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A Signal Subspace Tracking Algorithm
for Microphone Array Processing of Speech
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Abstract—This paper presents a method of adaptive micro- we propose achieves the above requirements and outperforms
phone array beamforming using matched filters with signal previous methods.
S.”bsﬁacg ”acging' o ?tt.’je‘iﬂ"e iz to e”ht?“ci ”ealr'ﬁe'd fpee"h In array processing techniques such as beamforming [3], in-
signals by reducing multipath and reverberation. In real ap- ; ; ) } .
plications such as speech acquisition in acoustic environments, put data is CIaSS'C_a”y synchronlzed_at sensors by a Slmplg time
sources do not propagate along known and direct paths. Partic- delay compensation (TD{ of the direct source propagation
ularly in hands-free telephony, we have to deal with undesired path, before applying the beamformer’s coefficients for noise
propagation phenomena such as reflections and reverberation. reduction. This preprocessing step, caliteering is justified
Prior methods developed adaptive microphone arrays for noise by the fact that sources are usually modeled or approximated to

reduction after a time delay compensation of the direct path. This te al | herical | | licati
simple synchronization is insufficient to produce an acceptable propagaté along planar or spherical waves. In real applications

speech quality, and makes adaptive beamforming unsuitable. of speech acquisition in acoustic environments, sensors are
In this contribution, we prove the identification of source-to- however acoustic microphones with unknown directivity pat-

array impulse responses to be possible by subspace tracking. Weterns. In addition, reflections and reverberation can no longer
consequently show the advantage of treating synchronization as be neglected by the processing stage (i.e., beamformer). If not

a matched filtering step. Speech quality is indeed enhanced at d. th il K tracted h d I ¢
the output by the suppression of reflections and reverberation suppressed, they will make extracted speech sound unpieasan

(i.e., dereverberation), and efficient adaptive beamforming for at the output. Besides, early reflections can be considered as
noise reduction is applied without risk of signal cancellation. coherent jammers and may cancel the speech signal in adaptive

Evaluations confirm the performance achieved by the proposed beamforming [4]. TDC becomes insufficient to fit the sound

algorithm under real conditions. field, and noise reduction is also affected.

Index Terms—Adaptive beamforming, dereverberation, identi- Many adaptive microphone arrays were proposed for speech
fication, matched filtering, microphone arrays, speech enhance- enhancement in quite friendly acoustic environments [5]-[8].
ment, subspace tracking, voice activity detection. Unfortunately, most of them turn down the first stage of

steering (i.e., synchronization) and put the emphasis on noise
reduction alone. In [2], we evaluated these methods for speech
acquisition in cars, and precisely noticed their poor perfor-

HERE IS increasing interest in speech acquisition imance in noise reduction in the tested environment.

adverse acoustic environments with regard to voice con-Kaneda and Ohga [5] assume the location of the speaker to
trol and hands-free telephone communications. For spedmhknown and fixed. They measure the corresponding impulse
recognition controlled devices as well as for speech tramgsponses (IR’s), then use them to train the beamformer with
mission, efficient acquisition systems need to reduce noisecorded noise. This requires stationary conditions difficult
But they should also suppress undesired multipath propagationreach with a mobile speaker and nonstationary signals.
phenomena such as reflections and reverberation of spe&himprove noise reduction, they allow some distortion of
(i.e., dereverberation). Microphone arrays seem approprighe desired source. Sondhi and Elko [6] adopt a similar
to achieve these tasks, but adjusting them to fit the sousiucture but consider TDC of the direct path. To further
field remains so far a major matter of investigation [1], [2improve noise reduction, they introduce a soft constraint on
We shall show in this contribution that the identification andignal modulus allowing an amount of distortion. Zelinski
the matched filtering of source-to-array impulse responses §f¢ also considers TDC of the direct path. He, however,
necessary to release microphone arrays from this constraagsumes the noise to be diffuse and uncorrelated, then applies
Upon this statement, the subspace-tracking-based algorithndelay-sum (DS) beamformer [3] by summing the inputs
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Although not tested in [2], and contrary to previous meth- In this paper, we adapt [19] to speech acquisition in a
ods, Van Compernolle [12], [13] and Nordholet al. [14] banker market trading room. In Section Il, we first make
propose adaptive beamformers with a generalized sidelddre acoustic characterization of the array to possibly find the
canceler (GSC) structure [15] updated during silence. Adaptivaderlying features of IR’s. We will notice the total energy
beamforming is more efficient for noise reduction, but suffesf any frequency component to be quite constant for emitter
from severe speech cancellation in the presence of steeriogations around a central speaker position. From this key
errors [4]. To further minimize this effect, Van Compernoll@bservation, we introduce significant constraints characterizing
proposes a unit for adaptive TDC, updated during speetite array. To reliably identify IR’s in Section IIl, we adapt the
activity to avoid deviations to noise sources. Nordhadin tracking procedure to the studied environment and introduce a
al. assume TDC of a spread source in the near field, andice activity detector for the tracking activation inspired from
introduce a linear constraint on superresolution to cover tf@. We also apply a GSC structure [15] for speech acquisition
emitting area. All the methods above propose suboptimahd noise reduction and replace its classical DS branch by
beamformers for noise reduction, and introduce an amounatched filters. Evaluation results under real conditions, de-
of speech cancellation or distortion depending on whethseribed in Section IV, show a very good quality of speech
processing is adaptive or not. after dereverberation and an efficient noise reduction. The

To really achieve satisfactory results, we underlined in [ZJroposed algorithm outperforms the GSC structure combined
and [16] our conclusion that steering should be definitelyith TDC suggested in [12] and [13]. In addition, the method
seen as a matched filtering step or an inversion of IRis even able to cancel a strong echo emitted from a close
rather than TDC of the direct path, and that multichadeudspeaker without any knowledge of its reference signal.
nel identification of acoustic paths is necessary. We al¥de finally give our conclusion and perspectives in Section
proved in [2] the advantage of matched filtering over tim¥.
TDC achievable by beamforming in terms of producing a
very natural quality of speech and a higher intelligibility at
the output (i.e., dereverberation). Several acoustic beamform- ) ] ) ) ) ]
ers propose the inversion of IR's by deconvolution in the In .thIS section, we first degcrlbe the. conﬁggratlon then
steering stage, but suffer from the fact that acoustic rodmention the drawbacks of TDC in the studied environment. We
impulses often are not minimum phase and not invertibihow indeed that TDC entails speech cancellation in adaptive

[17]. Indeed, deconvolution implies that one is attempting ®¢amforming, and a low quality of speech due to sound reflec-
invert the transfer function, which is very problematic fofions and reverberation. Identification and matched filtering of

nonminimum-phase systems. Rather, the system responsii§ avoid these phenomena and can be implemented along

just being conjugated here, which is conventionally knowif€ lines given below at the end of the section.
as matched filtering. We hence avoid the inversion prob- _ _
lems encountered in deconvolution. Flanagral. [18] re- A. Configuration

cently applied matched-filter processing to microphone ar-we consider for our application an arrayaf = 12 micro-

rays and reported its dereverberation capacity. However, théones located around the screen of a computer workstation
used a very large number of microphones with a subopr a large banker market trading room of 30 m length20

timal DS beamforming structure for noise reduction. They width x 3 m height® Six microphones are linearly placed
also calculated fixed IR’s from the room geometry or megjong the top edge, and six others are placed on both the left
sured them in actual rooms as in [5], without addressing th@d right edges as shown in Fig. 1. The spacing between each
tracking of nonstationary acoustic paths. In this contributiopair of adjacent sensors is 0.07 m. This array feeds the front-
we adaptively identify the IR's and respectively adjust thend receiver of a hands-free telephone installed on an operator
matched filters to them. We also apply a GSC beamform@ésk. The loudspeaker is fixed to the keyboard. We can now
for an efficient noise reduction with a small number ofmodel the signals received from the microphone array at time

microphones. ¢t as follows:
This work follows up former studies referenced in this

paper. After preliminary studies made in [2] and [16], we X(t) =G(t) @ s(t) + N(¢) (1)
proposed in [19] a robust wideband adaptive beamformer i ) )

based on source-subspace tracking of propagation vector&/f}gre X (#) denotes them-dimensional observation vector
an array manifold (i.e., IR identification) [20]We studied and wheres(¢) N the emitted speech signal uttered from the
the algorithm with a simple manifold of far-field sources agperator;G(t) = [gi(t), -, gm(t)]" is the m-dimensional

a particular case of a more general array characterizati§gctor of IR’s, N'(¢) is the noise vector, and denotes time
With this flexible formulation, a possible adaptation to acoustkonvolution. All the quantities considered in (1) are real.
environments can be viewed. In addition, the high performanceNote that all signals are wideband and nonstationary. Noise
of the algorithm and its low complexity observed in that simplgarticularly contains cocktail party speech, double talk, and
case offer a significant perspective for further implementatid¥®ssibly a strong echo emitted from the loudspeaker. Although
in real applications. its spectral characteristics are similar to desired speech, we

Il. AcousTiCc CHARACTERIZATION AND MODEL

2\We refer here to the underlying method in [20] as the adaptive source-3The room environment data was recorded by ENST and PAGE lberica in
subspace extraction and tracking (ASSET) technique. a banker market trading room of Banesto, Madrid, Spain.
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the first 1024 coefficients and clearly notice strong reflections
and reverberation. Reflections are the early impulses reflected
by large surfaces such as walls, furniture, etc. They are
depicted by the segment of the curve from 10 to 16 ms.
Reverberation is a complex mixture of multiply reflected

and diffracted waves without a macroscopic or predictable

structure. They are illustrated by the tail of the curve. Due
to the presence of close and disturbing reflections, a sim-
ple synchronization over the direct path cannot be guaran-
teed.

Even if TDC can be properly achieved, adaptive beam-
forming would cancel speech from uncompensated reflections
and reverberation [4]. For instance, Van Compernolle used
; a TDC unit similar to [9] based on cross-correlation [12].
"',’(;[1 He, however, replaced this unit by adaptive filters in [13] to
e o g improve the accuracy of time delay estimates. Nevertheless,

%%"f he reported with both schemes predictable signal cancellation

phenomena at a positive signal-to-noise ratio (SNR) [4]. Fig.

2(a) shows that reflections and reverberation are too strong to
Fig. 1. Configuration of microphone array in a banker market trading roorphe approximated by simple time delays. One way to efficiently
suppress reflections and reverberation is to identify IR’s for
matched filtering in the steering stage. Simulation later will

assume thaV(t) an(_j s(t) are uncorrelated, _A!SO' we do noty,nfim the advantage of this scheme over TDC proposed in
assume a parametric model Gft) characterizing the sound 6]-[14]

field. We do not neglect the mobility of the speaker, althou
it is assumed to be local around a central position. In fa

speaker

screen | left positions

'A_.---'"""i(eyboarc'i'_,..-"'"'"

There is another drawback of TDC in the studied envi-
bl ¢ i< slowl . d locall tbnment. Reflections and reverberation of speech are simply
we reasonably assume th@tt) is slowly varying and locally delayed with TDC, and would be noticeable after processing

CO_?Star;;[ n ttlm_e. tic feat ific to the st d_in the listening. On the other hand, identification and matched
0c araf erize acoustic IF\sa ures zpl%(; Ic Oﬁ_ e tS u t'ﬁﬁjering of IR’s recovers a natural quality of speech. This can
environment, we measure IR's over coemneients ali @ 5ssessed by quantitative measurements. To do so, we define

sampling frequency of 8 kHz, at four selected nominal PQ d EDC) [211. [22] of thih IR o
sitions of the speaker’'s mouth (center, right, left, and behi gf ien:erlg)'/"eﬁfl)gscté(r)\llﬁ)vsls. ) [21], [22] of tin IR gi(t)

as shown in Fig. 1). The central position is located at O.
m, perpendicular to the array centroid. Two other positions
are located on each side 0.15 m away from center, and a
last position is located 0.20 m behind. To measure the IR’s

from each position, we send Golay codes to a loudspeakgrFig. 2(b), the solid line plots the normalized EDC in dB
placed at the corresponding location and record the signgfsthe sixth IR, which defines the amount of energy left in
from the microphones simultaneously [22]. The Golay codgge response at timé Notice that the decay slope changes
are generated from a remote PC and sent to the loudspealgiptly at an instanf; = 16 ms, calledtotal duration. It
through a D/A converter. The IR’s are finally estimatedorresponds to the contribution of the direct path and early
by circular convolution of the excitation sequence with thgsflections. At that point of the EDC, we define the clarity
received signals [22]. index in dB [21], [22] by

Other IR’s were actually measured at different locations to

Egi (Td)

Ey(t) 2 g3 (). 2)

the right of the operator. The positions were selected at larger
variations up to a distance covering the two next operators at 4

m from central position. These IR’s were measured to evaluate,

the room conditions. They particularly show a quite consta;';{1IS index, which SpE‘CI.er.S the_ quality Of, an acoustic chan-
F:I for speech transmission, is the ratio of the total en-

C(g:) 2 10logy <

reverberation time over positions of around 1.7 s [21], [22], f th iated IR h ed in i
and illustrate the reverberation effect of the large trading roo gy of the as_somate ot € energy containe n Its
ate reverberation part. The quality of speech transmitted

at various positions of the speaker. is considered good when this index exceeds 12 dB. The
o o , normalized curve of,, plotted in Fig. 2(b) shows a relatively
B. TDC versus ldentification/Matched Filtering of IR’s low clarity index of 9.7 dB. A consequence is that the
In the studied environment, TDC is unsuitable for adagpeech picked up by microphones will not sound pleasant
tive beamforming and speech cancellation may occur, while the listener. The classical delay-sum (DS) beamforming
identification and matched filtering of IR’s avoid this effectcannot significantly improve this index at output after TDC
This can be confirmed from the simple observation of IR'&af the IR’s (i.e., 12.7 dB on the curve plotted as a semi-
In Fig. 2(a), we plot the sixth IR of the central position ovedashed line), while IR identification and matched filtering
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EDCin dB

0 50 100 0 50 100
Time in ms Time in ms

(@) (b)

Fig. 2. IR coefficients and normalized energy decay curves for speaker position at center. (a) IR of sixth channel. (b) EDC of sixth channel (solid), of
total IR with TDC and DS (dashed), and of total IR with matched filtering (semi-dashed).

over 256 coefficients offers a potentiatlarity index of 18 oL

dB (plotted as a dashed line). Simulations will show that 2.(t) O—={ /P DET
the proposed algorithm reaches this index. In this case, the
|dent!f|f:at|on of IR’s can be reasonably made over 256 o) D
coefficients.

S/Pf DFT

C. Frequency Domain Identification

We identify IR’s in the frequency domain. This imple-
mentation offers an attractive structure paralleling existing
narrowband identification procedures for each frequency com- L bin
ponent. It requires, however, an adaptation to the studied Tn(t) O—>1S/PL DFT |
environment. ) ) ]

We first take the fast Fourier transform (FFT) of (1) Ove\lfégﬁ.oi. sigr?erlllil. to parallel and transform to the frequency domain of obser-
2L = 512 snapshots eaclk’ = 16 < L sampling periods
according to the scheme of Fig. 3. Fér= 0,---,2L — 1
we have

plotted for the same four positions in Fig. 4(b) show small

variations. Their standard deviation is actually smaller than
Xpn =Grsgn+ Npn, 4 10% of the mean value at any frequency component. In this
where the subscriptg and» in (4) denote, respectively, thecase, we can assume that the mean enéﬁg'ys constant for
FFT of the indexed quantity in (1) at frequency kirand the any location of the speaker around the central position. This
(m x 2L)-block of input data, numbered as We previously constant can be measured as a weighted combination of the
assumed time variations ¢ft) to be very slow and practically curves plotted in Fig. 4(b). For instance, we can take the av-
constant in comparison to the variationss¢f) and\V (¢). We, erage if wea priori assume a uniform probability distribution
hence, approximaté&’; ,, ~ G, for simplicity, although it is over the speaker positions. Actually, this observation was also
understood that time variations can be tracked. By virtue of teenfirmed in a different context of hands-free telephony in
Hermitian symmetry of the model, note in the following thatars [1], which proves the assumption to be quite realistic
all the processing in the frequency domain will be performefdr different acoustic environments. Intuitively, some kind of
over the firstL 4 1 frequency bins instead of ti. available “local energy conservation principle” gives support to this

components. feature, which underlines the acoustic characterization of our
Equation (4) shows thati; and s;,, can be estimated IR’s.
only within a multiplicative factor [i.e.{G;/k) x (ks;n) = Now that the problem of ambiguity is solved, we can

Gysyn]|. However, this ambiguity can be removed. Indeedeformulate the problem in a way that better introduces our
we show below that the modulus & ; can be estimated algorithm. To do so, we rewrite (4) as follows:

a priori. In Fig. 4(a), we plot|gs ¢|* for the four selected _

positions of the speaker whetg ; is the FFT of theith IR Xpm = pals+ Npn ()
¢:(t). The curves show relatively high variations of IR’s fromwhere the complex vector

one position to another. On the other hand, the average curves A1
U= —G 7)
m F=p,
> lgisl? : : Y :
G 4]? is the signal subspace basis vector with ngym, and where

/32 é =1
f m m the complex scalar

4We use 256 coefficients of each measured IR for perfect identification. fn = PfSn (8)
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Energy in dB
Energy in dB

Frequency in kHz Frequency in kHz
(@ (b)

Fig. 4. Energy characterization of IR’s. (a) Energy of sixth IR for four positions. (b) Mean energy of IR’s for four positions.

is the signal parameter. Note here thats||? = Ufo =m, A. Matched Filtering and GSC Beamforming

anpl Fhatm WI|| be used for nor_mallzatlon in the following.  \yjith identified IR’s, we can combine matched filtering with

If it is possible to track the signal subspace properly, theyaniive beamforming for both optimal speech acquisition and
|de§ Is to recover the signal pargme@gn and consequently ngise reduction without speech cancellation. Let us assume that
estimates;,, by an adequate distortionless beamformér 5, estimation of the signal subspace bdgjsat iterationn,

H H _ ~ _ v H i ~

E.'l'e".vf gf — ?O‘f:" - VJ‘_Xﬁ")' For;]r?s;[]ar;]ce, thhe m"’,‘tChledsay Us », is available and near convergence. We can imme-
|tter|?g e?n:jgrmerv_f o Uftém’ whic t_as the simple giately estimatev,,, using the matched filtering beamformer
structure © , conjugates the propagation vedigr or scribed earlier byvy,, = Uf, X;, /m. This step, which

) ) . d
equivalently the IR’s regardless of the noise structure arﬁ(gs the structure of a classical DS beamformer, amounts to

_optlmally reducgs uncorrelated V.Vh't? hoise. We shall Sho|)gplacing TDC by matched filtering, where the usual steering
in the next section how to combine it with a GSC structur\f\;-ector of simple time delays is replaced tyy Contrary to

to efficiently reduce colored noise, but first the propagatio]tbC in [6]-[14], the matched filtering compensates speech

vectorsUy have to be identified. distortion due to multipath propagation by conjugating the

The system identification problem in (6) is commonIXR,S. However, its output denoted in the following ki,

studied in the narrowband case by localization methods i not optimal unless the noise is uncorrelated and diffuse.

the electromagnetic far field or near field. Eigensubspach better estimate the signal parameter,., unlike [18], we

based_algorithms particularly_ estimate the Iocat_ion parame*ghher reduce the residual noise still presengjn, from the
or equivalentlyl/; corresponding to the propagation along th oise references defined in the noise subspai:e orthogonal to

d:rect path. r|;|0\_/ve\|/er,dthtﬁy oft_en ?ssbumeh'g?e wzvefront t(l) »- The identification ofU/; provides noise references free
planar or spherical and the noise o be while and uncorre a.‘?? speech leaks. This prevents speech cancellation.

(see referepces in [24]). These assumptions are unreallstchS shown in Fig. 5, we use a GSC structure [15] for
in the studied context. On the other hand, we successfully 0 -.. [ as follows:

derived in [19] and [20] a source subspace tracking procedure

of U; in an array manifold in general, and tested its efficiency LA Uanf,n
for speech acquisition with real data. Using this technique in Yom m
audio acoustics, we shall show in the next section how to 7. 2 pH y
. . X R e . fn fnrfn
avoid sound field modeling when identifyig, by subspace . . I
tracking. Gfn =Ugn —WinZin
Wint1r =Wen + 050 Z5nf, 9)
wherePy,, is am x (m— 1) signal blocking matrix projecting
Ill. THE PROPOSEDALGORITHM X n on the noise subspace orthogonaltg,, to obtainZ; ,,

h[%5]; the superscripf{ denotes conjugate transpose, apg,

We describe in this section the different steps of t IS the stepsize of the GSC, possibly including a normalization
algorithm. We first explain the adaptive GSC structure when b P y 9

adapted to the matched filtering of identified IR’s in thACtor (see [26] for more details, €.gyy,, £ M0/ Zfn|?)-
steering stage. We secondly introduce the IR identificatidi'® GSC filtetVy ,, is an(m — 1)-dimensional vector initially
procedure, relate it to existing techniques, then prove ®§t 0 zero and implemented in a least mean squares (LMS)
convergence. We show that its performance is enhancafHcture [26]. To show the advantage of the algorithm over
when estimated propagation vectors are constrained PEgVious methods, we start the algorithm with

fit with a priori acoustic features. It is also improved |:e—j27r-?1(f/2L) e—j?ﬂ"fm(f/QL):|T (10)

by a voice activity detector blocking the identification T

procedure during silence. Finally, we briefly explain speesthere;(i = 1,---,m) are time delay estimates of the direct
reconstruction. path, as made in [6]-[14].

Uso =
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Gefn
Xin m m—1
— 7 LMS W,
Zin
/ 1
ik s [ '
Yim n o Sin
Usn
-]
l}f,n%—l
1
KK
G’f,n-+-1
0 [ 2L -1

Fig. 5. Block diagram of the algorithm at frequengy

B. Channel Identification This criterion can be related to other methods referenced in

The input-output IR identification scheme we propose reliéé4]; but contrary to them, it proposes a direct estimation of
on a general framework of subspace tracking and structl@Pagation vectors by simultaneous subspace tracking and
forcing of propagation vectors. It can be related to existi ructure fitting. For instance, if we select the DS beamformer

techniques, and its convergence can be guaranteed in tHe = Usn/m in the one-dimensional (1-D) case, we
studied environment. obtain the simplified neuron model proposed by Oja [23]

In the same way as in [19], we correétf and track @s a principal component analyzer. It minimizes the cost
’ , 1

i H 2
the basis vector#/; at each frequency birf. With vectors function Ef[[(Ln — Uy Uf,,/m)Xy|I"], but converges to

X, of input data and any estimated output sequence of fhe eigenvector with the highest eigenvalue. In [24], Yang
signal parameteti;, = V/ X, where V;, is a given generalized this criterion to the case of a multidimensional

distortionless beamformer (i.eV,ffiLUfn = 1), we apply the §|gnal SUbSpaC.e (ielfyn is a matr|x) and applied it to
. . Jon o Sy image processing. Although;, is proved to converge to
following general equation for identification: '

the orthonormal eigensubspace basis corresponding to the

fff,n+1 — Uf,n (X fm — Uf,n&f,n)&gf{n (11) highest ejgenvalues, its column vectors do not correspond to
propagation vectors.

where s, is the stepsize of the LMS-like tracking equation In (11), we can use the GSC beamformer outpyt,

(11), possibly including a normalization factor. Note that (11gstimated in the previous subsection with,, = Uy,,./m —

indeed corresponds to a gradient-type solution of an identifice; . .. However, we observed that the tracking procedure

tion problem iféis,,, is a known reference sequence of speegh |ess stable and slower when applied to nonstationary signals.

signal parameter [26]. Contrary ., the unconstrained This is due to the perturbations and the additional convergence

estimate ofUy ., is denoted at present by, ,,,; in (11). time of the side structure implemented W ,, and Wy,,.

We will show in the next subsection how to constrain it withnstead, we use the DS output in (9) as follows (see Fig. 5):

respect to an acoustic characterization of the IR's to have . . N NaH

Uf i1 Ut = Upn + 10X pn = UpnGpn)s,. — (12)

Actually, the gradient-type equation (11) derives from min- | [24], Yang particularly proves that (12) converges to
imization of the cost functionE([||(Z,, — Ufyanf{L)XﬁnH?] 7

. ) ; U oo With norm y/m, the basis vector of the 1-D signal
where Uy, is assigned to check some acoustic features (€ gypspace with the highest energy. At a reasonable SNR,
lying in an array r_namfold if it emzts), and where the beamypan gesired speech is the loudest among present sources as
former V. is defined such that’;’ Uy, = 1. In & recent pqqumed in [13], this equation reasonably converges to any
work [20], [25], we generalized this criterion to a multisourcg | tion of the fOrmiy; o ~ eitrs U; whereg is a phase shift.

i on (i : : Fo0 ™
tracking equation (i.e.lVy,, is a matrix who;e columns are zihough the human auditory system is not very sensitive to
“structure-fitted” propagation vectors and;’ Uy, = I).

n phase distortion [6], our experience is thigt~ 277, f/(2L)
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Select UA'f,U = [e‘ﬂ"ﬁf%, e e‘ﬂ”%’"f%]J , a(0) =0, Wio=0m_1.
Forn=1,2,--- do:
Vi = diaglUf,] X/
aln+ 1) = (1 - 7)a(n) +

a(n) = én = pym

" > realmrmmy Yoy Someps RO 1Ty )}
- 2
Z!e@‘i 221 Ylvf,n| ’

N UHZH Xin

Yfn = oy 5

Zin = P/ffn Xtm,
dfn=Ypu— W Zp,

me+1 = Wj,n + N Zf,n d?:n ’
Uf,n+1 =U n+ ﬁj,n(Xj,n. - Uf,n.ﬁf,n) gﬁn ’
(;'f'n+1 — linear convolution constraint — f/f,n+1 ;

[3(K(n+1),-,8 (K(n+1) + 2L —1)] = Re {IFFT ([ ... Se=ta )}

keep the segment [§ (K(n+1)+ L),---,§(K(n+1)+ L+ K —1)] .

Fig. 6. Proposed algorithm for speech subspace tracking, matched filter beamforming, and GSC noise reduction.

is close to a linear phase wherg, is a short time delay. The vectors of@n+1. More details can be found in [27]-[29] about

delayr., is actually positive and corresponds to a causal delayonstrained adaptive filtering in the frequency domain and fast

Hence, the effect af; on speech quality is not significant andinear convolution.

the IR’s are properly identified!. This characterization is likely to limit any deviation of the

tracking procedure from the true IR’s, even at reasonably

low SNR’s and when desired speech is not the loudest. It
We now show how to incorporate acoustic features weems difficult to provide theoretical arguments to support

guarantee convergence even at low SNR’s. In the previaés intuitive expectation, but simulations do confirm that the

subsection, we separately estimated normalized propagatioear convolution constraint improves convergence in highly

vectors at each frequency, regardless of the fact that they atverse conditions. However, this constraint can be omitted

related to estimated IR’s within a multiplicative fact@y. under better conditions to save computation.

In addition, the underlying fast convolution in the frequency

domain between these IR estimates and speech shouldDeeSpeech Activity Detection

constrained to be linear due to the block processing schemegyhen the SNR is very low, particularly during periods of

[27]. This constraint implies setting a part of each IR to zergllence, (12) is likely to track noise sources. It would be

in the time domain. In this case, we should fit the estimategitter then to stop the adaptation of the algorithm so as to

propagation vectors to a particular structure of IR's as show@ep the estimates df; from being attracted in the noise

in Fig. 5. subspace. To do so, we first define the steered input signals

To do so, we incorporate thee priori information obtained by an A diag[UJ{fn]an wherediag[A] is a diagonal matrix

in Section II-C stating that the mean energy of IR’s at each frﬁﬂth the elements of vectorl on the main diagonal. Note

quency is constant and equal~/]?§. We actually form the ma- pare thaty, , yields the matched filtering outpiy.,, of (9)

trix Gp41 2 BoUo.n+1, - »BLUL nt1+ - B2n—1U20-1 n+1],  When its elements are averaged. This is a preliminary step that
which approximates the row-by-row FFT of the unconstrainggliarantees the selectivity of the speech activity detection in the
IR estimates. To apply the linear convolution constraint, wdirection of the operator by spatial filtering. We then introduce
compute the matrixg, ; of unconstrained IR estimates ina modified version of the voice activity detector presented in
the time domain as the row-by-row inverse FFT (IFFT) g], as follows:

g an + 1) = (1 = 7)a(n) + 7

C. Channel Characterization

G,h+1. Then, we set itsn x L right half part to zero to have
constrained IR estimat@inﬂ in the time domain. It is this

step that guarantees the linear convolution constraint. We again

take the row-by-row FFT oﬁnH to estimate the constrained Z

m—1 m

2 N ~
m Z Z Re(Y;',f,nYk{{f,n)

IR estimates@n+1 in the frequency domain. We finally have Jee J=1 k=it 5
Uppy for f = 0,1,---,L from the first L + 1 column Z 1 z’":?
51t could be advantageous to extract the speaker position from the estimated ico m = bLim

IR’s after convergence as required for camera pointing in some teleconference
applications. (13)
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Time in s Time in s

@ (b)

Time in s Time in s
(© (d)

Fig. 7. Speech signal at different stages. (a) Original speech. (b) Speech received at sixth microphone. (c) Speech estimated without tracking. (d)
Speech estimated with tracking.

where speech activity(n) is given by a smoothed ratio of frequency and space. The analysis of the frequency content
the sum of the cross-spectrum components at a selected setlofie would detect all speechlike signals, but the spatial
frequenciesp, over the sum of the autospectrum componengelectivity through the steered input§ ,, mentioned earlier

at the same frequenciesgis a smoothing factoiRe(.) denotes restricts them to the speech uttered only from the desired
the real part of a complex number, aﬁqujn is the jth operator. The acoustic characterization of IR’s described in
component off/f’n_ We found it also better in (13) to selectthe previous subsection maintains this spatial selectivity even
ten frequencies around 1.5 kHz and 2.8 kHz rather tha&h low SNR’s. This prevents the voice activity detector from
defining® = {0,1,- -, L/2} as proposed in [9] (i.e., the low "eésponding to undesired speech signals.

frequency region going up to 2 kHz). We noted indeed that

speech acuwty can be better discriminated from noise in 'theét_a Signal Recovery and Synthesis

frequency regions. To test the presence of speech or silence,

speech activitys(n) is simply compared to a given threshold Using the relations;,, = d.n/f3s», We now recover the
uiq @S follows: speech signal at the block + 1 in an overlap-save (OLS)

[27] analysis/synthesis scheme by

§ A 17 If CL(TL) Z Gmin, (14) R R
"~ )0, otherwise (silence). [3(K(n+1)), -, 3(K(n+1)+2L - 1)]
A Qo Qar—1m
We then replace the stepsize of the tracking equation in (12) - Re{lFFT([ Bo ' 7 Por_1 D} (15)
_ A . . .
by 7is,, = 6npiy,n to block adaptation during silence as shown
in Fig. 5. With blocks shifted eacl < L samples, input data is over-

It should be noted here that the GSC structure of (Spmpled at a rate higher than required to update (12) more
is not blocked, contrary to [12] and [13]. The continuou§equently. This is shown [28], [29] to improve the tracking
processing of the GSC, which provides an efficient noigerformance of the algorithm. As blocks overlap oRér— K
reduction even during speech activity, is now possible becaimnples, we only keep the following segment of length
we discarded the risk of signal cancellation. Notice alsodhat
simultaneously rules the adaptation of (12) at any frequency [S(K(n+1)+L), -, 5(K(n+1)+L+ K —1)].

f, though it can be split into multiple control regions of
speech activity over frequency sets other thdn Finally, We finally summarize the different steps of the algorithm
we should recall that speech activity is observed in bofiresented in the previous subsections in Fig. 6.
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Fig. 8. Total response of proposed systeiff, G ,./3¢.n = (Ugn/m — Pr Wi )4 Gy [ Brn att = 2.7 s (i, initial) andt = 3.7 s (i.e., final).
(a) Gain of proposed system in dB. (b) Phase of proposed system in radians.

V. EVALUATION AND PERSPECTIVES central position of the speaker to the processor output (i.e.,

In this section, we assess the performance of the studié/dlfntm/ﬁf:"P = |Upn/m = PrnWsn)" GrnfBrnl).
algorithm for speech acquisition and noise reduction. We firsP€ initial curve corresponds to TDC, and shows the usual
want to compare it to prior methods based on simple TD@PProximation [6]-{14] to be inadequate beyond a small low-
For this reason, we start the proposed scheme with (10) frgguency region. The final curve c_orresponds to the |denF|f|ed
stated in Section IIl, although other experiments followin{X'S aftér convergence of (12) within 1 s from speech activity
below successfully test other initializations. We also wanta't: and shows that signal leakage is quite negligible. Despite
to evaluate the proposed method and its tracking behavigf Small distortions in amplitude and phase observed in Fig.
with quantitative measurements. To do so, we shall need &) and Fig. 8(b), respectively, the audible quality of the
synthesize simulated data so as to access these measurenf@ffiQut speech sounds very natural while point jammers are

Later, we resume our evaluation with experiments under réignificantly reduced. This experiment shows a large capacity
conditions before we draw out our perspectives. of the algorithm in speech dereverberation and noise reduction

in adverse conditions.
_ To provide quantitative measurements, we compute the
A. Experiments clarity index and the SNR at the output. We actually measure at

We take special care to make our first set of experimerifi output the potential clarity index of 18 dB given in Section
with simulated data very close to reality. Indeed, we recotB. Itis higher than the commonly accepted 12 dB threshold
a clean signal of two speech sentences uttered from a femi®¥ speech quality. The SNR is empiricallcomputed as
speaker in an anechoic room to simulate the original speecH®® ratio (Es+, — E,)/E,, where the mean energiés, .,
the operator. We then convolve the original waveform plottednd £, are computed from the output signal during speech
in Fig. 7(a) with the IR’s measured from the nominal centraictivity and silence, respectively. This does not take account
position of the speaker to the array of microphones (see Ffy.speech quality enhancement of 8 dB in clarity due to
1, Section 1I-A). This convolution faithfully reproduces theéeduction of reflections and reverberation. The measured SNR
reverberation effect of the large banker market trading roo@gin of approximately 7 dB is less than the optimal 10.8 dB
The convolved signals are finally corrupted at a mean SNR kgduction of spatially diffuse noise (i.€0log;o(m) ~ 10.8).

7 dB by a background noise recorded separately at work tinh@ further improve the SNR gain performance, we propose
in the trading room. The background noise contains cocktailPostprocessing stage of the residual noise as suggested in
party speech due to the large number of operators presiit[8], [10], and [11]. We use, however, a spectral subtraction
in the trading room, the noise of keyboards, the noise Btethod developed by Ephraim and Malah [30], and measure
the workstation fans, etc., and makes the experiment ved) additional gain of 5 dB at an output SNR as high as 19
close to reality. In Fig. 7(b), we plot one of the synthesizedB-

signals simulating the noisy speech received at the sixthThis experiment shows, for a particular configuration, that
microphone. matched filtering and GSC beamforming are sensitive to

To make our Comparison’ we first Sk|p the tracking Steigentification errors of IR’s. The__proposed method corrects
illustrated by (12) (i.e.stf., = 0). This amounts to the Simp|ethem. We show next how sensitive they are to these errors
TDC usually employed [6]-[14]. In this case, we clearly oband how the algorithm responds to them with other positions
serve in Fig. 7(c) the cancellation of speech signal as repor@idthe speaker and other initializations. In Fig. 9, we repeat
in [12] and [13]. On the other hand, the proposed algorithfi€ experiment with the speaker placed this time at the left-
avoids this phenomena as shown in Fig. 7(d), and proves fi@e position. In Fig. 9(a), we first initialize the algorithm
efficiency of the subspace tracking procedure of (12). Desiréth (10) as in Fig. 8. Without tracking, we naturally notice

spegch IS properly recovereq with a Saquymg noise reduc'['C)nﬁWe used an evaluation tool provided by the Enhancement of Hands-Free
In Fig. 8(a), we plot the gain of the total response from theelephony (FREETEL) project to make comparison with former results.
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Fig. 10. Tracking behavior of proposed system when the speaker position suddenly changes from the left to the right side pesitiod st (a) Output
speech. (b) Gain in dB, just after movementtat 3.3 s (dashed), and after 1 s of speech activity at 5.4 s (solid).

that identification errors of IR’s are higher than those from(a) and Fig. 7(d), the output speech of Fig 10(a) shows the
simple TDC from the central position. However, the proposagorithm to behave as well in speech enhancement. After
method is still able to correct them in an efficient waythe movement of the speaker &t= 3.3 s, we just notice
This figure shows the capacity of the algorithm to track IR’a small attenuation of the speech signal until the attack of
from different speaker positions with the same initializatiothe second sentence. This short duration of speech activity is
by simple TDC in (10). In Fig. 9(b), we secondly initializethe time interval that is necessary for the tracking procedure
the algorithm with the IR’s from central position obtainedo adapt to the sudden change in speaker position. In Fig.
after convergence in Fig. 8(a). Although identification errors0(b), we plot the gain of the proposed system just after
without tracking are smaller, they are still significant tdhe movement of the speaker at= 3.3 s, and after 1 s
make speech signal cancellation effective as in Fig. 7(of speech activity at = 5.4 s. We note that the sudden
They illustrate the sensitivity of matched filtering and GS@ovement of the speaker from the left to the right-side position
beamforming to identification errors of IR’s from one speakénstantaneously entails large identification errors. This amounts
position to another. On the other hand, the proposed algo-a new initialization of the algorithm during speech activity.
rithm properly corrects these errors by the subspace-bad®d also note that 1 s of speech activity is sufficient for
tracking procedure. This figure shows that the identification obnvergence, although small notches at few frequencies still
IR’s for one speaker position is insufficient, and proves thegquire a further processing time due to larger initial errors
permanent tracking is necessary to properly follow speakier the learning curve. This experiment proves the tracking
movements. capacity of the algorithm to properly adapt to fast speaker
We now extend the evaluation of the algorithm to the caseovements.
of speaker movements and show its capacity to adapt to thid~ollowing the previous assessments with simulated data,
situation. To do so, we assess in Fig. 10 its tracking behavise now test the algorithm with data completely recorded
for a sudden change of the speaker position from the leftnder real conditions. Cooperative operators sitting at the
side to the right-side location (see Fig. 1), in the middle afxperimental work desk are asked to utter two sentences. The
the first sentence at = 3.3 s. We actually initialize the recordings are all made at work time in the banker market
tracking procedure with the IR’s from the left-side positiotrading room. Since the preliminary results we previously
obtained after convergence in Fig. 9. When compared to Faptained are very satisfying, we use fewer microphones to
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reduce the cost of the system. We actually keep the si&nt costincrease in equipment. Indeed, we could increase the
array microphones located at the top edge of the workstatiarray dimension with the same number of microphones at each
screen for this part of the evaluation with real data. Fowvorkstation, by cross-feeding to the array processor of each
tests are run with sentences uttered from both male awdrk position the microphone inputs of the neighboring work-
female speakers at average SNR’s ranging from 0 to 8 d&ations. The selection of the neighboring microphones would
The recorded input signals are qualitatively quite similar tdepend in general on their directivity and their positioning in
the simulated data and do confirm the artificially reproduceble trading room.
conditions of the previous experiments to be very close toA general point to address beyond the above generalization
reality. These signals, after processing, are again qualitativédythe tracking capacity of the algorithm when the operator is in
similar to the output speech of the previous experiments ati far field of microphones. All the experiments in this paper
show the quantitative measurements of speech enhancemere indeed made in the near field of the array. However,
with real data to be in the same range. Indeed, the qualigcent experiments assessing a mini-teleconference mode with
of both the output speech and residual noise still soungix microphones, all placed in the far field at about 3 m from
good and natural in terms of speech dereverberation agpkeakers moving in a meeting room, proved the algorithm to
noise reduction. A significant improvement is evident whelpehave normally. These preliminary tests made for a future
compared to the results of [16]. The total gain in SNRpplication excluded specific problems due to the tracking in
ranges from 9 to 12 dB after postprocessing and confirtise far field. A deeper study should follow with a detailed
the efficiency of the proposed method under real condivaluation.
tions. Another issue to discuss is the undesirable spatial selectivity
Other tests proved the algorithm to be able to cancel evihat the large cross-connected arrays proposed above may
a strong echo emitted from a close loudspeaker, without asshphasize in the direction of close jammers. This is again
knowledge of its reference signal and without any degradatigslated to the “portability” of the acoustic characterization
to the output speech. The echo is louder than the desigHen using these arrays. In this situation, it is unpractical to
speech, but convergence is not affected. This confirms theasures; at each workstation from all the remote micro-
efficiency of the linear convolution constraint over IR’s anghones of the array, while any approximation with a global
shows the proper functioning of the voice activity detector. Th@easure could involve larger errors. The efficiency of the
underlying issue of speech enhancement and echo cancellaliggar convolution constraint can no longer be guaranteed in
in double talk situations is addressed in more detail in [32fis case. Consequently, the convergence to the IR’s from

where an efficient generalization is given. the desired speaker could be noticeably disturbed by close
jammers. Indeed, one or more neighboring operators can now
B. Discussion be present in the near field of a remote subset of microphones,

while the desired operator is in their far field. This may

The evaluation _results show the capa_lcny of the a.lgomhmsadvantage the acquisition of the desired operator in favor
to enhance near-field speech of a moving speaker in a VeLY i .
of neighboring operators.

practical situation. They prove its efficiency in dereverberation One potential solution to this problem we would like to

and noise reduction in large rooms under adverse conditions.” . .
: G Ifyestigate in the future could be based on subspace tracking
However, several issues and possible improvements are stll . o
. i I~ with a subarray acoustic characterization. In [31], we proposed
left to be discussed for future investigations.

a partially blind beamformer based on subspace-tracking and

A first question of a practical order is related to the “porta-

bility” of the acoustic characterization when the array is moved partial characterization of propagation vectors in a subarray

from one workstation (i.e., work position) to another. So fap"nanifold._ln some applications in the electromagnetic field, the
the constant energy assumptionf has been validated for rjropagatlon paths could be unmodeled and unknown from th_e
local variations of the speaker location in the same work p8?S'red source to a subset of SEnsors, so that the correqundmg
sition One either need to precisely measgieat each work Subarray inputs might not be exploitable. However_, forcing
position or approximate it by a global and optimized measu e complementary part of the modeled propagation paths

with some relative errors minimized over each position. Not 0 lie in their subarray manifold is shown to fully identify

however, that all the steps of the algorithm, except the spe Cflgpagatlon vectors. n [3.1]' The questllon t.o address in the
L Jture is whether using this structure with microphone arrays
recovery and synthesis in (15), are not affected by such err Suld quarantee the converaence in a similar wav. In such a
over 3. The optional linear convolution constraint may onl asue ognue should. for inst\;nge restlrict the measu?/ém of
lose some of its efficiency without seriously degrading th% 'éhe linear co’n olution con’stra'nt over the s bsete();z‘t IR's
performance in speech dereverberation and noise reduction ﬂ?‘ : voiuti int ov u

the worst case, we shall notice a small and negligible spect%m the operator to the microphones of its workstation (i.e.,

shaping effect on output speech. subarray acoustic characterization). Possible spectral shaping

In the studied context of hands-free telephony in a ban %veCtS on output speech may be noticed with this structure.
market trading room, we could improve the performancell_}owever’ the potential enhancement in speech dereverberation

speech dereverberation and noise reduction without a signﬂ‘pd noise _reductllon .that !argg arrays .COUId achieve motivates
our future investigations in this direction.

"No experiments in the FREETEL project were planned in advance for the Fma”y' the algomhm We pl’OpOSGd for hands-free telePhony
proposed method, which was developed later after the recordings were matiea banker market trading room leaves out several perspec-
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tives regarding its implementation for different applications in[s]
other acoustic environments.
[6]
V. CONCLUSION

In this contribution, we proved the identification and[7]
matched filtering of IR’s to be possible and more advantageous
than simple time delay compensation in terms of speec[@]
acquisition (i.e., dereverberation) and noise reduction. With
respect to this conclusion, the algorithm we developed outper-
forms previous techniques based on simple synchronization
of the direct propagation path. It avoids speech distortior]
and cancellation, recovers a natural quality of speech, and
efficiently reduces noise. [10]

In an acoustic characterization of the environment, we first
noted that the total energy of IR’s from any location of the, ;.
speaker close to a nominal central position to be quite constang
at any frequency component. From this key observation, Wl
adapted from previous works a signal subspace tracking proce-
dure of propagation vectors to identify IR’s in the frequencj3]
domain. Propagation vectors are simultaneously constrained
to agree witha priori acoustic features by structure forcingy4)
This improves the performance of the algorithm. The matched
filtering of IR’s instead of time delaying in steering avoid
speech cancellation when applying adaptive beamforming ?
optimal speech acquisition and noise reduction.

Among the perspectives we outlined previously, we are Gf!
present planning to incorporate the proposed microphone array
in a full hands-free telephone system. This system shoufd]
explicitly use the reference signal provided by the loudspeakgg;
to improve echo cancellation. Techniques developed in [28]
and [29] can be combined with the proposed scheme. Now t 3]
point is mostly addressed in [32], where an efficient solutio[n
is given for double talk situations. This system should also
handle a mini-teleconference mode, where not only one baf]
many speakers are free to move around in a room in either the
near field or the far field of the array. Although some issud&l]

X . o X ) 22]
are still under investigation, the first experimental results Wé
obtained are very encouraging.

15]
or

[23]
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