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Geolocation in Mines With an Impulse Response
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Abstract— The location of people, mobile terminals and equip-
ment is highly desirable for operational enhancements in the
mining industry. In an indoor environment such as a mine, the
multipath caused by reflection, diffraction and diffusion on the
rough sidewall surfaces, and the non-line of sight (NLOS) due
to the blockage of the shortest direct path between transmitter
and receiver are the main sources of range measurement errors.
Unreliable measurements of location metrics such as received
signal strengths (RSS), angles of arrival (AOA) and times of
arrival (TOA) or time differences of arrival (TDOA), result in the
deterioration of the positioning performance. Hence, alternatives
to the traditional parametric geolocation techniques have to be
considered. In this paper, we present a novel method for mobile
station location using wideband channel measurement results ap-
plied to an artificial neural network (ANN). The proposed system,
the Wide Band Neural Network-Locate (WBNN-Locate), learns
off-line the location ’signatures’ from the extracted location-
dependent features of the measured channel impulse responses
for line of sight (LOS) and non-line of sight (NLOS) situations.
It then matches on-line the observation received from a mobile
station against the learned set of ’signatures’ to accurately
locate its position. The location accuracy of the proposed system,
applied in an underground mine, has been found to be 2 meters
for 90% and 80% of trained and untrained data, respectively.
Moreover, the proposed system may also be applicable to any
other indoor situation and particularly in confined environments
with characteristics similar to those of a mine (e.g. rough
sidewalls surface).

Index Terms—Indoor geolocation, underground mine, fin-
gerprinting technique, radio propagation parameters, artificial
neural network.

I. INTRODUCTION

Problem of growing importance in indoor environments

is the location of people, mobile terminals and equip-
ment. In underground mines, geolocation with good perfor-
mance is essential in order to improve operational efficiency,
worker’s safety and remote control of mobile equipment. Since
indoor radio channels suffer from extremely serious multipath
and non-line of sight (NLOS) conditions, they have to be
modeled and analyzed appropriately to enable the design
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of radio equipment for geolocation applications. As voice
or data services and geolocation applications have different
performance criteria [1], existing radio channel models are not
fully appropriate for localization purposes. Therefore, different
models and techniques have to be applied to provide adequate
location accuracy.

In traditional wireless geolocation applications, the basic
function of the location system is to gather parametric in-
formation such as received signal strengths (RSS), angles of
arrival (AOA), times of arrival (TOA) or time differences of
arrival (TDOA) about the position of a mobile station (MS)
and process that information to form a location estimate [2]. In
indoor environments where conditions of signal propagation
are severe (multipath, NLOS) and in a mine where the rough
sidewall surfaces also impact these conditions [3], the tradi-
tional parametric geolocation techniques (RSS, AOA, TOA,
TDOA) or their combinations (TDOA with AOA or RSS) fail
to provide adequate location accuracy. For these techniques, all
the paths used for triangulation must have a LOS to ensure
an acceptable accuracy, a condition that is not always met
in an indoor environment. Geolocation based on the received
signals’ fingerprint performs better in such an environment [4]
when appropriate signatures and pattern-matching algorithms
are used.

This paper provides a novel method for mobile station
location using a fingerprinting technique based on wideband
channel measurement results in conjunction with an artificial
neural network (ANN). For the studied underground mine,
results show a distance location accuracy of 2 meters for 90%
and 80% of the trained and untrained patterns, respectively.
In Section II, we discuss the various wireless geolocation
techniques used in indoor environments with their limitations
and advantages. In Section III, we present our proposed
system (WBNN-Locate) and give the position location results
by applying the measured indoor data to an artificial neural
network. Some implementation issues are discussed in Section
IV. Finally, we close this paper with a conclusion in Section
V.

II. INDOOR WIRELESS GEOLOCATION TECHNIQUES

Most of the indoor geolocation applications use a network-
based system architecture in which base stations (BS) or
access points (AP) extract location-dependent parameters or
metrics (RSS, AOA, TOA or TDOA) from the received radio
signals transmitted by the mobile station (MS) and relay the
information to a control station (CS). Then the position of the
user (MS) is estimated and displayed at the CS.
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A. Parametric Geolocation Techniques

In the parametric indoor geolocation techniques, the concept
of the line of position (LOP) with at least two observations
is used in order to obtain a two-dimensional position fix. The
main measurement errors introduced during the extraction of
the location-dependent metrics (RSS, AOA, TOA and TDOA)
are due to the indoor environment. The LOP due to these
errors do not intersect at a point resulting in large estimation
erTors.

In general, the time-based TDOA geolocation technique
is the most popular one and may be combined with other
techniques to improve the location accuracy [5]. The loca-
tion accuracy of current systems which use the time-based
indoor geolocation technique is in the range of 3 meters in
a LOS environment. Results given in section III, show that
the location accuracy obtained by the time-based geolocation
technique applied to the underground mine is not fully sat-
isfactory for safety purposes. Hence, for a non-line of sight
indoor environment alternatives to the parametric geolocation
techniques have to be considered.

B. Fingerprinting Geolocation Techniques

To improve the accuracy of the user’s location in a harsh
environment, the effect of multipath has to be mitigated or
multipath has to be used as constructive information. A radio
frequency signal transmitted from a given geographical MS
location has a distinct pattern by the time it reaches a receiver.
Interference caused by natural or man-made objects causes the
signal to break up into a number of different paths (multipath).
Hence, each location produces a unique ’signature’ pattern
called fingerprint.

The process of geolocation based on the received signals’
fingerprint is composed of two phases: a phase of data
collection called off-line phase and a phase of locating a user
in real-time. The first phase consists of recording a set of
fingerprints in a database as a function of the user’s location
covering the entire zone of interest. During the second phase,
a fingerprint is measured by a receiver and compared with
the recorded fingerprints of the database. A pattern matching
or positioning algorithm is then used to identify the closest
recorded fingerprint to the measured one and hence to infer
the corresponding user’s location (Fig. 1).

To constitute a ’signature’ pattern or a fingerprint, sev-
eral types of information [4] can be used such as RSS,
angular power profile (APP) and power delay profile (PDP)
corresponding to the channel impulse response (CIR). For
high location accuracy, the estimated set of fingerprint in-
formation must be unique and reproducible. Reproducibility
means achieving almost the same estimated set of fingerprint
information in one location for different observation times.
Uniqueness means that the set of fingerprint information in
one location is relatively different from the one in another
location and that there is no aliasing in the signature patterns.

Moreover, several types of pattern-matching algorithms may
be employed which have the objective to give the position of
the mobile station with the weakest location error. Among the
commonly used algorithms, one can find algorithms based on
the measure of proximity, on the cross correlation of signals
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Fig. 1. Operation of the proposed system, a) learning (off-line) phase, b)
recalling (real-time) phase.

and on artificial neural networks (ANN). Due to physical
constraints of indoor environments, the database containing
the set of fingerprint information may not contain all the
necessary fingerprints to cover the entire zone of interest.
Hence, the pattern-matching algorithm must be robust and
respect the generalization property against perturbations and
lack of fingerprint data, respectively. Since an ANN respects
these properties, an architecture based on neural networks has
been used in the proposed geolocation system as the pattern-
matching algorithm.

C. Wireless Geolocation Systems Using the Fingerprinting
Technique

Several geolocation systems using the fingerprinting tech-
nique have been recently deployed in outdoor and indoor
environments. The main differences between these systems
are the types of fingerprint information and pattern matching
algorithms. RADAR [6] is an RF-based system for locating
and tracking users inside buildings. It uses RSS information
gathered at multiple receiver locations to estimate the user’s
coordinates. The system, operating with WLAN technology,
has three access points or fixed stations and covers the
entire zone of interest. A pattern-matching algorithm, which
consists of the nearest neighbor(s) in signal space, is used
to estimate the user’s location. Another system similar to
RADAR, EKAHAU [7], uses RSS information gathered at
multiple receiver locations to perform an indoor positioning
using a WLAN infrastructure. In the framework of Trento
University’s project WILMA (Wireless Internet and Location
Management Architecture), RSS fingerprint information has
been used to estimate user’s location in a building equipped
with a WLAN technology. The pattern-matching algorithm
employed has been an ANN [8] to achieve the generalization
needed when confronted with new data not present in the
training set. RadioCamera (product of US Wireless Corpo-
ration), DCM (Database Correlation Method) [9], [10] and



NERGUIZIAN et al.: GEOLOCATION IN MINES WITH AN IMPULSE RESPONSE FINGERPRINTING TECHNIQUE 605

a third system found in [11] use fingerprinting techniques
to locate and track mobile units in metropolitan outdoor
environments. RadioCamera, operating with a cellular tech-
nology, uses multipath APP gathered at one receiver to locate
the user’s coordinates. A measure of proximity is used as
the pattern-matching algorithm [12]. DCM, operating with
cellular GSM (Global System for Mobile communication) and
UMTS (Universal Mobile Telephone Service) technologies,
uses RSS and CIR measured fingerprint information with a
cross-correlation metric algorithm to perform the localization
process. As a measure of performance, the median resolution
of the location estimation for indoor and outdoor fingerprinting
geolocation systems is reported to be in the range of 2 to 3
meters and 20 to 150 meters, respectively. In Table I, different
geolocation techniques are presented in order to underline and
compare their main features, strengths and weaknesses.

RSS type of information used by RADAR, EKAHAU and
WILMA for indoor environments requires the involvement of
several fixed stations to compute the user’s location. Moreover,
values of RSS can vary greatly for different locations thus
implying a reproducibility concern. Angular power distribution
type of information requires the use of an antenna array and
the need for high angular resolution for indoor geolocation
since the scatterers are around both the transmitter and the
receiver. A set of several characteristics of multipath power
delay profiles or channel impulse responses has the advan-
tage of being reproducible and unique, especially when the
localization is performed on a continuous basis. Therefore,
a signature based on the impulse response of the channel
may give the best location accuracy for an indoor geolocation.
However, its implementation involves the use of a wideband
receiver. On the other hand, the pattern-matching algorithm
used in RADAR and DCM systems may show a lack of
generalization yielding an incorrect output for an unseen input,
a lack of robustness against noise and interference and a long
search time needed for a real-time localization, especially
when the size of the environment or the database is large.
Hence, the use of an artificial neural network as the pattern-
matching is essential since an ANN is robust against noise
and interference, has a good generalization property and the
time of localization during the real-time phase is almost
instantaneous.

To respect the reproducibility, the uniqueness and the gen-
eralization properties, it has been decided to choose location-
dependent parameters extracted from the CIR in conjunction
with an ANN for the geolocation of mobile units in the
considered underground mine.

III. GEOLOCATION IN A MINE USING THE
FINGERPRINTING TECHNIQUE

The proposed geolocation system called WBNN-Locate
is an RF-based system for locating and tracking users in
an indoor mine. It uses the CIR information obtained from
wideband measurements [4] gathered at one receiver to locate
the user’s coordinates with an uplink-network-based approach.
The system which can be operated with different radio access
technologies has one fixed station and covers the entire zone
of interest. A second fixed station can be used as redundancy.
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Fig. 2.

A. Collection of Fingerprint Information (CIR)

Measurements were conducted in an underground gallery
of a former gold mine, the laboratory mine "CANMET" in
Val d’Or, 700 kilometres north of Montreal in the province
of Quebec, Canada. Located at a 40-meter underground level,
the gallery stretches over a length of 75 meters with a width
and height both of approximately 5 meters. Fig. 2 illustrates
the map of the gallery with all its under-adjacent galleries.
Due to the curvature of the gallery, the existence of NLOS
propagation is noted.

The digital photograph given in Fig. 3 shows a part of the
underground gallery. It can be seen from the photograph that
the walls are very rough, the floor is not flat and it contains
some water plaques. It has been found that the roughness of
the sidewall surfaces has a substantial impact on the propaga-
tion characteristics of the channel [3]. A central frequency of
2.4 GHz has been used throughout the measurements in order
to have a compatibility with WLAN systems which may be
used for data, voice and video communications as well as for
radiolocation purposes.

The complex impulse response of the channel has been
obtained using the frequency channel sounding technique.
During the measurements, a vector network-analyzer has per-
formed the transmission and the reception of the RF signal.
The inverse Fourier transform (IFT) has been applied to the
measured complex transfer function of the channel in order
to obtain its impulse response. The chosen frequency band
was centered at 2.4 GHz with a span of 200 MHz corre-
sponding to a theoretical time resolution of 5 nanoseconds.
In practice, due to the use of windowing, the time resolution
is estimated to be around 8 nanoseconds. The sweep time
of the network analyzer has been decreased to validate the
quasi-static assumption of the channel. Each sweep consisted
of 201 complex samples spaced of 1 MHz from each other
giving an unambiguous delay time of 1 microsecond, which
was far beyond the sum of the maximum excess delay for the
studied mining environment and the propagation delay of the
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TABLE I
OVERVIEW OF DIFFERENT GEOLOCATION TECHNIQUES

Minimum Reported
Geolocation Positionning Implication Receiver Bs or AP Accuracy
Technique System Application Algorithm Technology Type Per cell (position error)
RSS Many Outdoor Non linear Cellular Radio Narrowband 3 100m-10km
Parametric Least square
AOA Many Outdoor Geometric Cellular Radio | Beamforming 2 50-150m
Parametric
TOA/TDOA Many Outdoor Non linear Cellular Radio 40-150m
Parametric Least square
3D-iD Indoor Non linear Proprietary Wideband 3 3m
Least square (40 Mcps)
DCM Outdoor Correlation GSM 40-100m
RSS Nearest
Finger- RADAR Indoor Neighbor(s) WLAN Narrowband 3 3m
printing Euclidian
Battiti et al. Indoor ANN WLAN 2m
APP Radio- Nearest
Finger- Camera Outdoor Neighbor(s) AMPS Beamforming 1 50-150m
printing Kullback-Liebler
Cross
DCM Correlation UMTS 20-70m
PDP or CIR Outdoor Nearest Wideband 1
Finger- Nypan et al. Neighbor(s) GSM/UMTS 25-55m
printing Box-Cox
CIR Finger- Possibility
printing WBNN- Indoor ANN of different Wideband 1 1-2m
(Proposed Locate (mine) technologies
System)

Fig. 3.

Digital photograph of the underground gallery.

cable. The wideband experimental procedures [3] were defined
to characterize the relevant parameters of the channel and to
utilize these parameters in order to perform a radiolocation of
workers in the underground gallery. Hence, as a result of the
radiolocation purpose using the fingerprinting technique, the
experimental procedures given in this article are different from
those encountered in previous works. The network analyzer
and the PC were stationed with the receive antenna and the

other receiver components at the predefined referential. The
equipments were tested for a flat response in the measurement
band and calibrated in the presence of the RF cable. The
transmit antenna and the other transmitter components were
moved to different locations within the underground gallery
by varying their position of 0.5 meter widthwise and 1 meter
lengthwise. Six positions distant of 0.5 meter for the gallery
width of 5 meters, seventy positions distant of 1 meter for the
gallery length of 70 meters and some other extra intermediate
positions for the LOS and NLOS cases gave a total of 490
location measurements (Fig. 2). During the measurements,
the mine was empty and the shadowing effects were absent.
Transmit and receive antennas were omni-directional and were
vertically polarized. They were both mounted on carts at a
height of 1.9 meters simulating an antenna placed on the
helmet of a miner.

The complex transfer function was obtained at all 490
measurement locations. For each location, a temporal average
has been performed on a set of ten measurements of different
observation times. The time domain magnitude of the complex
impulse response has been obtained from the measured sam-
ples of the frequency domain response using the inverse fast
Fourier transform (IFFT). From the magnitude of the complex
impulse response seven relevant parameters, namely, the mean
excess delay (7,,), the rms delay spread (7,1,,5), the maximum
excess delay (7,,q2), the total received power (P), the number
of multipath components (N), the power of the first path (P;)
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and the arrival time (delay) of the first path (71) of the channel
have been computed at all 490 measurement locations by using
a predefined threshold of 20 dB for the multipath noise floor
[13]. The first three parameters characterized the time-spread
nature of the indoor channel and the last two parameters gave
an emphasis about the difference between LOS and NLOS
situations. Then, these seven parameters defining the location-
dependent features have been used as the input for the ANN
positioning algorithm. The choice of these parameters was
based on the necessity to have a good reflection of the user’s
location ’signature’ without having an excessive ANN input
vector size to avoid the over-fitting of the ANN during its
training phase. This is why the use of all the CIR magnitude
samples has been ruled out.

B. ANN-Based Pattern-Matching Algorithm

A trained artificial neural network can perform complex
tasks such as classification, optimization, control and func-
tion approximation. The pattern-matching algorithm of the
proposed geolocation system can be viewed as a function
approximation problem consisting of a nonlinear mapping
from a set of input variables containing information about the
relevant parameters of the CIR ( 7y, Trms> Tmazs B N, P1,71)
onto two output variables representing the two dimensional
location (x, y) of the mobile station.

The feed-forward artificial neural networks that can be used
as a function approximation are of two types, Multi-Layer
Perceptron (MLP) networks and Radial Basis Function (RBF)
networks. Either type of the two networks can approximate
any nonlinear mapping to an arbitrary degree of precision
provided the right network complexity is selected [14]. A
specific learning algorithm is associated for each type of the
two networks, which has the role of adjusting the internal
weights and biases of the network based on the minimization
of an error function, and defines the training of the network.
MLP networks can reach globally any nonlinear continuous
function due to the sigmoid basis functions present in the
network. Since these functions are nonzero over an infinitely
large region of the input space, they are capable of achieving
a generalization in regions where no training data are avail-
able. On the other hand, RBF networks can reach the given
nonlinear continuous function only locally because the basis
functions involved cover only small and localized regions.
However, the design of an RBF network is easier and the
learning is faster compared to the MLP network.

A generalized regression neural network (GRNN), which
is an RBF-type network with a slightly different output
layer, and an MLP-type network have been tested for the
proposed geolocation system. The MLP network showed a
higher location error, compared to the GRNN, during the
memorization of the data set. However, it showed a lower
location error during the generalization phase of the network.
Since the generalization property of the system was of greater
importance, the MLP-type network has been chosen for the
pattern-matching algorithm used in the proposed geolocation
system.

The MLP-type ANN, used in the proposed system, con-
sisted of two phases: a supervised learning or training phase
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Set of S s
Received *
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& 3 - error
— Receiver ——— AWN > 2 |
Set of Channel Impulse
Response’s Relevant Parameters
(a)
Specilic Channel Impulse
Received Response’s Relevant Parameters
Signals Estimated user’s location

—» Receiver ——————% ANN —p

(b)

Fig. 4. Operation of the proposed system, a) learning (off-line) phase, b)
recalling (real-time) phase.

and a recalling or testing phase. During the off-line phase,
the MLP network is trained to form a set of fingerprints
as a function of user’s location and acts as a function’s
approximation. Each fingerprint is applied to the input of the
network and corresponds to the channel’s relevant parameters
(Tms Trmss Tmaz> B> N, Pp, 1) extracted from the impulse
response data received by the fixed station. This phase, where
the weights and biases are iteratively adjusted to minimize the
network performance function, is equivalent to the formation
of the database seen with other fingerprinting systems. During
the real-time phase, the aforementioned relevant parameters
from a specific mobile station are applied to the input of the
ANN. The output of the ANN gives the estimated value of
the user’s location (Fig. 4).

It has to be noted that when the size of an ANN is increased,
the number of internal parameters such as the weights and the
biases increases inducing more local and global minima in
the error surface, and making the finding of a global or a
nearly-global minimum by the local minimization algorithm
easier [15]. However, when the size of the ANN is large
or equivalently, when the number of the weights and biases
is large for the selected training set, an over-fitting problem
occurs. It means that the error on the training set is driven
to a very small value, but when new data is presented to
the network, the error is large. This is a case where the
network has memorized (look-up table) the training set, but it
has not learned to generalize to new situations [16]. Hence,
to have a network with a good generalization property, the
size of the network must be chosen just large enough to
provide an adequate fit. A way of improving the generalization
property is the use of a regularization method. The method
modifies the performance function by adding to the mean
sum of squares of the network errors a term that consists
of the mean of the sum of squares of the network weights
and biases. Moreover, to have an automated regularization
where the optimal regularization parameters are determined in
an automated fashion, Bayesian regularization in combination
with Levenberg-Marquardt algorithm may be used [17]. Fi-
nally, properly trained MLP networks tend to give reasonable
answers when presented with inputs that they have never seen
[16]. Typically, a new input will lead to an output similar to
the correct output or target for input vectors used in training
that are similar to the new input being presented. Hence no
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Fig. 5. Proposed pattern-matching ANN.

need to train the network on all possible input/output pairs.

In order to have a good generalization property, the used
MLP architecture consisted of seven inputs corresponding
to the channel’s relevant parameters, one hidden layer and
an output layer with two neurons corresponding to (X, y)
location of the user (Fig.5). A differentiable tan-sigmoid type
of transfer function has been associated for neurons in the
hidden layers and a linear one for the output layer.

The simulation results, obtained with the Neural Network
Toolbox of Matlab [16], showed that ten neurons corre-
sponding to the hidden layer are adequate to achieve the
required nonlinear regression. Special attention has been given
to the ANN’s over-fitting problem to respect the generalization
property (use of the trainbr.m function of Matlab which applies
the Bayesian regularization with the Levenberg-Marquardt
algorithm). Hence, the designed network was robust to per-
turbations at its input such as errors in the measurement
data, and was able to accomplish a generalization rather
than a memorization by providing the right location for an
unseen and non-trained input. Moreover, since an MLP has
an inherent low-pass filter property, it may remove the high
frequency components present in the location-error signal.

With seven inputs, two output neurons and ten hidden
neurons, the total adjustable number of weights and biases was
equal to 102 ([7x10] +[10x2] for the weights, and [10]+[2]
for the biases). This is almost four times smaller than the
total number of the training set, which is equal to 367 and
corresponds to the 75% of the measured wideband data. As
a rule of thumb, to have a good generalization property and
to avoid the memorization of the network, the number of the
patterns in the training set has to be around four times the
number of the internal adjustable ANN parameters. Hence the
use of ten hidden neurons was justified.

It has to be noted that before training, the inputs and the
targets have been scaled or normalized using the premnmx.m
function of Matlab so that they fall in the range [-1, +1].
The outputs of a trained network, having scaled inputs and
targets, will fall in the range of [-1, +1]. To convert these
outputs back into the same units, which were used for the
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original targets, the postmnmx.m function of Matlab has been
used. The normalization of the inputs and targets is essential
for the performance improvement of the ANN optimization
process. Moreover, typical data sets often contain redundant
information or measured values which are highly correlated. It
is useful in this situation to reduce the dimension of the input
vectors by transforming the full set of training examples into a
compressed set that contains only essential information. The
prepca.m function of Matlab has been used to execute this
operation based on the principal component analysis which
performs three tasks: it orthogonalizes the components of
the input vectors (the vectors become uncorrelated with each
other), it orders the resulting orthogonal components or prin-
cipal components so that those with the largest variation come
first, and it eliminates those components which contribute the
least to the variation in the data set [16].

C. Location Estimation Results

The proposed neural network architecture has been designed
using the Neural Network Toolbox of Matlab. In the learning
phase, the seven relevant parameters of the CIR and the
measured true mobile station positions have been used as the
input and as the target of the ANN, respectively. From the
490 measured data, 367 patterns have been employed to train
the network. For the recalling phase, as a first step, the same
367 patterns have been applied to the pattern-matching neural
network to obtain the location of the mobile station. This step
corresponded to the validation of the memorization property.
The location errors as well as their cumulative density func-
tions (CDFs) have been computed for analysis purposes. The
plots of the CDFs of location errors are given in Fig. 6. It has
to be noted that the localization error has been calculated as
the difference between the exact position of the user and the
winning position estimate given by the localization algorithm.
Moreover, by analogy with FCC requirements [18], the CDF
of the location error has been used as the performance measure
of the system.
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For the training set of data, the computed location errors
show a variation in z between -2.9 meters and 4.6 meters
and in y between -1.8 meters and 1.7 meters. The maximum
error in Euclidean distance, between the estimated and the true
positions, is found to be equal to 4.6 meters.

As a second step, the remaining 123 non-trained patterns
have been applied to the network to verify the generalization
property of the proposed geolocation system. The location
errors as well as their cumulative density functions (CDFs)
have been computed and the CDFs of location errors have
been plotted (Fig. 7). For the untrained set of data, computed
results show that the location error in x varies between -3.8
meters and 4.8 meters, the location error in y varies between
-2.6 meters and 2.7 meters. The maximum error in Euclidean
distance, between the estimated and the true positions, is found
to be equal to 4.8 meters.

It can be seen from Fig. 6 and 7 that a distance location
accuracy of 2 meters is found for 90% and 80% of the trained
and untrained patterns, respectively. The location accuracy is
thus far superior to accuracies found in the literature [6]—[8]
for other indoor geolocation processes that use fingerprinting
techniques.

Moreover, the accuracy of the position estimate depends
on the resolution of the map, which in turn depends on the
distance threshold used in the map building process.

First, in order to see the advantage of the fingerprinting
technique compared to the parametric one, data corresponding
to the arrival time of the first path (77) have been used for
localization purposes (range measurement). Secondly, in order
to see the advantage of employing an ANN in an indoor
geolocation system that uses the fingerprinting technique,
three different pattern-matching algorithms (nearest neighbor
minimizing the Euclidean distance, nearest neighbor minimiz-
ing the Box-Cox metric [19] and artificial neural network)
have been used with the same empirical data set (untrained
patterns). The three of the five curves seen in Fig. 8 give
the CDFs of location errors in Euclidean distance (d) for the
involved three pattern-matching algorithms. Only the CDF of
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Fig. 8. Cumulative distribution functions (CDFs) of location errors in d,
using the range measurement technique and the fingerprinting technique with
three positioning algorithms (Euclidean metric, Box-Cox metric and Artificial
neural network).

location errors using the ANN with the trained patterns is
added on the figure since the associated curves for the two
other algorithms are not necessary (their location errors tend to
zero due to the memorization of the two algorithms). It can be
seen that, for the generalization property (the most important
property for the fingerprinting technique), the artificial neural
network works the best giving an error less than 2 meters for
80%, for all the untrained patterns, compared to 68% and
72% for the Euclidean and Box-Cox metrics, respectively.
Although the result of the Box-Cox algorithm is close to the
one achieved by the ANN, its computation time will be higher
when the zone of interest is large. Finally, the fifth curve in
Fig. 8 corresponds to the CDF of location errors using a range
measurement technique based on the time of arrival of the first
path and without using any ANN. The results yield a distance
location accuracy of 2 meters for only 65% of the measured
data. This accuracy is far less than the one achieved with the
proposed fingerprinting technique assessed above.

IV. IMPLEMENTATION ISSUES

In indoor environments, the largest excess delay correspond-
ing to the detectable multipath component is in the order
of 500 nanoseconds [20]. On the other hand, to characterize
the discrete-time impulse response model or equivalently the
multipath power delay profile, a reasonable bin (small time
interval) resolution is needed. The value chosen for a bin
depends on the indoor environment of interest.

The resolution of the measured channel impulse response
depends on the system bandwidth. The effect of a limited
bandwidth is that multiple reflections may end up in the same
time bin on the delay axis, implying the vector combination
of the reflections and yielding a resultant signal large or small
depending on the distribution of phases among the component
waves. This will give rise to a reproducibility problem of the
measured channel impulse responses.

For an efficient operation of the proposed system, it is of
prime necessity to be able to resolve all multipath components
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to obtain the power delay profile or the impulse response
as a function of the user’s location. Hence the radio access
technology used for an effective implementation of the system
must satisfy this requirement (resolution of the multipath
differential delays in the nanosecond range). Several existing
technologies, with some modifications (high-resolution algo-
rithms [21]), are good candidates for such an application. The
most promising technologies found in practice are, mobile
radio systems, impulse radio systems [22], [23] and WLAN
systems [24]. The choice of the wideband receiver technology
and its implementation depend on the specific application and
is still an open area of research.

Moreover, an important issue in the proposed geolocation
system is the synchronization between the transmitter and the
receiver as well as the choice of multiple-access technique,
e.g. Time Division Multiple Access - TDMA, Code Division
Multiple Access -CDMA and Carrier Sense Multiple Access
- CSMA to support the simultaneous localization of several
mobile stations. WLAN-based systems with CSMA tend to
be more cost-effective than CDMA and TDMA but issues
may arise with respect to the continuous channel access and
handoff capabilities for WLANSs.

V. CONCLUSIONS

This paper has shown that a fingerprinting technique using
the channel’s impulse response information in conjunction
with an artificial neural network is a novel approach for
geolocation in mines or other confined environments with
rough sidewall surfaces. The technique exhibits superior repro-
ducibility properties compared to other two main fingerprint
information (RSS and APP) based techniques.

The use of an artificial neural network as a pattern-matching
algorithm for the proposed system is a new approach that has
the advantage of giving a robust response with a generalization
property (the location fingerprint does not have to be in
the fingerprint database). Moreover, since the training of
the ANN is off-line, there are no convergence and stability
problems that some control (real-time) applications encounter.
The transposition of the system from two to three dimensions
is an important issue that will be investigated in the near
future.

The proposed fingerprinting technique used for the geolo-
cation of the studied mine, gave an accurate mobile-station
location. The results showed that a distance location accuracy
of 2 meters has been found for 90% and 80% of the trained
and untrained patterns, respectively. This location accuracy is
improved with respect to the one reported in the literature [6]—
[8] for indoor geolocation using fingerprinting techniques.

On the other hand, the fingerprinting technique needs the
digital map of the environment and is not well suited for
dynamic areas. Heavy machinery or moving objects may
considerably change the properties of the channel, requiring
an update of the database’s information (a new training of
the neural network). This channel variation issue can be
addressed by using a master neural network. After detecting
the changes in the channel’s properties, the system identifies
the specific situation (channel state) via a scanning process
and activates the trained neural network corresponding to this
specific situation.

As indicated previously, this novel method may also be
applicable to any other indoor applications (shopping centers,
campuses, office buildings). In addition, some advanced sim-
ulation programs may be used to generate impulse responses
as a function of user’s location (for the training set of data of
the neural network) instead of getting these impulse responses
via wideband measurements. If the generated CIRs are close
to the measured ones, this approach will reduce the database
generation time for the proposed geolocation system and
would facilitate the proposed system’s implementation.
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