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Estimating the Ergodic Capacity of Log-Normal Channels
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Abstract— In this paper, we first provide a very accurate
estimation of the capacity of a single-input single-output system
operating in a log-normal environment. Then, hinging on the
fact that the sum of log-normal Random Variables (RV) is well
approximated by another log-normal RV, we apply the obtained
results to find the capacity of Maximum Ratio Combining and
Equal Gain Combining in a log-normal environment. The capac-
ity in an interference-limited environment is also investigated in
this paper. The analytical expressions obtained match perfectly
the capacity given by simulations.

Index Terms— Information rates, log normal distributions.

I. INTRODUCTION

CAPACITY of fading channels is one of the most inves-
tigated topics in the literature. The starting point of this

investigation traces back to the beginning of the nineties with
the seminal work of Lee [1], in which he derived the capacity
of Rayleigh fading channels. Since then, a huge amount of
research has addressed the capacity of different kind of fading
channels (see [2], [3], and the references therein). However,
despite all the research that was conducted, the capacity of
the log-normal channel is left undiscovered. This dearth does
not imply that the study of the log-normal capacity is less
interesting. Indeed, wireless channels are usually modeled as
log-normal (e.g. slow fading wireless channels). In the liter-
ature, to the best of the authors knowledge, no closed-forms
were developed. Upper and lower bounds were developed in
[7], but these bounds are loose for low SNR.

In this paper we will provide a very accurate approximation
of the capacity of a Single-Input Single-Output (SISO) system
operating in a log-normal environment. Then, relying on the
fact that the sum of log-normal Random Variables (RV) is
well approximated by another log-normal RV, we applied
the obtained results to find the capacity of Maximum Ratio
Combining (MRC) and Equal Gain Combining (EGC) in
a log-normal environment. The capacity in an interference-
limited environment will be also assessed in this paper.

This paper is organized as follows, in Section II we ap-
proximate the capacity of the log-normal channel in a SISO
configuration. Section III extends these results to obtain the
capacity with MRC and EGC. Section IV studies the capacity
in an interference-limited environment. Section V gives some
numerical examples and Section VI concludes the paper.
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II. THE CAPACITY OF A SISO LOG-NORMAL CHANNEL

The capacity (in Nats/Sec/Hz) of a log-normal channel is
given by:

C =
ξ

σ
√

2π

∫ +∞

0

ln(1 + γ)
γ

e−
(ξ ln γ−µ)2

2σ2 dγ, (1)

where ξ= 10
ln(10) , σ is the logarithmic standard deviation of the

fading process and µ=ΓdB−σ2

2ξ where ΓdB is the average SNR
in dB. Next we will provide two accurate approximations for
the capacity.

A. First approximation

After some manipulations in (1), C can be rewritten as
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where I(a, b) is given by

I(a, b) =
a√
π

∫ 1

0

ln(1 + x)
x

exp(−(a ln(x) − b)2)dx. (4)

I(a, b) can not be expressed in closed-form, however, it is
possible to approximate it very accurately. Indeed, for 0 ≤
x ≤ 1, we have the following approximation [Eq. (4.1.44) in
[6]1]

ln(1 + x) =
8∑

k=1

akxk + ε(x), (5)

where |ε(x)| < 3× 10−8 and ak are constants defined in [6].
Consequently, an estimate for I(a, b) is as follows

Î(a, b) =
a√
π

8∑
k=1

ak

∫ 1

0

xk−1exp(−(a ln(x) − b)2)dx (6)

=
e−b2

2

8∑
k=1

ak erfcx(
k

2a
+ b), (7)

where erfcx(x) = ex2
erfc(x) is the scaled complementary

error function and is a built-in MATLAB function. The error
that results from this approximation can be bounded as follows

|I(a, b) − Î(a, b)| <
3 × 10−8

2
erfc(b). (8)

1Note that this formula does not correspond exactly to the Taylor series

expansion of the ln(1 + x), indeed ak �= (−1)k+1

k
. It should be noted also

that a very similar expression (Eq. (4.1.43) in [6]) with only 5 terms is also
available.
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An approximation of the capacity will be therefore

Ĉ=
e−

µ2

2σ2

2

8∑
k=1

ak

[
erfcx(

σk

ξ
√

2
+

µ√
2σ

)+erfcx(
σk

ξ
√

2
− µ√

2σ
)
]

+
σ

ξ
√

2π
e

−µ2

2σ2 +
µ

2ξ
erfc(− µ√

2σ
). (9)

And the error on the capacity can be bounded as follows

|C−Ĉ|<3
2
10−8(erfc(

µ√
2σ

)+erfc(− µ√
2σ

)) = 3·10−8. (10)

B. Second approximation

By definition, the capacity of the log-normal channel is

C = E[ln(X)], (11)

where X is equal to 1 + γ. In this second approximation, we
approximate X by a log-normal RV, with a logarithmic mean
equal to µX , so that ln(X) will be seen as a gaussian RV with
a mean equal to µX

ξ . Then, an approximation of the capacity
is

C ≈ µX

ξ
. (12)

µX can be determined by a moment matching technique (the
so called Fenton-Wilkinson method [4] as we will see in
the next section). After some manipulations, the following
approximation of the capacity is obtained

C ≈ ln

⎛
⎝ (1 + e

µ
ξ + σ2

2ξ2 )2√
1 + 2e

µ
ξ + σ2

2ξ2 + e
2µ
ξ + 2σ2

ξ2

⎞
⎠ , (13)

where µ and σ are, respectively, the logarithmic mean and
variance of γ. For the SISO channel this expression becomes

C ≈ ln

⎛
⎝ (1 + Γ)2√

1 + 2Γ + e
σ2

ξ2 Γ2

⎞
⎠ . (14)

III. CAPACITY WITH MRC AND EGC

The instantaneous received SNR at the output of an M-
branch maximum ratio combiner and equal gain combiner are,
respectively, given by{

γmrc =
∑M

m=1 γm,

γegc = 1
M (

∑M
m=1

√
γm)2.

Exact expressions for the probability density functions of
the RVs γmrc and γegc are unfortunately unknown. Notice
however, that these RVs consist of a sum of log-normal RVs.
We can therefore hinge on the log-normal approximation
which states that the sum of log-normal Random Variables
(RV) can be well approximated by another log-normal RV.
Consequently γmrc and γegc are viewed as log-normal RVs
thereby allowing us to use the previously established results
for the SISO channel.

The logarithmic mean and logarithmic variance of the log-
normal approximations of γmrc and γegc can be estimated
by various methods. Here, we use the well known Fenton-
Wilkinson (F-W) method because it provides a closed-form
expression of the parameters of the log-normal RV and be-
cause of its simplicity. However, it should be noted that the

F-W method performs badly for large standard deviations. In
such cases, other methods should be used instead. Among
these methods, we refer the interested reader to the method in
[5] which seems to provide good results even for high standard
deviations.

Without loss of generality, we assume in the following that
the different diversity branches experience independent and
identical fading2, i.e., each branch has an average SNR equal
to Γ and standard deviation equal to σ. We have therefore the
following expressions⎧⎪⎨

⎪⎩
µmrc = ξ ln(MΓ) − σ2
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2ξ ,

σ2
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and ⎧⎪⎪⎪⎨
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2ξ ,

σ2
egc = 4ξ2 ln

(
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σ2

4ξ2

M

)
.

The capacity for MRC and EGC is obtained therefore by
substituting these values in (9) and in (13). For instance, for
MRC, by using (13) we obtain

Cmrc ≈ ln

⎛
⎝ (1 + MΓ)2√

1 + 2MΓ + ((M − 1) + e
σ2

ξ2 )MΓ2

⎞
⎠ . (15)

IV. CAPACITY IN INTERFERENCE LIMITED

ENVIRONMENTS

Here, we adopt the scenario considered in [7]. Namely,
we analyze an interference-limited3 environment in which
the thermal noise is neglected. The desired user Signal to
Interference Ratio (SIR) will be as follows

γSIR =
γd∑NI

i=1 γi

, (16)

where γd is the received power from the desired user, γi is
the received power from the ith interferer and NI denotes
the number of interferers. We assume here for the sake of
simplicity and without loss of generality that all the interferes
are i.i.d. log-normal RVs. Using the log-normal approximation
and following the steps in [7], γSIR is modeled as a log-normal
RV with the following logarithmic variance

σ2
SIR = σ2

d + ξ2 ln

⎛
⎝ (NI − 1) + e

σ2
I

ξ2

NI

⎞
⎠ , (17)

where σd and σI are, respectively, the logarithmic variances
of γd and γi, 1 ≤ i ≤ NI . The logarithmic mean of γSIR is

2Note that the extension to correlated fading is straightforward. For
instance, we may use the method developed in [4] which extends the F-W
method to the correlated scenario.

3We assume that all interfering users employ Gaussian code books, i.e.,
conditioned on the channel coefficients the interference term is gaussian
distributed.
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Fig. 1. Capacity in log-normal fading (σ = 4).

given by [7]

µ±
SIR = ξ ln

[(
R(Ru ± 1)

r

)a (
g + R(Ru ± 1)

g + r

)b
]

− ξ ln(NI) +
ξ

2
ln

⎛
⎝ (NI − 1)e−

σ2
I

ξ2 + 1
NI

⎞
⎠ , (18)

where a is the basic path loss exponent (a ≈ 2), b is the
additional path loss exponent (2 ≤ b ≤ 6) and g is the break
point of the path loss curve (in meters). R is the cell radius,
r is the position of the desired user in the cell and Ru is the
normalized reuse distance, i.e., Ru = D

R , where D denotes the
reuse distance which is the distance between two base stations
operating at the same frequencies. In (18), ”+” is selected for
the best-case interference while ”-” is selected for the worst-
case4.

Finally, the capacity for the interference limited environ-
ment is obtained by plugging µ±

SIR and σSIR in (9) and in
(13).

V. NUMERICAL ANALYSIS

Fig. 1 depicts the capacity versus the average SNR in a
log-normal fading channel. The logarithmic variance is set to
σ = 4 dB. This figure depicts clearly the adequacy between
the results obtained by simulations and those generated by the
developed formulas. This figure depicts also the bounds that
were developed in [7]. These bounds are loose for low SNR;
the upper bound highly overestimates the capacity whereas the
lower bound underestimates it.

Fig. 2 depicts the capacity versus the normalized reuse dis-
tance in an interference limited environment with 6 interferers
for both the best and the worst-case interference. The standard
deviation of the desired user and the different interferers

4The worst-case interference corresponds to the situation where the differ-
ent interferers are at a distance r−I = D − R from the desired user’s Base-
Station (BS) and the best-case interference corresponds to the configuration
where the different interferers are at a distance r+

I = D + R form this BS.
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Fig. 2. Capacity in an interference-limited environment with σd = σI = 4
for the worst and the best-case interference (a = b = 2; NI = 6; R=200;
r=160; g=533).

are set to 4 dB. Here again, the developed approximations
prove to be very accurate for a wide range of Ru while the
bounds developed in [7] are loose for small normalized reuse
distances.

VI. CONCLUSION

In this paper we have provided a very accurate approx-
imation of the capacity of log-normal fading channels. We
have also addressed the scenarios where diversity is used,
namely, we have considered Maximum Ratio Combining and
Equal Gain Combining. We have also assessed the capacity
in an interference limited scenario. The analytical expressions
provided match perfectly the capacity given by simulations.
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