind identification of 
steering vectors. It relies on a tracking procedure with low 
computational complexity. We apply it to the calibration of 
maneuvering and towed arrays receiving multiple and correlated 
sources. 

I. INTRODUCTION AND FORMULATION 

In array processing, the use of a higher number of ar- 
ray sensors when available has well-established advantages. 
Indeed, performances improve in either beamfonning, local- 
ization, or tracking. With towed and maneuvering arrays, 
some sensors are, however, unlocated. Hence, their inputs are 
usually unexploitable by these techniques. This shortcoming 
is actually observed in a larger situation where propagation to 
some "remote" sensors is different and unknown (e.g., due to 
multipath). We first show in this general case how to identify 
propagation vectors to these sensors. We then explain how 
to reveal their positions in the particular case of towed and 
maneuvering arrays. 

Classical source localization methods are indeed very sen- 
sitive to calibration errors, and usually require fully located 
uniform linear arrays. To extend their application to distorted 
arrays, previous contributions [I], [2] introduced interpolation 
techniques to design a virtual array with any desired shape. 
However, these techniques require all actual sensor locations. 
Recently, other methods [3], [4] extended the application 
of source localization to partially calibrated arrays. Without 
explicit identification of unlocated sensor positions, Stoica et 
al. derived in [4] an instrumental variable method for DOA 
estimation that is robust to calibration errors. For full array- 
shape calibration, Marcos applied a linear operator called the 
"propagator" to provide rough estimates of unlocated sensor 
locations [3]. 
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Contrary to these methods, we explicitly identify propa- 
gation vectors to unlocated sensors and reveal their exact 
positions in the case of towed and maneuvering arrays at a 
lower order of complexity. Recently, we proposed in [5] and 
[6] a source-subspace-based procedure far tracking steering 
vectors in the array manifold. In this contribution, we restrict 
the projection of steering vectors in [5] and [6] to the subarray 
manifold of exploitable sensors in a partnally blind scheme. 
We show that the resulting algorithm fully identifies steering 
vectors, and we confirm by simulations its high performance 
in coherent source extraction and tracking. 

At time t ,  we consider p sources S k , t  at distinct locations 
Q& for k = 1, . . . , p ,  received by an array of m sensors 
at different positions QZ",, for i = 1,. . . , m. We assume that 
p 5 m. The vector of observation signals say X t  is corrupted 
by an additive noise vector Nt as follows: 

where the signal vector is St = . , sp,tIT, and where 
G, = [Gl,t,. . . , Gp,t] is the m x p steering matrix. The rii x p 
submatrix Ut corresponds to a defined and known propagation 
model F to the subarray of the first iiz 2 p sensors. It is defined 
such that each column vector uk,t = F(Q&, BT, t , .  . . , Q:,J be 
in the subarray manifold say 8% for k = I., . . . , p .  In the case 
of a far-field propagation in a 2-D space, we can write the 
modeling function F as follows: 

where Q& = [F cos($~c,~)]' is the wave-vector 
of the kth source, and where Q;,, = [qt, 1 ~ ~ , ~ ] ~  is the ith sensor 
coordinates vector. $k,t is the DOA of the kth source and X is 
the wave-length. We assume that F involves no ambiguity in 
Gfi. On the other hand, the (m  - TE) x p submatrix V, is an 
unknown steering matrix which denotes the blind part of prop- 
agation. To avoid ambiguities due to any multiplicative factor 
between Gt and St, we fix IIGk,t112 = llUk,t112+11Vk,t112 = m. 
We finally assume that initial locations . . , B:,o and 
BT,o , .  . . , 6&,o y e  respectively approximated by dT,o,. . . , 
and Q T , o , .  . . , Q&. These rough initial estimates can be a 
priori given or computed by a robust localization method as 
made in [3] and [4]. 
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11. PROPOSED ALGORITHM 

We implement the algorithm in three steps: 

A. Partially Blind Beamforming 

We assume that an estimate of Gt say Gt is available. 
Actually, 0 0  is given by the initial values 8E,o and e:,,, 
whereas is started at random and denotes the blind part of 
beamforming. We estimate the signal vector St with a m x p 
beamforming matrix Wt by 

st = W F X ,  (3) 

such that the kth column beamformer of Wt for k = 1. . . . . p 
be distortionless to the kth source and provide null constraints 
to the others (i.e., WFGt = Ip) .  We can apply Wt = 
Gt(GFGt)- ' ,  which is optimal for white and uncorrelated 
noise reduction as reported in [5] and [6], with an order of 
complexity of 0 ( m p 2  + mp + p 3  + p 2 )  operations. In the 
presence of other unknown sources and colored noise, we may 
apply an optimal multidimensional GSC structure including 
the constraint W,"Gt = Ip  (see the authors' references in [5] 
and [6]). 

B. Partially Blind IdentiJFication of Steering Vectors 

From the observation vector X t  and the estimated signal 
vector S, given by Wt = Gt(G?Gt)-', we track Gt as in [5] 
and [6] by the following gradient-based tracking procedure 

Gt+l = [p] = Gt + p ( X t  - GtSt)Sf 

= Gt + p ( L  - GtW,H)X,X,HW, (4) 

where p is an adaptation step-size. This estimate of Gt+l, 
which requires an order of O(mp)  operations is denoted at 
present by Gt+l since Ut+l is not necessarily in G*. 

To obtain Ut+l or, equivalently, Gt+l, we assign Ut+l in 
GeL by structure fitting as in [SI and [6]. We first explicitly 
write the components of Ut+l = [Yi,lc,t+le-jP"'"'t+l] and 
define its phase matrix by 6t+l = [ ( P i , k , t + l ] .  In the considered 
case of a far-field propagation in a 2-D space of (2) ,  (Pi;k,t+l 

should be approximated by @i,k,t+l = 8$+18&+l, which 
denote the elements of 6t+l. This can be achieved by row- 
wise and column-wise linear regressions of (a,+, over, respec- 
tively, source and sensor positions. To avoid phase warping, 
we actually make these regressipns over the phase matrix 
A*,+, = gt+; - Gt of Gt+l - Gt as explained in [5]. From 
the solutions QS,e+l ,  . . * , 8;,t+l and . . . , e&,,+, (see 

and have et+, = [&+I,. . . , G:k,t+l,. . . , G,,t+l] where 
[51), we reconstruct uk,t+l = F(B;,,+,, qt+,, . . . , 

r A 1 

This step requires an order of complexity of O(mp)  operations 
per sample [5], and a 3-D generalization or an application to 
the near-field case can be easily viewed with any array shape. 

By analogy to [5] and [6], (4) derives from the minimization 
of the orthogonal projection to Gt of X t  by E[ll(Im - 

GWH)Xtl12] subject to W H G  = I,, and such that U be in 
the subarray manifold G,. In [5] and [6], where all sensors are 
approximately located, we rather force G to be in Gm. Without 
this bounding step, G t  converges in the source subspace 
to any linear combination of Gt when noise is spatially 
uncorrelated. On the other hand, simultaneous structure-fitting 
forces Gt to be also in the array-manifold regardless of noise 
structure (see the authors' references in [SI and [6]). Since the 
modeling function F in (2) is unambiguous, Gt necessarily 
converges to Gt in both the source subspace and the array 
manifold. Actually, any submatrix of at least any p rows of 
Gt is full rank when the corresponding subarray manifold is 
unambiguous, and still characterizes Gt in the source subspace 
in a unique manner when sources are not fully correlated (i.e., 
degenerate case). In particular, binding Ut in G, guarantees 
its convergence to Ut and forces convergence of both Gt to 
Gt and to V,. This will be confirmed later by simulations. 

At this point, we identify the blind part of propagation and 
address the first case where propagation to a subset of sensors 
is a priori unknown and arbitrary. Suppose now in a second 
case that propagation is a priori modeled but parameterized by 
unlocated sensor positions; then we can reveal the unknown 
subarray shape as shown below. 

C. Localization of Unlocated Sensors 

From estimated source positions and G, we want to reveal 
unlocated sensor positions. We consider here the case of a 
towed array where propagation to all sensors is identical to 
(2),  but any unambiguous modeling function other than F can 
be viewed (e.g., near-field for located sensors and far-field 
for remote unlocated sensors). In a similar way, the phase 
matrix of denoted by @, should be approximated by Gt = 
[e$8i,t] the phase matrix of for i = .in + I,. . . , m and 
k = 1,. . . , p .  However, rough estimates of sensor positions 
are required to remove the ambiguity due to phase warping of 
9, elements within 27r. 

In the considered case, towed arrays are fixed to flexible 
structures that bound the distance between two adjacent sen- 
sors (see Fig. l(a)). Hence, any close location around Q&+l, 
say, OX,,+, is a good initialization of Q&+,,,+, as soon as 
Gt converges to Gt. At that point, one iteration is usually 
sufficient to reveal Q&+l,t+l with reasonable precision. To 
recurrently reveal all unlocated sensor positions, we apply the 
following procedure for i = m + I, . . . , m 

^ #  u r  
i? t+l  = J;-l,t+l + q + l ( @ z A + l  - Q;-l,t+lQ+l)T (6) 

where 6$ = (6. t+i 6'' t+l  )-'6)S+, is the pseudoinverse of 
@+, = [OS,,+,,. . . , Bi,t+,] and where *i,t+l is the ith row 
of Gt+l. w e  actually try a few positions of e",a_,,,+, uniformly 
distributed around @-l,t+l until fits with Q$+lOS+l. 
As soon as we fully calibrate the array shape, we can apply 
structure-fitting of Gt inuGm and possibly track slow sensor 
motions as in [5] (i.e., Q;-l,t+l = This step requires 
an order of O(mp)  operations, whereas the global order of 
complexity of 0 ( m p 2  + mp + p3 + p 2 )  is lower than required 
by [3] and [4]. 

^ T  - 
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Fig. 1.  (a) Array geometry. Located suharray (solid line); unlocated suharray 
(dotted line); “0 ,” true sensor positions; “f ,” estimated sensor positions. (h) 
DOA trajectories. True (dotted line); estimated (solid line). 

111. EVALUATION 

We consider for simulations the configuration described in 
[4] of four mobile uncorrelated plane-wave sources with equal 
unit power [see Fig. l(b)], corrupted here by uncorrelated 
white noise at a signal-to-noise ration (SNR) of 10 dB (see 
author’s references in [5] and [6] for the case of colored noise). 
We also consider in Fig. l(a) a towed array of 30 sensors with 
distortions similar to [3] and [4]. The first 1.5 sensor positions 
are given by [SI initially run with a uniform linear array of 1.5 
sensors, which still approximates the located subarray in solid 
line with acceptable calibration errors. 

The proposed algorithm exhibits in Fig. l(b) a very good 
tracking behavior of mobile sources even during crossover. 
Details about the use of kinematics during crossovers are given 
in [6]. The algorithm self-corrects relatively high initial DOA 
errors. These errors are reduced to the range of lop2 degree 
during tracking as shown in Fig. 2(a). However, residual noise 
without full projection of Gt over 4, is only of -SNR- 
10log,,(fi) Y -22 dB (Fig. 2(b), solid line). This is the 
optimal performance in source extraction achievable with an 
array of 61 sensors. It is actually reached without any a priori 
knowledge of the propagation model to the remaining sensors. 
In Fig. 2(c), we plot in solid line structure-fitting errors given 
by (6). They perfectly reflect actual errors of partially blind 
identification plotted in solid line in Fig. 2(d). Notice that 
unlocated sensors are perfectly localized within 50 iterations 
when errors decrease below a given threshold. At that point, 
we plot in Fig. l(a) the estimated sensor positions (dotted line). 
Calibration errors appear negligible when compared to [3]. 
We also switch structure-fitting to a full projection of G t  over 
6,. Now, this recovers the optimal performance of -SNR- 
10logIo(m) r” -25 dB in residual noise achievable with an 
array of 712 sensors, and improves the behavior of source ex- 
traction during crossovers (Fig. 2(b), semidashed line). Notice 
that full structure-fitting improves identification errors plotted 
in the semidashed line in Fig. 2(d), but performance in source 
tracking, already high, is not noticeably enhanced. 

We now evaluate the algorithm in the presence of correlated 
sources (not considered in [3] and [4]). We introduce an 
identical correlation factor between s1 and s2, and s3 and 
s4, successively fixed to pc = 0.5,0.7,0.9 and 1. We notice 
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Fig. 2. (a) Absolute DOA error E[ci==l  %U]. (h) Distortion 

EICL  I S k , ,  --S.b,t p l 2  1: Projection over G7% (solid line); projection over 

G1, (dotted line). (c) Mean square error E[Ci=, - c&-fifIJ ] 7 with 
pc = 0 (solid line); 0.5, 0.7, 0.9, 1 (dotted line). (d) Mean square error 

E[Ci=,  1 1 c ; ~ ~ I ~ 1 ~ 1 ’ 2 ]  7 with pc = 0 (solid line); 0.5, 0.7, 0.9, 1 (dotted 
line); after projection over 4, (p. = 0) (semidashed line). 
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that performance in source tracking (Fig. R(b) and Fig. 2(a)) 
and source extraction prior to full structure-fitting (Fig. 2(b), 
solid line) remains unchanged even in the degenerate case 
where pc = 1. On the other hand, identification and structure 
fitting deteriorate with increasing values of pc as shown 
in dotted line in Fig. 2(c) and (d). For values beyond 0.7, 
degradation becomes severe and no longer permits localization 
of unlocated sensors. Below that range, we are still able 
to localize them and recover optimal performance in source 
extraction (Fig. 2(b), semidashed line). 
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