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Abstract—The estimation of the direction-of-arrival (DOA) of
one or more acoustic sources is an area that has generated much
interest in recent years, with applications like automatic video
camera steering and multiparty stereophonic teleconferencing
entering the market. DOA estimation algorithms are hindered by
the effects of background noise and reverberation. Methods based
on the time-differences-of-arrival (TDOA) are commonly used
to determine the azimuth angle of arrival of an acoustic source.
TDOA-based methods compute each relative delay using only two
microphones, even though additional microphones are usually
available. This paper deals with DOA estimation based on spatial
spectral estimation, and establishes the parameterized spatial cor-
relation matrix as the framework for this class of DOA estimators.
This matrix jointly takes into account all pairs of microphones,
and is at the heart of several broadband spatial spectral estima-
tors, including steered-response power (SRP) algorithms. This
paper reviews and evaluates these broadband spatial spectral esti-
mators, comparing their performance to TDOA-based locators. In
addition, an eigenanalysis of the parameterized spatial correlation
matrix is performed and reveals that such analysis allows one to
estimate the channel attenuation from factors such as uncalibrated
microphones. This estimate generalizes the broadband minimum
variance spatial spectral estimator to more general signal models.
A DOA estimator based on the multichannel cross correlation
coefficient (MCCC) is also proposed. The performance of all
proposed algorithms is included in the evaluation. It is shown that
adding extra microphones helps combat the effects of background
noise and reverberation. Furthermore, the link between accurate
spatial spectral estimation and corresponding DOA estimation
is investigated. The application of the minimum variance and
MCCC methods to the spatial spectral estimation problem leads
to better resolution than that of the commonly used fixed-weighted
SRP spectrum. However, this increased spatial spectral resolution
does not always translate to more accurate DOA estimation.

Index Terms—Circular arrays, delay-and-sum beamforming
(DSB), direction-of-arrival (DOA) estimation, linear spatial predic-
tion, microphone arrays, multichannel cross correlation coefficient
(MCCC), spatial correlation matrix, time delay estimation.

I. INTRODUCTION

PROPAGATING signals contain much information about
the sources that emit them. Indeed, the location of a signal

source is of much interest in many applications, and there exists
a large and increasing need to locate and track sound sources.
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For example, a signal-enhancing beamformer [1], [2] must con-
tinuously monitor the position of the desired signal source in
order to provide the desired directivity and interference sup-
pression. This paper is concerned with estimating the direc-
tion-of-arrival (DOA) of acoustic sources in the presence of sig-
nificant levels of both noise and reverberation.

The two major classes of broadband DOA estimation
techniques are those based on the time-differences-of-arrival
(TDOA) and spatial spectral estimators. The latter terminology
arises from the fact that spatial frequency corresponds to the
wavenumber vector, whose direction is that of the propagating
signal. Therefore, by looking for peaks in the spatial spectrum,
one is determining the DOAs of the dominant signal sources.

The TDOA approach is based on the relationship between
DOA and relative delays across the array. The problem of es-
timating these relative delays is termed “time delay estimation”
[3]. The generalized cross-correlation (GCC) approach of [4],
[5] is the most popular time delay estimation technique. Alter-
native methods of estimating the TDOA include phase regres-
sion [6] and linear prediction preprocessing [7]. The resulting
relative delays are then mapped to the DOA by an appropriate
inverse function that takes into account array geometry.

Even though multiple-microphone arrays are commonplace
in time delay estimation algorithms, there has not emerged a
clearly preferred way of combining the various measurements
from multiple microphones. Notice that in the TDOA approach,
the time delays are estimated using only two microphones at a
time, even though one usually has several more sensor outputs at
one’s disposal. The averaging of measurements from indepen-
dent pairs of microphones is not an optimal way of combining
the measurements, as each computed time delay is derived from
only two microphones, and thus often contains significant levels
of corrupting noise and interference. It is thus well known that
current TDOA-based DOA estimation algorithms are plagued
by the effects of both noise and especially reverberation.

To that end, Griebel and Brandstein [8] map all “realizable”
combinations of microphone-pair delays to the corresponding
source locations, and maximize simultaneously the sum (across
various microphone pairs) of cross-correlations across all pos-
sible locations. This approach is notable, as it jointly maximizes
the results of the cross-correlations between the various micro-
phone pairs.

The spatial spectral estimation problem is well defined in the
narrowband signal community. There are three major methods:
the steered conventional beamformer approach (also termed
the “Bartlett” estimate), the minimum variance estimator (also
termed the “Capon” or maximum-likelihood estimator), and
the linear spatial predictive spectral estimator. Reference [9]

1558-7916/$25.00 © 2007 IEEE



1328 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 15, NO. 4, MAY 2007

provides an excellent overview of these approaches. These
three approaches are unified in their use of the narrowband
spatial correlation matrix, as outlined in the next section.

The situation is more scattered in the broadband signal
case. Various spectral estimators have been proposed, but there
does not exist any common framework for organizing these
approaches. The steered conventional beamformer approach
applies to broadband signals. The delay-and-sum beamformer
(DSB) is steered to all possible DOAs to determine the DOA
which emits the most energy. An alternative formulation of
this approach is termed the “steered-response power” (SRP)
method, which exploits the fact that the DSB output power may
be written as a sum of cross-correlations. The computational
requirements of the SRP method are a hindrance to practical
implementation [8]. A detailed treatment of steered-beam-
former approaches to source localization is given in [10], and
the statistical optimality of the approach is shown in [11]–[13].
Krolik and Swingler develop a broadband minimum variance
estimator based on the steered conventional beamformer [14],
which may be viewed as an adaptive weighted SRP algorithm.
There have also been approaches that generalize narrowband
localization algorithms (i.e., MUSIC [15]) to broadband sig-
nals through subband processing and subsequent combining
(see [16], for example). A broadband linear spatial predictive
approach to time delay estimation is outlined in [17] and [18].
This approach, which is limited to linear array geometries,
makes use of all the channels in a joint fashion via the time
delay parameterized spatial correlation matrix.

This paper attempts to unify broadband spatial spectral esti-
mators into a single framework and compares their performance
from a DOA estimation standpoint to TDOA-based algorithms.
This unified framework is the azimuth parameterized spatial
correlation matrix, which is at the heart of all broadband spa-
tial spectral estimators.

In addition, several new ideas are presented. First, due to
the parametrization, well-known narrowband array processing
notions [19] are applied to the DOA estimation problem, gen-
eralizing these ideas to the broadband case. A DOA estimator
based on the eigenanalysis of the parameterized spatial corre-
lation matrix ensues. More importantly, it is shown that this
eigenanalysis allows one to estimate the channel attenuation
from factors such as uncalibrated microphones. The existing
minimum variance approach to broadband spatial spectral esti-
mation is reformulated in the context of a more general signal
model which accounts for such attenuation factors. Further-
more, the ideas of [17] and [18] are extended to more general
array geometries (i.e., circular) via the azimuth parameterized
spatial correlation matrix, resulting in a minimum entropy DOA
estimator.

Circular arrays (see [20]–[22], for example) offer some ad-
vantages over their linear counterparts. A circular array provides
spatial discrimination over the entire 360 azimuth range, which
is particularly important for applications that require front-to-
back signal enhancement, such as teleconferencing. Further-
more, a circular array geometry allows for more compact de-
signs. While the contents of this paper apply generally to planar
array geometries, the circular geometry is used throughout the
simulation portion.

Fig. 1. Circular array geometry.

Section II presents the signal propagation model in planar
(i.e., circular) arrays and serves as the foundation for the re-
mainder of the paper. Section III reviews the role of the tradi-
tional, nonparameterized spatial correlation matrix in narrow-
band DOA estimation, and shows how the parameterized ver-
sion of the spatial correlation matrix allows for generalization
to broadband signals. Section IV describes the existing and pro-
posed broadband spatial spectral estimators in terms of the pa-
rameterized spatial correlation matrix. Section V outlines the
simulation model employed throughout this paper and evaluates
the performance of all spatial spectral estimators and TDOA-
based methods in both reverberation- and noise-limited envi-
ronments. Concluding statements are given in Section VI.

The spatial spectral estimation approach to DOA estimation
has limitations in certain reverberant environments. If an inter-
fering signal or reflection arrives at the array with a higher en-
ergy than the direct-path signal, the DOA estimate will be false,
even though the spatial spectral estimate is accurate. Such situ-
ations arise when the source is oriented towards a reflective bar-
rier and away from the array. This problem is beyond the scope
of this paper and is not addressed herein. Rather, the focus of
this paper is on the evaluation of spatial spectral estimators in
noisy and reverberant environments and on their application to
DOA estimation.

II. SIGNAL MODEL

Assume a planar array of elements in a 2-D geom-
etry, shown in Fig. 1 (i.e., circular geometry), whose outputs
are denoted by , , where is the time index.
Denoting the azimuth angle of arrival by , propagation of the
signal from a far-field source to microphone is modeled as:

(1)

where , , are the attenuation factors due to
channel effects, is the propagation time, in samples, from the
unknown source to microphone 0, is an additive noise
signal at the th microphone, and , , is the



DMOCHOWSKI et al.: DIRECTION OF ARRIVAL ESTIMATION USING THE PARAMETERIZED SPATIAL CORRELATION MATRIX 1329

relative delay between microphones 0 and . In matrix form, the
array signal model becomes:

...

. . .
...

...
...

. . .
. . .

...

...

(2)

The function relates the angle of arrival to the relative delays
between microphone elements 0 and , and is derived for the case
of an equispaced circular array in the following manner. When
operating in the far-field, the time delay between microphone
and the center of the array is given by [23]

(3)

where the azimuth angle (relative to the selected angle refer-
ence) of the th microphone is denoted by ,

, denotes the array radius, and is the speed of signal
propagation. It easily follows that

(4)

It is also worth mentioning that the additive noise may
be temporally correlated with the desired signal . In that
case, a reverberant environment is modeled. The anechoic en-
vironment is modeled by making the additive noise temporally
uncorrelated with the source signal. In either case, the additive
noise may be spatially correlated across the sensors.

It should also be stated that the signal model presented above
makes use of the far-field assumption, in that the incoming wave
is assumed to be planar, such that all sensors perceive the same
DOA. An error is incurred if the signal source is actually lo-
cated in the near-field; in that case, the relative delays are also
a function of the range. In the most general case (i.e., a source
in the near-field of a 3-D geometry), the function takes three
parameters: the azimuth, range, and elevation. This paper fo-
cuses on a specific subset of this general model: a source located
in the far-field with only a slight elevation, such that a single
parameter suffices. This is commonly the case in a teleconfer-
encing environment. Nevertheless, the concepts of this paper,

although presented in far-field planar context, easily generalize
to the near-field spherical case by including the range and ele-
vation in the forthcoming parametrization.

III. PARAMETERIZED SPATIAL CORRELATION MATRIX

In narrowband signal applications, a common space-time
statistic is that of the spatial correlation matrix [19], which is
given by

(5)

where

(6)

the superscript denotes conjugate transpose, as complex sig-
nals are commonly used in narrowband applications, and de-
notes the transpose of a matrix or vector. To steer these array
outputs to a particular DOA, one applies a complex weight to
each sensor output, whose phase performs the steering, and then
sums the sensor outputs to form the output beam. Now, if the
input signal is no longer narrowband, each frequency requires
its own complex weight to appropriately phase-shift the signal
at that frequency. In the context of broadband spatial spectral
estimation, the spatial correlation matrix may be computed at
each temporal frequency, and the resulting spatial spectrum is
now a function of the temporal frequency. For broadband appli-
cations, these narrowband estimates may be assimilated into a
time-domain statistic, a procedure termed “focusing,” which is
described in [24]. The resulting structure is termed a “focused
covariance matrix.”

In this paper, broadband spatial spectral estimation is
addressed in another manner. Instead of implementing the
steering delays in the complex weighting at each sensor, the
delays are actually implemented as a time-delay in the spatial
correlation matrix, which is now parameterized. Thus, each
microphone output is appropriately delayed before computing
this parameterized spatial correlation matrix:

(7)

and real signals are assumed from this point on. The delays are
a function of the assumed azimuth DOA, which becomes the
parameter. The parameterized spatial correlation matrix is for-
mally written as shown by (8) and (9) at the bottom of the page.
The matrix is not simply the array observation matrix, as is
commonly used in narrowband beamforming models. Instead, it
is a parameterized correlation matrix that represents the signal

(8)

...
...

. . .
...

(9)
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powers across the array emanating from azimuth . Each off-di-
agonal entry in the matrix is a single cross-correlation term
and a function of the azimuth angle . Notice that the various
microphone pairs are combined in a joint fashion, in that altering
the steering angle affects all off-diagonal entries of . This
property allows for the more prudent combining of microphone
measurements as compared to the ad hoc method of averaging
independent pairs of cross-correlation results.

This paper relates broadband spatial spectral estimators in
terms of the parameterized spatial correlation matrix

(10)

where is some estimation function, is the steered azimuth
angle, and is the estimate of the broadband spatial spec-
trum at azimuth angle .

The DOA estimate follows directly from the spatial spectrum,
in that peaks in the spectrum correspond to assumed source
locations. For the case of a single source, which is the case
throughout this paper, the estimate of the source’s DOA is given
by

(11)

where is the DOA estimate.
Note that this broadband extension is not without caveats:

care must be taken when spacing the microphones to ensure that
spatial aliasing [2] does not result.

It is also important to point out that the GCC method is quite
compatible with DOA estimation based on the parameterized
spatial correlation matrix—the cross-correlation estimates that
comprise the matrix may be computed in the frequency-domain
using a GCC variant such as the phase transform (PHAT) [4].
This paper focuses on how to extract the DOA estimate from the
parameterized spatial correlation matrix; the ideas presented are
general in that they do not hinge on any particular method for
computing the actual cross correlations.

IV. BROADBAND SPATIAL SPECTRAL ESTIMATORS

The following subsections detail the existing and proposed
broadband spatial spectral estimation methods, relating each to
the parameterized spatial correlation matrix.

A. Steered Conventional Beamforming and the SRP Algorithm

The aim of a DSB is to time-align the received signals in
the array aperture, such that the desired signal is coherently
summed, while signals from other directions are incoherently
summed and thus attenuated. Using the model of Section II, the
output of a DSB steered to an angle of arrival of is given as

(12)

The delays steer the beamformer to the desired DOA,
while the beamformer weights help shape the beam accord-
ingly. The weights here have been made dependent on the de-
sired angle of arrival , for a reason that will become apparent
in future subsections. In (12), the received signals are delayed

[or advanced, depending on the sign of ], by an amount
that takes into account the array geometry, via the function .

The estimate of the spatial spectral power at azimuth angle
is given by the power of the beamformer output when steered to
azimuth . Therefore, to form the entire spectrum, one needs to
steer the beam and compute the output power across the entire
azimuth space.

The steered-beamformer spectral estimate is given by

(13)

Substitution of (12) into (13) leads to

(14)

Expression (14) may be written more neatly in matrix notation
as

(15)

where

(16)

The DOA estimate is thus given by

(17)

The maximization of a steered beamformer output power is
equivalent to maximizing a quadratic of the beamformer weight
vector with respect to the angle of arrival. Altering the angle
affects the parameter in the quadratic form, namely, the param-
eterized spatial correlation matrix.

The well-known SRP algorithm [10] follows directly from a
special case of (17), where for all , and is a vector
of ones:

(18)

For this special case of fixed unit weights, this means that the
maximization of the power of a steered DSB is equivalent to the
maximization of the sum of the entries of .

The SRP algorithm has garnered significant attention re-
cently: see [10], [25], and [26]. In all of these implementations,
the weighting of is used, which is fixed with respect
to both the data and the steering angle. Given the well-known
classical results on the advantages of adaptive beamforming
over fixed beamforming, it is therefore surprising that adaptive
weighting schemes have not been investigated more in the
context of DOA estimation based on the parameterized spatial
correlation matrix (A fixed weighting scheme is proposed in
[27]). Notice that from (15), this is an effectively “narrowband”
weight selection, in that the pre-aligning of the microphones
requires only the selection of a single weight per channel. Note,
however, that this weight selection must be performed for all
angles . To that end, the following section presents one such
adaptive weighting scheme, proposed by Krolik [14].
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B. Minimum Variance

The minimum variance approach to spatial spectral esti-
mation involves selecting weights that pass a signal [i.e., a
broadband plane wave ] propagating from azimuth with
unity gain, while minimizing the total output power, given by

. The application of the minimum variance method
to broadband spatial spectral estimation is given in [14].

The unity gain constraint proposed by [14] is

(19)

and the vector follows from the fact that the signal is already
time-aligned across the array before minimum variance pro-
cessing. It is as if the signal is coming from the broadside of
a linear array.

Using the method of Lagrange multipliers in conjunction with
the cost function , the minimum variance weights
become

(20)

The resulting minimum variance spatial spectral estimate is
found by substituting the weights of (20) into the cost function:

(21)

The broadband minimum variance DOA estimator is thus given
by

(22)

The next section presents a new idea: the eigenanalysis of the
parameterized spatial correlation matrix.

C. Eigenanalysis of the Parameterized Spatial Correlation
Matrix

Using the signal model of Section II, notice that when the
steered azimuth matches the actual azimuth , the parameter-
ized spatial correlation matrix may be decomposed into signal
and noise components in the following manner:

(23)

where is the signal power

(24)

and

(25)

Note that it has been implicitly assumed that the desired signal is
wide-sense stationary, zero-mean, and temporally uncorrelated
with the additive noise. Consider only the signal component of

. It may be easily shown that this matrix has one nonzero
eigenvector, that eigenvector being , with the corresponding
eigenvalue being . The vector of attenuation constants

is generally unknown; however, from the above discussion, it

is apparent that the vector may be estimated from the eigenanal-
ysis of .

To that end, consider another adaptive weight selection
method, which follows from the ideas of narrowband beam-
forming [19]. This weight selection attempts to nontrivially
maximize the output energy of the steered-beamformer for a
given azimuth

(26)

subject to

(27)

It is well known that the solution to the above constrained opti-
mization is the vector that maximizes the Rayleigh quotient [2]

, which is in turn given by the eigenvector
corresponding to the maximum eigenvalue of . The resulting
spatial spectral estimate is given by

(28)

where is the maximum eigenvalue of , and is
the corresponding eigenvector. The DOA estimation involves
searching for the angle that produces the largest maximum
eigenvalue of :

(29)

In addition to producing another spatial spectrum estimate, the
above eigenanalysis allows one to estimate:

(30)

Now that an estimate of the attenuation vector is available,
the minimum variance method of [14] may be improved to re-
flect the presence of channel attenuation factors, which were
omitted in the developments of Section IV-B.

D. Improved Minimum Variance

The broadband minimum variance spatial spectral estimation
proposed by [14] assumes that the attenuation vector is equal
to , or a scaled version of . In practice, it is not uncommon
for this assumption to be violated by factors such as uncalibrated
microphones, for example. To that end, the unity gain constraint
proposed by [14] is modified to reflect the more general signal
model of Section II.

Taking into account the channel attenuation vector , the pro-
posed unity gain constraint is

(31)

which may be simplified and written in vector notation as

(32)

Therefore, the optimal minimum variance weights become

(33)
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The resulting proposed minimum variance spatial spectral esti-
mate is found by substituting the weights of (33) into the cost
function

(34)

The proposed broadband minimum variance DOA estimator is
thus given by

(35)

E. Linear Spatial Prediction and the Multichannel
Cross-Correlation Coefficient

Spatial spectral estimation using linear prediction is well de-
fined for the case of narrowband signals, as the narrowband as-
sumption allows one to write one of the microphone outputs as a
complex-weighted linear combination of the other microphone
outputs [2]. To extend this idea to the broadband case, the same
method as that of the previous sections is used, in that the time
delay is applied prior to computing the predictive coefficients.

This concept was first presented in [17] and [18] in the con-
text of time delay estimation; the approach was limited to linear
array geometries, and yielded only a single relative delay. This
section generalizes the idea to planar array geometries, trans-
forming the problem from time delay estimation to DOA esti-
mation.

The idea is to predict, using real predictive coefficients, the
output of using a linear combination of ,

. Using a spatial autoregressive (AR) model, the
linear predictive framework is given by

(36)

where may be interpreted as either the spatially white noise
that drives the AR model, or the prediction error. For each in
the azimuth space, one finds the weight vector

(37)

which minimizes the criterion

(38)

subject to the constraint

(39)

where

(40)

Using the method of Lagrange multipliers, the optimal predic-
tive weights are given by

(41)

and the resulting minimum mean-squared error (mmse) is

(42)

Note that both the optimal predictive coefficients and the mmse
are a function of the steered angle .

The classical approach to spectral estimation using linear pre-
diction is to map the optimal predictive coefficients to an AR
transfer function. However, it is well known that this method
is very sensitive to the presence of additive noise in the obser-
vations [2]. This is because the AR model breaks down when
additive noise is present. To that end, a more robust implemen-
tation of linear spatial prediction is proposed in [17] and [18].
The idea is to not estimate an AR spectrum, but rather to find the
parameter (i.e., the angle ) that minimizes the prediction error.

In [17] and [18], the idea of linear spatial prediction was used
to derive the (time delay parameterized) multichannel cross cor-
relation coefficient (MCCC) in the context of linear array time
delay estimation. These ideas are now extended to planar array
geometries, and the azimuth angle-parameterized MCCC is pre-
sented as another broadband spatial spectral estimator.

The matrix may be factorized as [17], [18]:

(43)

where

...
. . .

. . .
...

(44)
is a diagonal matrix

...
. . .

. . .
...

(45)

is a symmetric matrix, and

(46)
is the cross-correlation coefficient between and

.
The azimuth-angle dependent mmse may be written using

(43) as

(47)
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where is the submatrix formed by removing the first row
and column from , and stands for “determinant.” It is
shown in [17] and [18] that

(48)

and thus the following relationship is established:

(49)

From this relationship, it is easily observed that minimizing
the spatial prediction error corresponds to minimizing the quan-
tity . Notice that when every entry of

is equal to unity (i.e., perfectly correlated microphone sig-
nals). Conversely, in the case of mutually uncorrelated micro-
phone outputs, . Putting all of this together, the
azimuth angle parameterized MCCC is defined as

(50)

The MCCC broadband spatial spectral estimate is given by

(51)

from which the DOA estimation easily follows as

(52)

It is interesting to note that even though the linear spatial pre-
dictive approach is used here to arrive at the azimuth parame-
terized MCCC estimator, maximizing the MCCC actually cor-
responds more closely to the minimization of the joint entropy
of the received signals [28], assuming that the signals are jointly
Gaussian distributed. This follows from the fact that for jointly
Gaussian distributed , the joint entropy of is directly
proportional to [28].

V. SIMULATION EVALUATION

A. Simulation Environment

The various broadband spatial spectral estimators are eval-
uated in a computer simulation. An equispaced circular array
of three to ten omnidirectional microphones is employed as the
spatial aperture. The radius of the array is chosen as the distance
that fulfills the spatial aliasing equality for circular arrays. In
other words, the array radius is made as large as possible without
suffering from spatial aliasing [23]

(53)

where denotes the highest frequency of interest, and is
chosen to be 4 kHz in the simulations. For a ten-element cir-
cular array, the array radius becomes 6.9 cm. The signal sources
are omnidirectional point sources. This means that the direct-

path component is stronger than any individual reflected com-
ponent—as mentioned in the Introduction, it is beyond the scope
of this paper to handle cases where due to source directivity and
orientation, a reflected component contains more energy than
the direct-path component.

A reverberant acoustic environment is simulated using the
image model method [29]. The simulated room is rectangular
with plane reflective boundaries (walls, ceiling, and floor). Each
boundary is characterized by a frequency-independent uniform
reflection coefficient which does not vary with the angle of in-
cidence of the source signal.

The room dimensions in centimeters are (304.8, 457.2, 381).
The circular array is located in the center of the room: the center
of the array sits at (152.4, 228.6, 101.6). Two distinct scenarios
are simulated, as described below.

The speaker is immobile and situated at (254, 406.4, 101.6)
and (254, 406.4, 152.4) in the first and second simulation
scenarios, respectively. The immobility of the source means
that the evaluation does not consider frames during which the
source exhibits movement. The correct azimuth angle of arrival
is 60 . The distance from the center of the array to the source
is 204.7 cm.

The SNR at the microphone elements is 0 dB. Here, SNR
refers to spatially white sensor noise in the first scenario and
spherically isotropic (diffuse) noise in the second scenario. The
generation of spherically isotropic noise is performed by trans-
forming a vector of uncorrelated Gaussian random variables into
a vector of correlated (i.e., according to a given covariance ma-
trix) Gaussian random variables by premultiplying the original
(uncorrelated) vector with the Cholesky factorization [30] of
the covariance matrix of a diffuse noise field [2]. The covari-
ance matrix of the diffuse noise field is computed by averaging
over the entire frequency range (300–4000 Hz). For the compu-
tation of the SNR, the signal component includes reverberation.
In terms of reverberation, three levels are simulated for each sce-
nario: anechoic, moderately reverberant, and highly reverberant.
The reverberation times are measured using the reverse-time in-
tegrated impulse response method of [31]. The frequency-inde-
pendent reflection coefficients of the walls and ceiling are ad-
justed to achieve the desired level of reverberation: a 60-dB re-
verberation decay time of 300 ms for the moderately reverberant
case, and 600 ms for the highly reverberant case.

In the first simulation scenario, the microphones are all per-
fectly calibrated with unity gains. In the second simulation sce-
nario, the presence of uncalibrated microphones is simulated,
by setting , to a uniformly distributed random
number over the range (0.2, 1).

The source signal is convolved with the synthetic impulse re-
sponses. Appropriately scaled temporally white Gaussian noise
is then added at the microphones to achieve the required SNR.
The microphone outputs are filtered to the 300–4000-Hz range
prior to processing.

Two signal types are examined for each scenario: stationary
white Gaussian noise and nonstationary female English speech.
The DOA estimates are computed once per 128-ms frame. To
achieve good angular resolution, the sampling rate is chosen to
be 48 kHz, resulting in frames of samples each. A
simulation run consists of frames.
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Throughout the simulations, the parameterized spatial corre-
lation matrix is estimated once per frame by time-averaging

(54)

where is the time-averaged estimate of the correlation ma-
trix . For all algorithms, the spatial spectrum is estimated
every degree over the range (0, 359) degrees.

The planar signal model assumed in Section II results in ele-
vation ambiguity in a three-dimensional environment. The sim-
ulations do not take elevation into account, even though the
height of the source (i.e., 1.52 m) does not equal the height of
the planar array (i.e., 1.02 m) in the second simulation scenario.
Notice that in a teleconferencing environment, the sources are
commonly only slightly elevated compared to the array.

B. Performance Criteria

The estimated spatial spectra are plotted to observe mainlobe
width and background values. These spectra are averaged over
the frames and normalized such that the peak of the averaged
spectrum is 0 dB.

For each simulation, the algorithms are also evaluated from
a DOA estimation standpoint using the percentage of anoma-
lies (estimates that differ from the actual angle of arrival by
more than 5 ), and root-mean-square (rms) error measure for
the nonanomalous estimates

(55)

where is the set of all nonanomalous estimates, is the
number of elements in , and the prime operator is included
to take into account the cyclicity of the angular space

if

if
(56)

C. TDOA Comparison Algorithm

The DOA estimation performance of the broadband spatial
spectral estimators is compared to that of a standard two-step
TDOA algorithm which consists of computing unweighted
cross correlations in the first-step, and least-squares DOA
estimation (translation of relative delays to DOA) in the second
step. Formally, the algorithm computes the time delay between
microphone 0 and microphone for as

(57)

and then translates these relative delays to the azimuth angle of
arrival using the least-squares criterion [32], [33]

(58)

Fig. 2. SRP spatial spectral estimates for simulation scenario 1, with speech
signal and moderate reverberation.

The computational requirements of TDOA-based algorithms
are lower than that of the methods presented in this paper. Note
that both approaches (TDOA-based and spectral estimation-
based) use the cross-correlation measurements for each micro-
phone pair and these cross correlations are computed over the
range of physically realizable relative delays. The difference
between the approaches lies in the manner in which these
measurements are utilized. TDOA-based approaches simply
compute the lag which produces the peak in cross correla-
tion for each microphone pairing and use these optimal lags
to arrive at an estimate of the DOA via an intersection or
least-squares procedure. On the other hand, spatial spectral
estimaton-based methods use all cross-correlation measure-
ments (i.e., not just the peak values and their lag arguments)
to form the parameterized spatial correlation matrix at each
DOA, followed by a search procedure over the DOA space
that identifies the peak in the spectrum. The computational re-
quirements of this search process are a disadvantage of spatial
spectral-based methods.

D. Discussion

Consider first Figs. 2–5. From these figures, it is evident
that adding extra microphones improves the resolution of all
broadband spatial spectra. The main lobe is narrowed, and the
background level, which corresponds to the power of the re-
verberant field, is lowered. Thus, it is inferred that the addition
of microphones combats the effects of reverberation as well as
noise. A lower reverberant field level decreases the probability
of anomalies.

From Figs. 6–8, it is evident that the MCCC spatial spectral
estimate provides the narrowest main lobe and lowest back-
ground level. As the level of reverberation increases, however,
the resolution gain of the MCCC method decreases. As the
microphones are calibrated in scenario 1, the MV and MV’
methods yield very similar spatial spectra, which are only
slightly below that of the SRP spectrum—the difference is
slight because in a spatially white noise field, the minimum
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Fig. 3. Minimum variance (MV) spatial spectral estimates for simulation sce-
nario 1, with speech signal and moderate reverberation.

Fig. 4. Eigenvalue spatial spectral estimates for simulation scenario 1, with
speech signal and moderate reverberation.

variance weights of (20) and (33) are simply uniform (as in
the SRP spectrum). Notice also that for a spatially white noise
field, parametrization of the matrix does not alter the noise
statistics: the time-shifting alters the off-diagonal elements
only, which are all equal to zero with or without time-aligning.
The eigenvalue spectrum offers the poorest resolution; however,
the main idea behind the eigenanalysis of is to provide
an estimate of , not to act as a spatial spectral estimator.
Nevertheless, the eigenvalue spectrum may be thought of as an
“intermediate” spectrum.

Consider now the spatial spectral estimates from the second
simulation scenario, shown in Figs. 9–11. First of all, it is ev-
ident that Krolik’s minimum variance method [14] fails in the
presence of uncalibrated microphones—in fact, the “minimum
variance” spectrum actually shows a higher background level
than the SRP spectrum. The mismatch in the steering vector

Fig. 5. MCCC spatial spectral estimates for simulation scenario 1, with speech
signal and moderate reverberation.

Fig. 6. Spatial spectral estimates for simulation scenario 1, with speech signal
and no reverberation.

leads to serious spectral distortion. The proposed minimum
variance method, which utilizes the eigenvalue method’s esti-
mate of , rectifies this problem, as the improved minimum
variance (MV’) spectrum is clearly “minimum variance.” How-
ever, it is rather disappointing to note that even in a diffuse
noise field, the resolution gain of the MV’ spectrum over the
SRP spectrum is quite small. This may seem even more sur-
prising given classical results from beamforming theory, which
note the great advantage of minimum variance distortionless
response (MVDR) beamformers over fixed beamformers. The
reason for this small gain stems from the nature of the extension
from narrowband to broadband via the parametrization of .
Consider only the noise component of —it is very easy
to show that after the time-alignment (i.e., parametrization),
the off-diagonal elements of the diffuse noise matrix become
decorrelated, and approximates the identity matrix if the
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Fig. 7. Spatial spectral estimates for simulation scenario 1, with speech signal
and moderate reverberation.

Fig. 8. Spatial spectral estimates for simulation scenario 1, with speech signal
and heavy reverberation.

diffuse noise is temporally white (which is often the case with
diffuse noise):

(59)

where is the noise variance, and is the identity matrix. The
equation above holds strictly for circular arrays, but not linear
arrays. When steering to the broadside of a linear array, there
is no time-alignment necessary, and thus the spatial correlation
of the diffuse noise remains. Due to the spatial decorrelation
created by the parametrization, the weights of (33) are approxi-
mately equal to

(60)

The minimum variance coefficients vary only to the extent of
the nonuniformity of the attenuation factors, and thus the MV’

Fig. 9. Spatial spectral estimates for simulation scenario 2, with speech signal
and no reverberation.

Fig. 10. Spatial spectral estimates for simulation scenario 2, with speech signal
and moderate reverberation.

spectrum offers only a small benefit over the SRP spectrum.
Moreover

(61)

and thus the eigenvalue spectrum closely resembles the MV’
spectrum at angles near the actual azimuth angle of arrival.
Lastly, it is apparent that the MCCC spectrum is somewhat sen-
sitive (i.e., the presence of deep ridges in spectrum) to factors
such as variable microphone gains and source elevation.

It is important to analyze the relationship between spatial
spectral estimation and DOA estimation—for example, it is
interesting to investigate if the spatial spectral estimators that
show a greater resolution (i.e., minimum variance, MCCC) lead
to greater DOA estimation accuracy.

To that end, consider the findings of Tables I and II—these
pertain to the DOA estimation accuracy of the various spatial
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Fig. 11. Spatial spectral estimates for simulation scenario 2, with speech signal
and heavy reverberation.

TABLE I
PERCENTAGE OF ANOMALIES FOR SIMULATION SCENARIO 1: SPATIALLY

WHITE NOISE, NO SOURCE ELEVATION, UNIFORM MICROPHONE

GAINS, TEN MICROPHONES

TABLE II
RMS ERROR VALUES FOR SIMULATION SCENARIO 1: SPATIALLY WHITE NOISE,
NO SOURCE ELEVATION, UNIFORM MICROPHONE GAINS, TEN MICROPHONES

spectral estimation methods in the first simulation scenario. It is
obvious from the tables that the TDOA-based method provides
very poor performance in reverberant conditions, as the class of
spatial spectral estimators greatly outperforms the TDOA-based
approach in all but the anechoic white signal case. This lends
credence to the notion that jointly utilizing multiple microphone
pairs combats reverberation, not just background noise. In the
TDOA two-step method, a “hard-decision” is made in the com-
putation of each , and thus if this decision is incorrect, the
error is propagated to the least-squares stage. On the other hand,
spatial spectral estimators do not make such hard decisions. In-
stead, the decision is deferred until after the contribution of all
microphone pairs. As expected, the SRP, MV, and MV’ methods

TABLE III
PERCENTAGE OF ANOMALIES FOR SIMULATION SCENARIO 2: SPHERICALLY

ISOTROPIC NOISE, SOURCE ELEVATED, VARIABLE MICROPHONE

GAINS, TEN MICROPHONES

TABLE IV
RMS ERROR VALUES FOR SIMULATION SCENARIO 2: SPHERICALLY

ISOTROPIC NOISE, SOURCE ELEVATED, VARIABLE MICROPHONE

GAINS, TEN MICROPHONES.

show virtually identical performance. The slight advantage of
the SRP algorithm in the heavily reverberant speech case fol-
lows from the fact that the SRP algorithm does not suffer from
the desired signal cancelation phenomenon. Furthermore, it is
evident that the increased spatial resolution of the MCCC esti-
mate does not translate to a greater DOA estimation accuracy.
In fact, the MCCC spectrum exhibits anomalies in conditions
where the SRP and minimum variance algorithms do not. The
sensitivity of the MCCC spectrum to speech occurs due to the
fact that speech is not well modeled by a Gaussian distribution,
and thus, the determinant of the parameterized spatial correla-
tion matrix no longer equals the joint entropy of the observa-
tions. This is well explained in [28].

Lastly, consider Tables III and IV. Krolik and Swingler’s
minimum variance method performs very poorly from the
DOA estimation standpoint with uncalibrated microphones, as
expected. The improved minimum variance method corrects the
shortcomings, but again, due to the spatial decorrelation of the
parametrization, the minimum variance method does not lead
to a greater DOA estimation accuracy than the SRP method. As
the level of reverberation increases, the SRP actually outper-
forms the MV’ method—it is inferred that the SRP spectrum
is more “robust” than the adaptively formed MV’ spectrum, in
that it avoids the desired signal cancellation phenomenon that
occurs when the noise is correlated with the target signal. The
MCCC method performs better than the TDOA method, but
significantly worse than the other spatial spectral estimators.
The relationship between spatial spectral estimation and DOA
estimation is also well illustrated by comparing the MV’ and
eigenvalue methods: from Figs. 6–11, the background levels
of the eigenvalue spectra are much higher than those of the
MV’ spectra. However, because the spectra are equivalent at
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from (61), the DOA estimation performance of the two
methods is identical (from Tables I–IV).

Recently, experiments employing real data obtained from the
IDIAP Smart Meeting Room database have been performed. In
these experiments, the MCCC method was shown to yield the
lowest anomaly rate among the various DOA estimators.

VI. CONCLUSION

The parametrization of the spatial correlation matrix gener-
alizes narrowband spatial spectral estimation methods to the
broadband environment. The parametrization spatially decor-
relates noise fields, and if the noise is temporally white, the
noise component of the parameterized spatial correlation ma-
trix is simply the identity matrix. As a result, the application of
minimum variance spectral estimation to the broadband spatial
spectral estimation problem yields only marginal gains. On the
other hand, the MCCC spatial spectrum produces a significantly
higher resolution than SRP and minimum variance methods.

The addition of extra microphones increases the resolution of
all spatial spectral estimation methods. The eigenanalysis of the
parameterized spatial correlation matrix allows one to estimate
the channel attenuation vector, and is useful for determining the
microphone gains.

DOA estimation methods based on spatial spectral estima-
tion provide a superior performance over TDOA-based methods
due to the nature of the combining of the various microphone
pairs. The application of higher resolution spatial spectral esti-
mation such as the minimum variance and MCCC methods to
the DOA estimation problem generally yields equivalent per-
formance compared to the fixed-weighted SRP method in ane-
choic and moderately reverberant environments, and worse per-
formance in heavily reverberant environments. In the case of the
minimum variance method, the latter degradation stems from
the desired signal cancellation that occurs due to reverberation;
for the MCCC method, the performance degradation follows
from the sensitivity of the MCCC to practical factors such as
the non-Gaussian nature of speech.
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