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A Signal Subspace Tracking Algorithm
for Microphone Array Processing of Speech
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Abstract—This paper presents a method of adaptive micro-
phone array beamforming using matched filters with signal
subspace tracking. Our objective is to enhance near-field speech
signals by reducing multipath and reverberation. In real ap-
plications such as speech acquisition in acoustic environments,
sources do not propagate along known and direct paths. Partic-
ularly in hands-free telephony, we have to deal with undesired
propagation phenomena such as reflections and reverberation.
Prior methods developed adaptive microphone arrays for noise
reduction after a time delay compensation of the direct path. This
simple synchronization is insufficient to produce an acceptable
speech quality, and makes adaptive beamforming unsuitable.
In this contribution, we prove the identification of source-to-
array impulse responses to be possible by subspace tracking. We
consequently show the advantage of treating synchronization as
a matched filtering step. Speech quality is indeed enhanced at
the output by the suppression of reflections and reverberation
(i.e., dereverberation), and efficient adaptive beamforming for
noise reduction is applied without risk of signal cancellation.
Evaluations confirm the performance achieved by the proposed
algorithm under real conditions.

Index Terms—Adaptive beamforming, dereverberation, identi-
fication, matched filtering, microphone arrays, speech enhance-
ment, subspace tracking, voice activity detection.

I. INTRODUCTION

T HERE IS increasing interest in speech acquisition in
adverse acoustic environments with regard to voice con-

trol and hands-free telephone communications. For speech
recognition controlled devices as well as for speech trans-
mission, efficient acquisition systems need to reduce noise.
But they should also suppress undesired multipath propagation
phenomena such as reflections and reverberation of speech
(i.e., dereverberation). Microphone arrays seem appropriate
to achieve these tasks, but adjusting them to fit the sound
field remains so far a major matter of investigation [1], [2].
We shall show in this contribution that the identification and
the matched filtering of source-to-array impulse responses are
necessary to release microphone arrays from this constraint.
Upon this statement, the subspace-tracking-based algorithm
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we propose achieves the above requirements and outperforms
previous methods.

In array processing techniques such as beamforming [3], in-
put data is classically synchronized at sensors by a simple time
delay compensation (TDC1) of the direct source propagation
path, before applying the beamformer’s coefficients for noise
reduction. This preprocessing step, calledsteering, is justified
by the fact that sources are usually modeled or approximated to
propagate along planar or spherical waves. In real applications
of speech acquisition in acoustic environments, sensors are
however acoustic microphones with unknown directivity pat-
terns. In addition, reflections and reverberation can no longer
be neglected by the processing stage (i.e., beamformer). If not
suppressed, they will make extracted speech sound unpleasant
at the output. Besides, early reflections can be considered as
coherent jammers and may cancel the speech signal in adaptive
beamforming [4]. TDC becomes insufficient to fit the sound
field, and noise reduction is also affected.

Many adaptive microphone arrays were proposed for speech
enhancement in quite friendly acoustic environments [5]–[8].
Unfortunately, most of them turn down the first stage of
steering (i.e., synchronization) and put the emphasis on noise
reduction alone. In [2], we evaluated these methods for speech
acquisition in cars, and precisely noticed their poor perfor-
mance in noise reduction in the tested environment.

Kaneda and Ohga [5] assume the location of the speaker to
be known and fixed. They measure the corresponding impulse
responses (IR’s), then use them to train the beamformer with
recorded noise. This requires stationary conditions difficult
to reach with a mobile speaker and nonstationary signals.
To improve noise reduction, they allow some distortion of
the desired source. Sondhi and Elko [6] adopt a similar
structure but consider TDC of the direct path. To further
improve noise reduction, they introduce a soft constraint on
signal modulus allowing an amount of distortion. Zelinski
[7] also considers TDC of the direct path. He, however,
assumes the noise to be diffuse and uncorrelated, then applies
a delay-sum (DS) beamformer [3] by summing the inputs
after steering. To enhance noise reduction, he proposes a
Wiener postfilter. Simmeret al. [8], [10] improve this filter
and implement a unit for adaptive TDC of the direct path
[9]. Gierl [11] combines TDC with multidimensional spectral
subtraction.

1In this paper, TDC is strictly used to denote time delay compensation with
only single tap filters.
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Although not tested in [2], and contrary to previous meth-
ods, Van Compernolle [12], [13] and Nordholmet al. [14]
propose adaptive beamformers with a generalized sidelobe
canceler (GSC) structure [15] updated during silence. Adaptive
beamforming is more efficient for noise reduction, but suffers
from severe speech cancellation in the presence of steering
errors [4]. To further minimize this effect, Van Compernolle
proposes a unit for adaptive TDC, updated during speech
activity to avoid deviations to noise sources. Nordholmet
al. assume TDC of a spread source in the near field, and
introduce a linear constraint on superresolution to cover the
emitting area. All the methods above propose suboptimal
beamformers for noise reduction, and introduce an amount
of speech cancellation or distortion depending on whether
processing is adaptive or not.

To really achieve satisfactory results, we underlined in [2]
and [16] our conclusion that steering should be definitely
seen as a matched filtering step or an inversion of IR’s
rather than TDC of the direct path, and that multichan-
nel identification of acoustic paths is necessary. We also
proved in [2] the advantage of matched filtering over time
TDC achievable by beamforming in terms of producing a
very natural quality of speech and a higher intelligibility at
the output (i.e., dereverberation). Several acoustic beamform-
ers propose the inversion of IR’s by deconvolution in the
steering stage, but suffer from the fact that acoustic room
impulses often are not minimum phase and not invertible
[17]. Indeed, deconvolution implies that one is attempting to
invert the transfer function, which is very problematic for
nonminimum-phase systems. Rather, the system response is
just being conjugated here, which is conventionally known
as matched filtering. We hence avoid the inversion prob-
lems encountered in deconvolution. Flanaganet al. [18] re-
cently applied matched-filter processing to microphone ar-
rays and reported its dereverberation capacity. However, they
used a very large number of microphones with a subop-
timal DS beamforming structure for noise reduction. They
also calculated fixed IR’s from the room geometry or mea-
sured them in actual rooms as in [5], without addressing the
tracking of nonstationary acoustic paths. In this contribution,
we adaptively identify the IR’s and respectively adjust the
matched filters to them. We also apply a GSC beamformer
for an efficient noise reduction with a small number of
microphones.

This work follows up former studies referenced in this
paper. After preliminary studies made in [2] and [16], we
proposed in [19] a robust wideband adaptive beamformer
based on source-subspace tracking of propagation vectors in
an array manifold (i.e., IR identification) [20]2. We studied
the algorithm with a simple manifold of far-field sources as
a particular case of a more general array characterization.
With this flexible formulation, a possible adaptation to acoustic
environments can be viewed. In addition, the high performance
of the algorithm and its low complexity observed in that simple
case offer a significant perspective for further implementation
in real applications.

2We refer here to the underlying method in [20] as the adaptive source-
subspace extraction and tracking (ASSET) technique.

In this paper, we adapt [19] to speech acquisition in a
banker market trading room. In Section II, we first make
an acoustic characterization of the array to possibly find the
underlying features of IR’s. We will notice the total energy
of any frequency component to be quite constant for emitter
locations around a central speaker position. From this key
observation, we introduce significant constraints characterizing
the array. To reliably identify IR’s in Section III, we adapt the
tracking procedure to the studied environment and introduce a
voice activity detector for the tracking activation inspired from
[9]. We also apply a GSC structure [15] for speech acquisition
and noise reduction and replace its classical DS branch by
matched filters. Evaluation results under real conditions, de-
scribed in Section IV, show a very good quality of speech
after dereverberation and an efficient noise reduction. The
proposed algorithm outperforms the GSC structure combined
with TDC suggested in [12] and [13]. In addition, the method
is even able to cancel a strong echo emitted from a close
loudspeaker without any knowledge of its reference signal.
We finally give our conclusion and perspectives in Section
V.

II. A COUSTIC CHARACTERIZATION AND MODEL

In this section, we first describe the configuration then
mention the drawbacks of TDC in the studied environment. We
show indeed that TDC entails speech cancellation in adaptive
beamforming, and a low quality of speech due to sound reflec-
tions and reverberation. Identification and matched filtering of
IR’s avoid these phenomena and can be implemented along
the lines given below at the end of the section.

A. Configuration

We consider for our application an array of micro-
phones located around the screen of a computer workstation
in a large banker market trading room of 30 m length20
m width 3 m height.3 Six microphones are linearly placed
along the top edge, and six others are placed on both the left
and right edges as shown in Fig. 1. The spacing between each
pair of adjacent sensors is 0.07 m. This array feeds the front-
end receiver of a hands-free telephone installed on an operator
desk. The loudspeaker is fixed to the keyboard. We can now
model the signals received from the microphone array at time

as follows:

(1)

where denotes the -dimensional observation vector
and where is the emitted speech signal uttered from the

operator; is the -dimensional
vector of IR’s, is the noise vector, and denotes time
convolution. All the quantities considered in (1) are real.

Note that all signals are wideband and nonstationary. Noise
particularly contains cocktail party speech, double talk, and
possibly a strong echo emitted from the loudspeaker. Although
its spectral characteristics are similar to desired speech, we

3The room environment data was recorded by ENST and PAGE Iberica in
a banker market trading room of Banesto, Madrid, Spain.
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Fig. 1. Configuration of microphone array in a banker market trading room.

assume that and are uncorrelated. Also, we do not
assume a parametric model of characterizing the sound
field. We do not neglect the mobility of the speaker, although
it is assumed to be local around a central position. In fact,
we reasonably assume that is slowly varying and locally
constant in time.

To characterize acoustic features specific to the studied
environment, we measure IR’s over 8192 coefficients at a
sampling frequency of 8 kHz, at four selected nominal po-
sitions of the speaker’s mouth (center, right, left, and behind
as shown in Fig. 1). The central position is located at 0.90
m, perpendicular to the array centroid. Two other positions
are located on each side 0.15 m away from center, and a
last position is located 0.20 m behind. To measure the IR’s
from each position, we send Golay codes to a loudspeaker
placed at the corresponding location and record the signals
from the microphones simultaneously [22]. The Golay codes
are generated from a remote PC and sent to the loudspeaker
through a D/A converter. The IR’s are finally estimated
by circular convolution of the excitation sequence with the
received signals [22].

Other IR’s were actually measured at different locations to
the right of the operator. The positions were selected at larger
variations up to a distance covering the two next operators at 4
m from central position. These IR’s were measured to evaluate
the room conditions. They particularly show a quite constant
reverberation time over positions of around 1.7 s [21], [22],
and illustrate the reverberation effect of the large trading room
at various positions of the speaker.

B. TDC versus Identification/Matched Filtering of IR’s

In the studied environment, TDC is unsuitable for adap-
tive beamforming and speech cancellation may occur, while
identification and matched filtering of IR’s avoid this effect.
This can be confirmed from the simple observation of IR’s.
In Fig. 2(a), we plot the sixth IR of the central position over

the first 1024 coefficients and clearly notice strong reflections
and reverberation. Reflections are the early impulses reflected
by large surfaces such as walls, furniture, etc. They are
depicted by the segment of the curve from 10 to 16 ms.
Reverberation is a complex mixture of multiply reflected
and diffracted waves without a macroscopic or predictable
structure. They are illustrated by the tail of the curve. Due
to the presence of close and disturbing reflections, a sim-
ple synchronization over the direct path cannot be guaran-
teed.

Even if TDC can be properly achieved, adaptive beam-
forming would cancel speech from uncompensated reflections
and reverberation [4]. For instance, Van Compernolle used
a TDC unit similar to [9] based on cross-correlation [12].
He, however, replaced this unit by adaptive filters in [13] to
improve the accuracy of time delay estimates. Nevertheless,
he reported with both schemes predictable signal cancellation
phenomena at a positive signal-to-noise ratio (SNR) [4]. Fig.
2(a) shows that reflections and reverberation are too strong to
be approximated by simple time delays. One way to efficiently
suppress reflections and reverberation is to identify IR’s for
matched filtering in the steering stage. Simulation later will
confirm the advantage of this scheme over TDC proposed in
[6]–[14].

There is another drawback of TDC in the studied envi-
ronment. Reflections and reverberation of speech are simply
delayed with TDC, and would be noticeable after processing
in the listening. On the other hand, identification and matched
filtering of IR’s recovers a natural quality of speech. This can
be assessed by quantitative measurements. To do so, we define
the energy decay curve (EDC) [21], [22] of theth IR
for as follows:

(2)

In Fig. 2(b), the solid line plots the normalized EDC in dB
of the sixth IR, which defines the amount of energy left in
the response at time Notice that the decay slope changes
abruptly at an instant ms, calledtotal duration. It
corresponds to the contribution of the direct path and early
reflections. At that point of the EDC, we define the clarity
index in dB [21], [22] by

(3)

This index, which specifies the quality of an acoustic chan-
nel for speech transmission, is the ratio of the total en-
ergy of the associated IR to the energy contained in its
late reverberation part. The quality of speech transmitted
is considered good when this index exceeds 12 dB. The
normalized curve of plotted in Fig. 2(b) shows a relatively
low clarity index of 9.7 dB. A consequence is that the
speech picked up by microphones will not sound pleasant
to the listener. The classical delay-sum (DS) beamforming
cannot significantly improve this index at output after TDC
of the IR’s (i.e., 12.7 dB on the curve plotted as a semi-
dashed line), while IR identification and matched filtering
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(a) (b)

Fig. 2. IR coefficients and normalized energy decay curves for speaker position at center. (a) IR of sixth channel. (b) EDC of sixth channel (solid), of
total IR with TDC and DS (dashed), and of total IR with matched filtering (semi-dashed).

over 256 coefficients offers a potential4 clarity index of 18
dB (plotted as a dashed line). Simulations will show that
the proposed algorithm reaches this index. In this case, the
identification of IR’s can be reasonably made over
coefficients.

C. Frequency Domain Identification

We identify IR’s in the frequency domain. This imple-
mentation offers an attractive structure paralleling existing
narrowband identification procedures for each frequency com-
ponent. It requires, however, an adaptation to the studied
environment.

We first take the fast Fourier transform (FFT) of (1) over
snapshots each sampling periods

according to the scheme of Fig. 3. For
we have

(4)

where the subscripts and in (4) denote, respectively, the
FFT of the indexed quantity in (1) at frequency binand the

-block of input data, numbered as We previously
assumed time variations of to be very slow and practically
constant in comparison to the variations of and We,
hence, approximate for simplicity, although it is
understood that time variations can be tracked. By virtue of the
Hermitian symmetry of the model, note in the following that
all the processing in the frequency domain will be performed
over the first frequency bins instead of the available
components.

Equation (4) shows that and can be estimated
only within a multiplicative factor [i.e.,

However, this ambiguity can be removed. Indeed,
we show below that the modulus of can be estimated
a priori. In Fig. 4(a), we plot for the four selected
positions of the speaker where is the FFT of the th IR

The curves show relatively high variations of IR’s from
one position to another. On the other hand, the average curves

(5)

4We use 256 coefficients of each measured IR for perfect identification.

Fig. 3. Serial to parallel and transform to the frequency domain of obser-
vation signals.

plotted for the same four positions in Fig. 4(b) show small
variations. Their standard deviation is actually smaller than
10% of the mean value at any frequency component. In this
case, we can assume that the mean energyis constant for
any location of the speaker around the central position. This
constant can be measured as a weighted combination of the
curves plotted in Fig. 4(b). For instance, we can take the av-
erage if wea priori assume a uniform probability distribution
over the speaker positions. Actually, this observation was also
confirmed in a different context of hands-free telephony in
cars [1], which proves the assumption to be quite realistic
for different acoustic environments. Intuitively, some kind of
“local energy conservation principle” gives support to this
feature, which underlines the acoustic characterization of our
IR’s.

Now that the problem of ambiguity is solved, we can
reformulate the problem in a way that better introduces our
algorithm. To do so, we rewrite (4) as follows:

(6)

where the complex vector

(7)

is the signal subspace basis vector with norm and where
the complex scalar

(8)
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(a) (b)

Fig. 4. Energy characterization of IR’s. (a) Energy of sixth IR for four positions. (b) Mean energy of IR’s for four positions.

is the signal parameter. Note here that
and that will be used for normalization in the following.
If it is possible to track the signal subspace properly, the
idea is to recover the signal parameter and consequently
estimate by an adequate distortionless beamformer
(i.e., For instance, the matched
filtering beamformer which has the simple
structure of DS, conjugates the propagation vector or
equivalently the IR’s regardless of the noise structure and
optimally reduces uncorrelated white noise. We shall show
in the next section how to combine it with a GSC structure
to efficiently reduce colored noise, but first the propagation
vectors have to be identified.

The system identification problem in (6) is commonly
studied in the narrowband case by localization methods in
the electromagnetic far field or near field. Eigensubspace-
based algorithms particularly estimate the location parameter
or equivalently corresponding to the propagation along the
direct path. However, they often assume the wavefront to be
planar or spherical and the noise to be white and uncorrelated
(see references in [24]). These assumptions are unrealistic
in the studied context. On the other hand, we successfully
derived in [19] and [20] a source subspace tracking procedure
of in an array manifold in general, and tested its efficiency
for speech acquisition with real data. Using this technique in
audio acoustics, we shall show in the next section how to
avoid sound field modeling when identifying by subspace
tracking.

III. T HE PROPOSEDALGORITHM

We describe in this section the different steps of the
algorithm. We first explain the adaptive GSC structure when
adapted to the matched filtering of identified IR’s in the
steering stage. We secondly introduce the IR identification
procedure, relate it to existing techniques, then prove its
convergence. We show that its performance is enhanced
when estimated propagation vectors are constrained to
fit with a priori acoustic features. It is also improved
by a voice activity detector blocking the identification
procedure during silence. Finally, we briefly explain speech
reconstruction.

A. Matched Filtering and GSC Beamforming

With identified IR’s, we can combine matched filtering with
adaptive beamforming for both optimal speech acquisition and
noise reduction without speech cancellation. Let us assume that
an estimation of the signal subspace basisat iteration
say is available and near convergence. We can imme-
diately estimate using the matched filtering beamformer
described earlier by This step, which
has the structure of a classical DS beamformer, amounts to
replacing TDC by matched filtering, where the usual steering
vector of simple time delays is replaced by Contrary to
TDC in [6]–[14], the matched filtering compensates speech
distortion due to multipath propagation by conjugating the
IR’s. However, its output denoted in the following by
is not optimal unless the noise is uncorrelated and diffuse.
To better estimate the signal parameter unlike [18], we
further reduce the residual noise still present in from the
noise references defined in the noise subspace orthogonal to

The identification of provides noise references free
from speech leaks. This prevents speech cancellation.

As shown in Fig. 5, we use a GSC structure [15] for
as follows:

(9)

where is a signal blocking matrix projecting
on the noise subspace orthogonal to to obtain

[15]; the superscript denotes conjugate transpose, and
is the stepsize of the GSC, possibly including a normalization

factor (see [26] for more details, e.g.,
The GSC filter is an -dimensional vector initially
set to zero and implemented in a least mean squares (LMS)
structure [26]. To show the advantage of the algorithm over
previous methods, we start the algorithm with

(10)

where are time delay estimates of the direct
path, as made in [6]–[14].
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Fig. 5. Block diagram of the algorithm at frequencyf:

B. Channel Identification

The input-output IR identification scheme we propose relies
on a general framework of subspace tracking and structure
forcing of propagation vectors. It can be related to existing
techniques, and its convergence can be guaranteed in the
studied environment.

In the same way as in [19], we correct and track
the basis vectors at each frequency bin With vectors

of input data and any estimated output sequence of the
signal parameter where is a given

distortionless beamformer (i.e., we apply the
following general equation for identification:

(11)

where is the stepsize of the LMS-like tracking equation
(11), possibly including a normalization factor. Note that (11)
indeed corresponds to a gradient-type solution of an identifica-
tion problem if is a known reference sequence of speech
signal parameter [26]. Contrary to the unconstrained
estimate of is denoted at present by in (11).
We will show in the next subsection how to constrain it with
respect to an acoustic characterization of the IR’s to have

Actually, the gradient-type equation (11) derives from min-
imization of the cost function
where is assigned to check some acoustic features (e.g.,
lying in an array manifold if it exists), and where the beam-
former is defined such that In a recent
work [20], [25], we generalized this criterion to a multisource
tracking equation (i.e., is a matrix whose columns are
“structure-fitted” propagation vectors and

This criterion can be related to other methods referenced in
[24], but contrary to them, it proposes a direct estimation of
propagation vectors by simultaneous subspace tracking and
structure fitting. For instance, if we select the DS beamformer

in the one-dimensional (1-D) case, we
obtain the simplified neuron model proposed by Oja [23]
as a principal component analyzer. It minimizes the cost
function but converges to
the eigenvector with the highest eigenvalue. In [24], Yang
generalized this criterion to the case of a multidimensional
signal subspace (i.e., is a matrix) and applied it to
image processing. Although is proved to converge to
the orthonormal eigensubspace basis corresponding to the
highest eigenvalues, its column vectors do not correspond to
propagation vectors.

In (11), we can use the GSC beamformer output
estimated in the previous subsection with

However, we observed that the tracking procedure
is less stable and slower when applied to nonstationary signals.
This is due to the perturbations and the additional convergence
time of the side structure implemented by and
Instead, we use the DS output in (9) as follows (see Fig. 5):

(12)

In [24], Yang particularly proves that (12) converges to
with norm the basis vector of the 1-D signal

subspace with the highest energy. At a reasonable SNR,
when desired speech is the loudest among present sources as
assumed in [13], this equation reasonably converges to any
solution of the form where is a phase shift.
Although the human auditory system is not very sensitive to
phase distortion [6], our experience is that
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Fig. 6. Proposed algorithm for speech subspace tracking, matched filter beamforming, and GSC noise reduction.

is close to a linear phase where is a short time delay. The
delay is actually positive and corresponds to a causal delay.
Hence, the effect of on speech quality is not significant and
the IR’s are properly identified.5

C. Channel Characterization

We now show how to incorporate acoustic features to
guarantee convergence even at low SNR’s. In the previous
subsection, we separately estimated normalized propagation
vectors at each frequency, regardless of the fact that they are
related to estimated IR’s within a multiplicative factor
In addition, the underlying fast convolution in the frequency
domain between these IR estimates and speech should be
constrained to be linear due to the block processing scheme
[27]. This constraint implies setting a part of each IR to zero
in the time domain. In this case, we should fit the estimated
propagation vectors to a particular structure of IR’s as shown
in Fig. 5.

To do so, we incorporate thea priori information obtained
in Section II-C stating that the mean energy of IR’s at each fre-
quency is constant and equal to We actually form the ma-

trix ,
which approximates the row-by-row FFT of the unconstrained
IR estimates. To apply the linear convolution constraint, we
compute the matrix of unconstrained IR estimates in
the time domain as the row-by-row inverse FFT (IFFT) of

Then, we set its right half part to zero to have
constrained IR estimates in the time domain. It is this
step that guarantees the linear convolution constraint. We again
take the row-by-row FFT of to estimate the constrained
IR estimates in the frequency domain. We finally have

for from the first column
5It could be advantageous to extract the speaker position from the estimated

IR’s after convergence as required for camera pointing in some teleconference
applications.

vectors of More details can be found in [27]–[29] about
constrained adaptive filtering in the frequency domain and fast
linear convolution.

This characterization is likely to limit any deviation of the
tracking procedure from the true IR’s, even at reasonably
low SNR’s and when desired speech is not the loudest. It
seems difficult to provide theoretical arguments to support
this intuitive expectation, but simulations do confirm that the
linear convolution constraint improves convergence in highly
adverse conditions. However, this constraint can be omitted
under better conditions to save computation.

D. Speech Activity Detection

When the SNR is very low, particularly during periods of
silence, (12) is likely to track noise sources. It would be
better then to stop the adaptation of the algorithm so as to
keep the estimates of from being attracted in the noise
subspace. To do so, we first define the steered input signals

by where is a diagonal matrix
with the elements of vector on the main diagonal. Note
here that yields the matched filtering output of (9)
when its elements are averaged. This is a preliminary step that
guarantees the selectivity of the speech activity detection in the
direction of the operator by spatial filtering. We then introduce
a modified version of the voice activity detector presented in
[9], as follows:

(13)
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(a) (b)

(c) (d)

Fig. 7. Speech signal at different stages. (a) Original speech. (b) Speech received at sixth microphone. (c) Speech estimated without tracking. (d)
Speech estimated with tracking.

where speech activity is given by a smoothed ratio of
the sum of the cross-spectrum components at a selected set of
frequencies over the sum of the autospectrum components
at the same frequencies;is a smoothing factor, denotes
the real part of a complex number, and is the th
component of We found it also better in (13) to select
ten frequencies around 1.5 kHz and 2.8 kHz rather than
defining as proposed in [9] (i.e., the low
frequency region going up to 2 kHz). We noted indeed that
speech activity can be better discriminated from noise in these
frequency regions. To test the presence of speech or silence,
speech activity is simply compared to a given threshold

as follows:

if
otherwise (silence).

(14)

We then replace the stepsize of the tracking equation in (12)
by to block adaptation during silence as shown
in Fig. 5.

It should be noted here that the GSC structure of (9)
is not blocked, contrary to [12] and [13]. The continuous
processing of the GSC, which provides an efficient noise
reduction even during speech activity, is now possible because
we discarded the risk of signal cancellation. Notice also that
simultaneously rules the adaptation of (12) at any frequency

though it can be split into multiple control regions of
speech activity over frequency sets other than Finally,
we should recall that speech activity is observed in both

frequency and space. The analysis of the frequency content
alone would detect all speechlike signals, but the spatial
selectivity through the steered inputs mentioned earlier
restricts them to the speech uttered only from the desired
operator. The acoustic characterization of IR’s described in
the previous subsection maintains this spatial selectivity even
at low SNR’s. This prevents the voice activity detector from
responding to undesired speech signals.

E. Signal Recovery and Synthesis

Using the relation we now recover the
speech signal at the block in an overlap-save (OLS)
[27] analysis/synthesis scheme by

Re IFFT (15)

With blocks shifted each samples, input data is over-
sampled at a rate higher than required to update (12) more
frequently. This is shown [28], [29] to improve the tracking
performance of the algorithm. As blocks overlap over
samples, we only keep the following segment of length:

We finally summarize the different steps of the algorithm
presented in the previous subsections in Fig. 6.
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(a) (b)

Fig. 8. Total response of proposed systemV H
f;nGf;n=�f;n = (Ûf;n=m � Pf;nWf;n)

HGf;n=�f;n at t = 2:7 s (i.e., initial) andt = 3:7 s (i.e., final).
(a) Gain of proposed system in dB. (b) Phase of proposed system in radians.

IV. EVALUATION AND PERSPECTIVES

In this section, we assess the performance of the studied
algorithm for speech acquisition and noise reduction. We first
want to compare it to prior methods based on simple TDC.
For this reason, we start the proposed scheme with (10) as
stated in Section III, although other experiments following
below successfully test other initializations. We also want
to evaluate the proposed method and its tracking behavior
with quantitative measurements. To do so, we shall need to
synthesize simulated data so as to access these measurements.
Later, we resume our evaluation with experiments under real
conditions before we draw out our perspectives.

A. Experiments

We take special care to make our first set of experiments
with simulated data very close to reality. Indeed, we record
a clean signal of two speech sentences uttered from a female
speaker in an anechoic room to simulate the original speech of
the operator. We then convolve the original waveform plotted
in Fig. 7(a) with the IR’s measured from the nominal central
position of the speaker to the array of microphones (see Fig.
1, Section II-A). This convolution faithfully reproduces the
reverberation effect of the large banker market trading room.
The convolved signals are finally corrupted at a mean SNR of
7 dB by a background noise recorded separately at work time
in the trading room. The background noise contains cocktail
party speech due to the large number of operators present
in the trading room, the noise of keyboards, the noise of
the workstation fans, etc., and makes the experiment very
close to reality. In Fig. 7(b), we plot one of the synthesized
signals simulating the noisy speech received at the sixth
microphone.

To make our comparison, we first skip the tracking step
illustrated by (12) (i.e., This amounts to the simple
TDC usually employed [6]–[14]. In this case, we clearly ob-
serve in Fig. 7(c) the cancellation of speech signal as reported
in [12] and [13]. On the other hand, the proposed algorithm
avoids this phenomena as shown in Fig. 7(d), and proves the
efficiency of the subspace tracking procedure of (12). Desired
speech is properly recovered with a satisfying noise reduction.
In Fig. 8(a), we plot the gain of the total response from the

central position of the speaker to the processor output (i.e.,

The initial curve corresponds to TDC, and shows the usual
approximation [6]–[14] to be inadequate beyond a small low-
frequency region. The final curve corresponds to the identified
IR’s after convergence of (12) within 1 s from speech activity
start, and shows that signal leakage is quite negligible. Despite
the small distortions in amplitude and phase observed in Fig.
8(a) and Fig. 8(b), respectively, the audible quality of the
output speech sounds very natural while point jammers are
significantly reduced. This experiment shows a large capacity
of the algorithm in speech dereverberation and noise reduction
in adverse conditions.

To provide quantitative measurements, we compute the
clarity index and the SNR at the output. We actually measure at
the output the potential clarity index of 18 dB given in Section
II-B. It is higher than the commonly accepted 12 dB threshold
for speech quality. The SNR is empirically6 computed as
the ratio where the mean energies
and are computed from the output signal during speech
activity and silence, respectively. This does not take account
a speech quality enhancement of 8 dB in clarity due to
reduction of reflections and reverberation. The measured SNR
gain of approximately 7 dB is less than the optimal 10.8 dB
reduction of spatially diffuse noise (i.e.,
To further improve the SNR gain performance, we propose
a postprocessing stage of the residual noise as suggested in
[6]–[8], [10], and [11]. We use, however, a spectral subtraction
method developed by Ephraim and Malah [30], and measure
an additional gain of 5 dB at an output SNR as high as 19
dB.

This experiment shows, for a particular configuration, that
matched filtering and GSC beamforming are sensitive to
identification errors of IR’s. The proposed method corrects
them. We show next how sensitive they are to these errors
and how the algorithm responds to them with other positions
of the speaker and other initializations. In Fig. 9, we repeat
the experiment with the speaker placed this time at the left-
side position. In Fig. 9(a), we first initialize the algorithm
with (10) as in Fig. 8. Without tracking, we naturally notice

6We used an evaluation tool provided by the Enhancement of Hands-Free
Telephony (FREETEL) project to make comparison with former results.
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(a) (b)

Fig. 9. Gain in dB of proposed system as in Fig. 4(a) when speech comes now from the left side-position, initial (dashed), final (solid). (a) Initialization
with TDC from central position as in Fig. 4(a). (b) Initialization with the IR’s obtained after convergence in Fig. 4(a).

(a) (b)

Fig. 10. Tracking behavior of proposed system when the speaker position suddenly changes from the left to the right side position att = 3:3 s. (a) Output
speech. (b) Gain in dB, just after movement att = 3:3 s (dashed), and after 1 s of speech activity att = 5:4 s (solid).

that identification errors of IR’s are higher than those from
simple TDC from the central position. However, the proposed
method is still able to correct them in an efficient way.
This figure shows the capacity of the algorithm to track IR’s
from different speaker positions with the same initialization
by simple TDC in (10). In Fig. 9(b), we secondly initialize
the algorithm with the IR’s from central position obtained
after convergence in Fig. 8(a). Although identification errors
without tracking are smaller, they are still significant to
make speech signal cancellation effective as in Fig. 7(c).
They illustrate the sensitivity of matched filtering and GSC
beamforming to identification errors of IR’s from one speaker
position to another. On the other hand, the proposed algo-
rithm properly corrects these errors by the subspace-based
tracking procedure. This figure shows that the identification of
IR’s for one speaker position is insufficient, and proves that
permanent tracking is necessary to properly follow speaker
movements.

We now extend the evaluation of the algorithm to the case
of speaker movements and show its capacity to adapt to this
situation. To do so, we assess in Fig. 10 its tracking behavior
for a sudden change of the speaker position from the left-
side to the right-side location (see Fig. 1), in the middle of
the first sentence at s. We actually initialize the
tracking procedure with the IR’s from the left-side position
obtained after convergence in Fig. 9. When compared to Fig.

7(a) and Fig. 7(d), the output speech of Fig 10(a) shows the
algorithm to behave as well in speech enhancement. After
the movement of the speaker at s, we just notice
a small attenuation of the speech signal until the attack of
the second sentence. This short duration of speech activity is
the time interval that is necessary for the tracking procedure
to adapt to the sudden change in speaker position. In Fig.
10(b), we plot the gain of the proposed system just after
the movement of the speaker at s, and after 1 s
of speech activity at s. We note that the sudden
movement of the speaker from the left to the right-side position
instantaneously entails large identification errors. This amounts
to a new initialization of the algorithm during speech activity.
We also note that 1 s of speech activity is sufficient for
convergence, although small notches at few frequencies still
require a further processing time due to larger initial errors
in the learning curve. This experiment proves the tracking
capacity of the algorithm to properly adapt to fast speaker
movements.

Following the previous assessments with simulated data,
we now test the algorithm with data completely recorded
under real conditions. Cooperative operators sitting at the
experimental work desk are asked to utter two sentences. The
recordings are all made at work time in the banker market
trading room. Since the preliminary results we previously
obtained are very satisfying, we use fewer microphones to
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reduce the cost of the system. We actually keep the six
array microphones located at the top edge of the workstation
screen for this part of the evaluation with real data. Four
tests are run with sentences uttered from both male and
female speakers at average SNR’s ranging from 0 to 8 dB.
The recorded input signals are qualitatively quite similar to
the simulated data and do confirm the artificially reproduced
conditions of the previous experiments to be very close to
reality. These signals, after processing, are again qualitatively
similar to the output speech of the previous experiments and
show the quantitative measurements of speech enhancement
with real data to be in the same range. Indeed, the quality
of both the output speech and residual noise still sounds
good and natural in terms of speech dereverberation and
noise reduction. A significant improvement is evident when
compared to the results of [16]. The total gain in SNR
ranges from 9 to 12 dB after postprocessing and confirms
the efficiency of the proposed method under real condi-
tions.

Other tests proved the algorithm to be able to cancel even
a strong echo emitted from a close loudspeaker, without any
knowledge of its reference signal and without any degradation
to the output speech. The echo is louder than the desired
speech, but convergence is not affected. This confirms the
efficiency of the linear convolution constraint over IR’s and
shows the proper functioning of the voice activity detector. The
underlying issue of speech enhancement and echo cancellation
in double talk situations is addressed in more detail in [32],
where an efficient generalization is given.

B. Discussion

The evaluation results show the capacity of the algorithm
to enhance near-field speech of a moving speaker in a very
practical situation. They prove its efficiency in dereverberation
and noise reduction in large rooms under adverse conditions.
However, several issues and possible improvements are still
left to be discussed for future investigations.

A first question of a practical order is related to the “porta-
bility” of the acoustic characterization when the array is moved
from one workstation (i.e., work position) to another. So far,
the constant energy assumption of has been validated for
local variations of the speaker location in the same work po-
sition.7 One either need to precisely measureat each work
position or approximate it by a global and optimized measure
with some relative errors minimized over each position. Note,
however, that all the steps of the algorithm, except the speech
recovery and synthesis in (15), are not affected by such errors
over The optional linear convolution constraint may only
lose some of its efficiency without seriously degrading the
performance in speech dereverberation and noise reduction. In
the worst case, we shall notice a small and negligible spectral
shaping effect on output speech.

In the studied context of hands-free telephony in a banker
market trading room, we could improve the performance of
speech dereverberation and noise reduction without a signifi-

7No experiments in the FREETEL project were planned in advance for the
proposed method, which was developed later after the recordings were made.

cant cost increase in equipment. Indeed, we could increase the
array dimension with the same number of microphones at each
workstation, by cross-feeding to the array processor of each
work position the microphone inputs of the neighboring work-
stations. The selection of the neighboring microphones would
depend in general on their directivity and their positioning in
the trading room.

A general point to address beyond the above generalization
is the tracking capacity of the algorithm when the operator is in
the far field of microphones. All the experiments in this paper
were indeed made in the near field of the array. However,
recent experiments assessing a mini-teleconference mode with
six microphones, all placed in the far field at about 3 m from
speakers moving in a meeting room, proved the algorithm to
behave normally. These preliminary tests made for a future
application excluded specific problems due to the tracking in
the far field. A deeper study should follow with a detailed
evaluation.

Another issue to discuss is the undesirable spatial selectivity
that the large cross-connected arrays proposed above may
emphasize in the direction of close jammers. This is again
related to the “portability” of the acoustic characterization
when using these arrays. In this situation, it is unpractical to
measure at each workstation from all the remote micro-
phones of the array, while any approximation with a global
measure could involve larger errors. The efficiency of the
linear convolution constraint can no longer be guaranteed in
this case. Consequently, the convergence to the IR’s from
the desired speaker could be noticeably disturbed by close
jammers. Indeed, one or more neighboring operators can now
be present in the near field of a remote subset of microphones,
while the desired operator is in their far field. This may
disadvantage the acquisition of the desired operator in favor
of neighboring operators.

One potential solution to this problem we would like to
investigate in the future could be based on subspace tracking
with a subarray acoustic characterization. In [31], we proposed
a partially blind beamformer based on subspace-tracking and
a partial characterization of propagation vectors in a subarray
manifold. In some applications in the electromagnetic field, the
propagation paths could be unmodeled and unknown from the
desired source to a subset of sensors, so that the corresponding
subarray inputs might not be exploitable. However, forcing
the complementary part of the modeled propagation paths
to lie in their subarray manifold is shown to fully identify
propagation vectors in [31]. The question to address in the
future is whether using this structure with microphone arrays
would guarantee the convergence in a similar way. In such a
case, one should, for instance, restrict the measurement of
and the linear convolution constraint over the subset of IR’s
from the operator to the microphones of its workstation (i.e.,
subarray acoustic characterization). Possible spectral shaping
effects on output speech may be noticed with this structure.
However, the potential enhancement in speech dereverberation
and noise reduction that large arrays could achieve motivates
our future investigations in this direction.

Finally, the algorithm we proposed for hands-free telephony
in a banker market trading room leaves out several perspec-
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tives regarding its implementation for different applications in
other acoustic environments.

V. CONCLUSION

In this contribution, we proved the identification and
matched filtering of IR’s to be possible and more advantageous
than simple time delay compensation in terms of speech
acquisition (i.e., dereverberation) and noise reduction. With
respect to this conclusion, the algorithm we developed outper-
forms previous techniques based on simple synchronization
of the direct propagation path. It avoids speech distortion
and cancellation, recovers a natural quality of speech, and
efficiently reduces noise.

In an acoustic characterization of the environment, we first
noted that the total energy of IR’s from any location of the
speaker close to a nominal central position to be quite constant
at any frequency component. From this key observation, we
adapted from previous works a signal subspace tracking proce-
dure of propagation vectors to identify IR’s in the frequency
domain. Propagation vectors are simultaneously constrained
to agree witha priori acoustic features by structure forcing.
This improves the performance of the algorithm. The matched
filtering of IR’s instead of time delaying in steering avoids
speech cancellation when applying adaptive beamforming for
optimal speech acquisition and noise reduction.

Among the perspectives we outlined previously, we are at
present planning to incorporate the proposed microphone array
in a full hands-free telephone system. This system should
explicitly use the reference signal provided by the loudspeaker
to improve echo cancellation. Techniques developed in [28]
and [29] can be combined with the proposed scheme. Now this
point is mostly addressed in [32], where an efficient solution
is given for double talk situations. This system should also
handle a mini-teleconference mode, where not only one but
many speakers are free to move around in a room in either the
near field or the far field of the array. Although some issues
are still under investigation, the first experimental results we
obtained are very encouraging.
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