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On Spatial Aliasing in Microphone Arrays
Jacek Dmochowski, Jacob Benesty, and Sofiène Affès

Abstract—Microphone arrays sample the sound field in both
space and time with the major objective being the extraction of
the signal propagating from a desired direction-of-arrival (DOA).
In order to reconstruct a spatial sinusoid from a set of discrete
samples, the spatial sampling must occur at a rate greater than
a half of the wavelength of the sinusoid. This principle has long
been adapted to the microphone array context: in order to form
an unambiguous beampattern, the spacing between elements
in a microphone array needs to conform to this spatial Nyquist
criterion. The implicit assumption behind the narrowband beam-
pattern is that one may use linearity and Fourier analysis to
describe the response of the array to an arbitrary wideband plane
wave. In this paper, this assumption is analyzed. A formula for
the broadband beampattern is derived. It is shown that in order
to quantify the spatial filtering abilities of a broadband array,
the incoming signal’s bifrequency spectrum must be taken into
account, particularly for nonstationary signals such as speech.
Multi-dimensional Fourier analysis is then employed to derive
the broadband spatial transform, which is shown to be the limiting
case of the broadband beampattern as the number of sensors
tends to infinity. The conditions for aliasing in broadband arrays
are then determined by analyzing the effect of computing the
broadband spatial transform with a discrete spatial aperture. It
is revealed that the spatial Nyquist criterion has little importance
for microphone arrays. Finally, simulation results show that the
well-known steered response power (SRP) method is formulated
with respect to stationary signals, and that modifications are
necessary to properly form steered beams in nonstationary signal
environments.

Index Terms—Beamforming, broadband beampattern, micro-
phone arrays, spatial aliasing, spatial sampling, wavenumber-fre-
quency spectrum.

I. INTRODUCTION

S IGNAL processing is ultimately about the collection of
data from the physical world for the sake of extracting rel-

evant information about the processes which brought about the
measured signals. Multiple sensors are commonly employed in
order to enhance this extraction process through the spatial di-
versity provided by sensors at different spatial locations. Array
signal processing [1] techniques intelligently combine the out-
puts of the various sensors in a process, termed beamforming,
aimed at cleaning the received signals from the contaminating
interference and noise.

Manuscript received March 27, 2008; revised October 01, 2008. First pub-
lished December 09, 2008; current version published March 11, 2009. The as-
sociate editor coordinating the review of this manuscript and approving it for
publication was Dr. Wing-Kin Ma.

J. Dmochowski was with the Université du Québec, INRS-EMT, Montréal,
QC H5A 1K6, Canada. He is now with the Department of Biomedical Engi-
neering , City College of New York, City University of New York, New York,
NY 10031 USA (e-mail: dmochow@emt.inrs.ca).

J. Benesty and S. Affès are with the Université du Québec, INRS-EMT, Mon-
tréal, QC H5A 1K6, Canada.

Digital Object Identifier 10.1109/TSP.2008.2010596

This paper is about broadband arrays: sensor arrays which
are designed to pick up temporally broadband signals. To date,
there are two main applications of such arrays: antenna arrays
which capture broadband wireless signals, and microphone
arrays which sample naturally broadband sounds. While the
former is certainly an active research area, this paper focuses
on microphone arrays for several reasons. First of all, the
capture of sound nicely illustrates the concepts of broadband
array processing. Second, the microphone array environment
is much harsher due to the analog nature of the signal and the
long reverberation times of common enclosures. As a result,
microphone arrays exhibit relatively poor performance in real
environments [2].

The classical theory of beamforming dates back to the mid-to-
late twentieth century, with the most prominent advances found
in [3]–[5]; good overviews of the area are provided by [6] and
[7]. Microphone arrays emerged somewhat later, with early and
notable works found in [8]–[13].

Much like temporal signals are decomposed into a linear
combination of sinusoids via Fourier analysis, space–time
fields may be decomposed into an infinite summation of
monochromatic plane waves—the energy of each component
monochromatic wave is focused at a single temporal frequency.
The fundamental premise here is that by characterizing the
response of a space–time filter (i.e., a beamformer) to a par-
ticular monochromatic signal, one may use the linearity of
the space–time Fourier transform to characterize the response
of the array to a general broadband signal. One example of
the application of this principle occurs with spatial aliasing
[1]: in order to reconstruct a monochromatic signal from a
set of spatial samples (i.e., with uniform sampling occurring
along one spatial dimension), the sampling period must be
equal to less than half of the wavelength corresponding to the
monochromatic wave. The theory of spatial aliasing pertaining
to monochromatic signals is well covered in [1].

Microphone signals are naturally broadband, and as a result,
the spatial sampling theorem requires careful thought in this
context. Most treatments covering spatial aliasing in micro-
phone arrays work within the monochromatic framework; refer
to [14] and [15], for example. The implication here is that in
order to prevent spatial aliasing, one should sample at half of
the wavelength corresponding to the smallest wavelength (or
highest temporal frequency) of interest.

The resulting arrays are very limited in spatial extent—for
example, a two-element array should be spaced only 4.25 cm
to prevent aliasing for up to 4 kHz—clearly, spatial aliasing is
somewhat of a misunderstood phenomenon, since the human
binaural auditory system does not experience problems local-
izing broadband sounds with an average spacing of 20 cm (cor-
responding to aliasing above 850 Hz!). Indeed, the most reliable
cues used by humans for localization of sounds are the interaural
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time difference (ITD) and interaural intensity difference (IID). It
is well known that our auditory system, with ITD only, is unable
to localize a pure tone when its frequency is about 800 Hz and
above [16]. This is due to the classical spatial sampling theorem.
However, many experiments show that with more “complex”
signals (such as speech or sounds that cover a reasonable fre-
quency range), our auditory system is able to remarkably resolve
the phase ambiguity and localize quite precisely with ITD only
[16]. Motivated by these fundamental observations, in the fol-
lowing, the meaning of spatial aliasing when operating a broad-
band array is examined.

This paper is structured as follows. In Section II, a definition
of the broadband beampattern is derived, and an example em-
ploying the uniform linear array (ULA) is provided. Section III
develops the aliasing conditions for broadband arrays with the
help of wavenumber-frequency analysis. Theoretical broadband
beampatterns for signals of varying bandwidth are shown in
Section IV. To verify the proposed claims, simulation results
are presented in V. Finally, concluding remarks are made in
Section VI.

II. BROADBAND BEAMPATTERN AND BROADBAND

STEERED RESPONSE POWER

Microphone arrays are targeted towards the capture, en-
hancement, and localization of speech [17]. Moreover, speech
is widely recognized as a nonstationary random process [18].
In this section, a definition of the broadband beampattern
which takes into account the nonstationary nature of speech is
presented. It will be shown that a frequency-domain statistic
termed the “bifrequency spectrum” plays a key role in this
definition. Before providing the definition, some mathemat-
ical preliminaries required for the spectral characterization of
nonstationary random processes are given.

A. Bifrequency Spectrum

The notion of the bifrequency spectrum is relatively unknown
in the microphone-array research community. A rigorous defini-
tion of the bifrequency spectrum requires the understanding of
several related ideas. This section begins by defining the con-
cept of a harmonizable covariance function, and subsequently,
a harmonizable stochastic process.

A covariance function is
termed harmonizable if there exists a frequency-domain, com-
plex-valued covariance function defined on
such that [19], [20]

(1)

where the integral is recognized as the Fourier-Stieltjes trans-
form [21], and denote time instants, and denote tem-
poral frequencies, and . This integral may also be in-
terpreted in the Lebesgue [22] sense, in which case
corresponds to a complex-valued measure.

A second-order random process 1 is said to be (strongly)
harmonizable if we can write it as the Fourier–Stieltjes trans-

1A random process is said to be second-order if its second order covariance
function � �� � � � � � ���� �� �� �� exists and is finite for all � and � .

form of a second-order process whose covariance function
is given by [19], [20], [23]

(2)

with probability one, where denotes temporal frequency,
denotes time, and may be viewed as a complex-valued
random measure. Equation (2) expresses a stochastic process
as a summation of infinitely many randomly and infinitesimally
weighted complex exponentials, in a manner analogous to how
the standard Fourier transform expresses a deterministic func-
tion as a superposition of weighted complex exponentials.

The Loève bifrequency spectrum, also referred to as the bifre-
quency spectral correlation function, generalized spectrum, and
cointensity spectrum is formally defined as

(3)

where denotes complex conjugation and

(4)

is the Fourier transform of which is assumed to exist in the
sense of distributions [24], [25] for almost all realizations of the
process .

The following relations between the quantities (1)–(4) hold
in the sense of distributions [19], [24]–[26]:

(5)

(6)

Mathematical rigor aside, it is important to relate the notion
of the bifrequency spectrum to the nonstationarity of a random
process. For wide-sense stationary (WSS) processes, the bifre-
quency spectrum reduces to

(7)

where is the power spectral
density (PSD) or equivalently, the Fourier transform of the au-
tocorrelation function of a WSS
process . Thus, for stationary random processes, two dis-
tinct Fourier coefficients are statistically uncorrelated. However,
for nonstationary random processes, the bifrequency spectrum
will exhibit nonzero correlations along so-called support curves
[19], [20], [27] other than the main diagonal . Thus, one
way of detecting nonstationarity of a random process is to de-
tect the presence of interfrequency correlations—refer to [19]
and the references therein.

Finally, the bifrequency spectrum possesses a normalized
variant termed the spectral coherence [20]

(8)

which is upper-bounded in magnitude by 1 due to the Schwarz
inequality.
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B. Broadband Beampattern

The source signal is modeled as a wideband and harmoniz-
able (potentially nonstationary) random process. Consider a dis-
crete aperture consisting of an array of sensors that sample
the wave field in space and time. Assume that a plane wave im-
pinges on the array from direction , where it is assumed that
the source lies on the same plane as the array. The plane wave is
assumed to be a broadband signal such that the response to this
signal characterizes the “broadband beampattern” of the array.
The output of the th sensor at time is modeled as

(9)

where is the output of sensor at time , is the harmo-
nizable process characterizing the source signal, is the
propagation time from the source to sensor , and is the DOA
of the source. It should be pointed out that noise is neglected as it
is irrelevant in the characterization of the beampattern, and that

is also a harmonizable nonstationary process. Invoking
(4), we may express (9) in the frequency domain as

(10)

where

A beamformer steered to a DOA applies a complex weight
to each sensor and then sums across the aperture to form the
beamformer output

(11)

where is the beamformer output at frequency , de-
notes the conjugate transpose of a matrix or vector,

is the vector of beamforming weights applied at frequency ,
denotes the transpose of a matrix or vector,

and

is termed the steering vector.
The PSD of the beamformer output follows as

(12)

where is the PSD of the source
and the quantity is referred to as the
narrowband beampattern when is fixed and the in-
dependent variable is . Conversely, if we fix , then

is termed the steered response pattern
which is plotted as a function of the steered DOA .

In the time domain, the beamformer output is written as

(13)

One would like to quantify the average energy of the in-
coming wavefield as a function of the DOA. To that end, the
instantaneous power of the beamformer output is

(14)

The quantity in (14) refers to the broadband steered pattern of
the array, where it is assumed that is fixed and the indepen-
dent variable is the steered angle . For a characterization of the
broadband beampattern, we simply fix and vary , with the
broadband beampattern still denoted by but this
time being a function of . For a conventional (delay-and-sum)
beamformer, the two are equivalent, and thus, throughout this
paper, we use the terms interchangeably when referring to (14).
When the quantity refers to the broadband beam-
pattern (i.e., is fixed but varies), it characterizes beam-
forming abilities; on the other hand, DOA estimation abilities
are captured by when viewed as the broadband
steered pattern (i.e., varies but is fixed).

It can be seen that aside from the steering vector, in order to
define the array’s broadband beampattern, the incoming signal’s
bifrequency spectrum needs to be specified. For a WSS source
signal, the broadband beampattern reduces to

(15)

meaning that the broadband beampattern is a superposition
of the individual narrowband beampatterns weighted by
the PSD of the source. However, when the source signal is
nonstationary, the bifrequency spectrum cross-combines the
narrowband beampatterns across different frequencies before
forming the broadband beam. It is also interesting to point out
that in this case, the broadband beampattern is a function of
time . This represents a departure from conventional array
notions which have customarily assumed stationary signals
without loss of generality. Clearly, for nonstationary signals
such as speech, the narrowband beampattern must be coupled
with bifrequency analysis in order to have an idea of the broad-
band beam, which is of utmost importance. By themselves, the
narrowband beampatterns do not convey enough to capture the
spatial filtering operation of the array.

In practice, even when considering stationary signals, the im-
pact of the bifrequency spectrum on the resulting broadband
beampattern needs to be taken into account. Over a finite length
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observation window, the correlations between the various dis-
tinct frequencies will not be exactly zero—these interfrequency
correlations only tend to zero as the observation window length
tends to infinity. For example, [20] plots a sample bifrequency
spectrum for a finite white noise sequence and observes signif-
icant nonzero correlations off the main diagonal. Many micro-
phone array applications employ short frame sizes; as a result,
the bifrequency spectrum will have a significant effect on the
resulting broadband beampattern.

C. Broadband Beampattern of a Uniform Linear Array

Consider a conventional delay-and-sum beamformer which
selects the weights according to

(16)

Furthermore, assume a ULA, such that the steering vector is
given by

(17)

where is the intersensor distance and the speed of propaga-
tion. The resulting beampattern is given by

(18)

Using the formula for the geometric progression, the beampat-
tern may be expressed as

(19)

Substituting (19) into (14) results in the general expression for
the broadband beampattern of a ULA

(20)

where

(21)

D. Bifrequency of Sinusoidal Signals

Consider a source signal of the form

(22)

The autocorrelation function of this signal is given by [28]

(23)

Since the autocorrelation function in (23) may not be expressed
as a function of a single argument , it is nonstationary.
The corresponding bifrequency spectrum is written as [28] (see
the Appendix for a correction):

(24)

Now consider a signal formed by a linear combination of si-
nusoids:

(25)

The bifrequency spectrum of this signal is given by

(26)

Substituting (26) into (20) leads to the following expression
for the broadband beampattern of a ULA:

(27)

III. SPATIAL ALIASING IN BROADBAND ARRAYS

In this section, the meaning of aliasing in broadband arrays is
examined. To facilitate the analysis, the wavenumber-frequency
spectrum is employed to derive what is termed therein as the
“broadband spatial transform.” It is shown that this transform is
indeed the limiting case of the broadband beampattern as the
number of sensors tends to infinity. Based on the broadband
spatial transform, a rigorous definition of aliasing is provided,
and the conditions for aliasing with both monochromatic and
wideband signals are derived.

A. Wavenumber-Frequency Spectrum

The standard one-dimensional Fourier transform expresses a
temporal signal as a linear combination of sinusoidal signals.
Similarly, an arbitrary space–time field may be expressed
as a superposition of monochromatic plane waves via the
multi-dimensional Fourier transform. The four-dimensional
Fourier transform of a space–time signal is referred to as the
wavenumber-frequency spectrum and is given by [1]

(28)
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where are the frequency-domain weights, is the
value of the signal at position and time ,

is the wavenumber vector, and
denotes angular frequency. The wavenumber is the spatial
frequency vector and may be expressed as

(29)

where is a unit
vector pointing in the direction specified by elevation and
azimuth which refers to the direction of the plane wave

. Notice that the wavenumber-frequency spectrum
may also be expressed as the following spatial Fourier trans-
form:

(30)

where is the temporal Fourier
transform of the signal observed at position .

The inverse wavenumber-frequency transform expresses the
space–time field as a weighted linear combination of plane
waves [1]

(31)

B. Broadband Spatial Transform

Notice that the wavenumber vector is a function of the
temporal frequency in its magnitude only—the spatial in-
formation is conveyed by the unit vector which is
specified by the azimuth and elevation of the corresponding
spatial frequency vector. Note also that for broadband arrays,
we are mostly interested in the spatial component of the
wavenumber-frequency spectrum; one would like to quantify
the level of the spatial spectrum independently of the tem-
poral frequency . One way of doing this is to integrate the
wavenumber-frequency spectrum over the temporal frequency
range, which is straightforward since only the magnitude of
the wavenumber needs to be integrated across. To that end, we
define

(32)

Consider (32): the temporal argument is
equal to the relative delay (temporal lag) between position

and the origin, assuming that the incoming wavefront is
planar. Thus, (32) is precisely the form of the delay-and-sum
beamformer computed over an infinite set of spatial samples

(i.e., sensors) and time-aligned with respect to the origin.
Therefore, one can infer that the output of a delay-and-sum
beamformer with an infinitely large aperture corresponds to
an estimate of the wavenumber-frequency spectrum averaged
over the temporal frequency range. We refer to as the
broadband spatial transform (BST).

Furthermore, the mean-squared of (32) is given by

(33)

where is the
spatiotemporal autocorrelation function of the space–time field

and we have dropped the dependence of on and .
If one assumes that the field is a plane-wave prop-

agating with direction-of-arrival , then one may write
the space–time signal as the one-dimensional function

. As a result

(34)

The resulting steered response power is written as

(35)

where . From (35), it is inter-
esting to note the dependence of the mean square of the BST, a
spatial statistic, on the temporal autocorrelation function of the
source signal .

Assume now that the correlation function in (35) is harmo-
nizable; then, we may write

(36)
Substituting (36) into (35) results in (37), shown at the bottom
of the next page. Notice that the term

may be viewed as the limiting case of the inner product
as the number of sensors tends to infinity,

with the exception that the DOA in the continuous case is
two-dimensional. Thus, we may claim that

(38)
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where the steered azimuth has been set to to enable full
equivalence. Therefore, the mean square of the BST is equal to
the limiting case of the broadband beampattern as the number
of sensors tends to infinity.

Aliasing is a phenomenon that results from computing a dis-
crete estimate of a continuous Fourier transform. After sam-
pling, the discrete spectrum becomes periodic with the sampling
frequency. Aliasing occurs when the bandwidth of the signal ex-
ceeds half of the period of the discrete spectrum. Intuitively, in
analyzing spatial aliasing in microphone arrays, one needs to
analyze the periodicity of the discrete version of the continuous
BST (32), which is given by

(39)

where is the th spatial sample and it should be noted that
space is discrete but time need not be for the sake of the analysis.
For a single plane-wave propagating with DOA , the discrete
BST is given by

(40)

In the following, the aliasing conditions for both narrowband
and wideband signals are derived.

C. Monochromatic Signal

Consider a monochromatic source signal

(41)

where is the temporal frequency of the signal and is the
wave’s DOA. Substituting (41) into (40) results in

(42)

If we further assume that the spatial sampling is in the -direc-
tion only and with a sampling period of :

(43)

then

(44)

To ease analysis, assume that the source lies on the - plane,
such that and we are only concerned with the az-
imuthal component of the spatial spectrum

(45)

Next, one can apply the following result regarding a summation
of complex exponentials:

(46)

Substituting (46) into (45)

(47)

Consider now the conditions for the argument of the delta Dirac
function in (47) to equal zero. This requires

(48)

which is equivalent to

(49)

where is the wavelength. For , (49) holds
if , meaning that

(50)

which is the desired result; indeed, this is the true (nonaliased)
spectral peak. Spatial aliasing may now be rigorously defined:
aliasing occurs whenever

such that (51)

In other words, aliasing is a result of the argument of the delta-
Dirac function in (47) going to zero even though the argument

(37)
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does not match the true DOA . Note also that the steered
range for a ULA is , and that the cosine function is
one-to-one over this interval. Thus

(52)

One can now determine the aliasing conditions. Under the
monochromatic assumption, the BST tends to infinity if there
exists an integer such that

(53)

or

(54)

Take ; we know that over our unique range ,

(55)

meaning that to prevent aliasing, one needs to ensure that

(56)

or

(57)

which is indeed the classical narrowband aliasing criterion. Note
that for , the condition (57) also prevents (53).

D. Broadband Signal

Consider a signal of the form

(58)

which is a plane-wave signal whose temporal frequency content
is arbitrary [defined by ] and presumably wideband. Again
assuming a one-dimensional sampling scheme and considering
only spatial frequencies with , the continuous BST
of this signal is given by

(59)

The discrete version of (60) is obtained by sampling space; in
other words, we set :

(60)

Examining (60), it is interesting to note that the discrete BST
for an arbitrary wideband signal takes the form of a series of
temporal Fourier coefficients. For any temporal signal which
obeys

(61)

one can state that the BST exhibits an infinite peak only when
the scaling factor

(62)

which implies . Thus, for wideband signals with spectra
of the form (61), spatial aliasing does not result, regardless of
the spatial sampling period.

The condition of (61) refers to signals with two basic proper-
ties; first of all, the signal must be bandlimited. If not, the sum-
mation is not finite. Secondly, the signal must not have strong
harmonic components at integer multiples of the fundamental
frequency . The presence of such
harmonic components may drive the BST to infinity at DOAs
not matching the true DOA.

IV. THEORETICAL BEAMPATTERNS

Fig. 1 illustrates the broadband beampatterns for a signal of
the form (25) with , consisting of tones uniformly
spaced from 1000 to 2000 Hz. A ULA is assumed to compute
the beampatterns; the source impinges on the array at an az-
imuth of 73 degrees. The intersensor distance is
which means that all tones comprising the signal lead to spa-
tial aliasing. The plots are shown for ,
where for , the signal consists of a tone at 2000 Hz. The
beampatterns are shown at time 0: . To highlight
the effect of signal nonstationarity on the resulting broadband
steered patterns, the plots also show the broadband patterns not
taking into account the cross-terms; in other words, the quantity
of (15) is also displayed.

It is evident that by increasing , the alias formed at 135 de-
grees for is diminished as more tones are introduced into
the signal. With , the alias is indistinguishable from
the background. Since the aliases occur at different azimuths
for different frequencies, the integrated broadband beampattern
tends to average out the sidelobes (i.e., destructive summation).
The bifrequency spectrum of the source signal further shapes the
steered patterns as the “cross-beampattern” terms provide even
greater suppression of the sidelobes. Notice that the averaging
effect becomes significant at only ten tones. Furthermore, notice
the narrowing of the main lobe as we introduce additional har-
monics to the signal. In general, the broadband beampattern at-
tains greater directivity as the bandwidth of the signal increases.



1390 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 57, NO. 4, APRIL 2009

Fig. 1. Steered response patterns of a real signal consisting of all aliased fre-
quencies: (a) 1 tone, (b) 2 tones, (c) 3 tones, (d) 5 tones, (e) 10 tones, (f) 100
tones. The classical aliasing effect diminishes with the inclusion of additional
harmonics in the signal. The nonstationarity of the signal further reduces the
sidelobe height.

Fig. 2 plots the broadband beampatterns for an intersensor
distance of , meaning that all of the signal’s
frequencies are nonaliased. In this case, the effect of adding
tones to the signal is only slightly beneficial—the width of
the main lobe is gradually reduced as the signal bandwidth
increases. However, it seems that increasing sensor spacing
provides clear benefits for wideband array processing without
incurring aliasing.

Fig. 1. (Continued.) Steered response patterns of a real signal consisting of
all aliased frequencies: (a) 1 tone, (b) 2 tones, (c) 3 tones, (d) 5 tones, (e) 10
tones, (f) 100 tones. The classical aliasing effect diminishes with the inclusion
of additional harmonics in the signal. The nonstationarity of the signal further
reduces the sidelobe height.

Fig. 3 depicts the narrowband beampatterns across
the 1000–2000-Hz range for the ULA with a spacing of

. The aliasing effect is present across the entire
frequency range, in that the sidelobes attain the same height as
the main lobe. However, as we integrate across the temporal
frequencies taking into account the bifrequency spectrum,
the resulting broadband beampatterns exhibit a clearly unam-
biguous broadband beam.
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Fig. 2. Steered response patterns of a real signal consisting of all nonaliased
frequencies: (a) 1 tone, (b) 2 tones, (c) 3 tones, (d) 5 tones, (e) 10 tones,
(f) 100 tones. The broadband steered pattern’s mainlobe width diminishes as
the bandwidth of the signal increases. Comparing to Fig. 1, increasing the
microphone spacing leads to clear benefits in broadband applications without
incurring aliasing.

Fig. 4 displays the narrowband beampatterns for the ULA
with a spacing of . Notice that the “spectral tilt”
effect (i.e., the beam narrows as frequency increases) is clearly
observed in Fig. 4 but only marginally present in Fig. 3.

V. EXPERIMENTAL STUDY

In order to further investigate the theoretical results derived
above, a computer simulation modeling anechoic propagation

Fig. 2. (Continued.) Steered response patterns of a real signal consisting of all
nonaliased frequencies: (a) 1 tone, (b) 2 tones, (c) 3 tones, (d) 5 tones, (e) 10
tones, (f) 100 tones. The broadband steered pattern’s main lobe width diminishes
as the bandwidth of the signal increases. Comparing to Fig. 1, increasing the
microphone spacing leads to clear benefits in broadband applications without
incurring aliasing.

is performed. The simulations employ a ULA of ele-
ments and an interelement spacing given by
0.34 m. This corresponds to narrowband aliasing above 500 Hz.
The signal is a superposition of sinusoidal signals as shown
in (25) with , ranging from 1000 to 2000 Hz,
and varying from 1 to 100. The microphones are sampled at
48 kHz. Assuming the third (center) microphone is set as the
origin, the source is located at ( 2.45,8,0) m—this corresponds
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Fig. 3. Narrowband beampatterns for aliased temporal frequencies. Even
though aliasing is present across the entire temporal frequency range, the
location of the main alias varies with the temporal frequency. When integrating
to obtain the broadband beampattern, the aliasing phenomenon is eliminated.

Fig. 4. Narrowband beampatterns for nonaliased temporal frequencies. The
small array size prevents narrowband aliasing, but also emphasizes the spec-
tral tilt effect: the main lobe width decreases with increased frequency.

to . As the source and micro-
phones lie on a 2-dimensional plane, the location space is con-
fined to the set of azimuth angles (0,179) degrees with a resolu-
tion of 1 degree. The impulse response from the source to each
microphone is computed using the image method model of [31],
with all reflection coefficients (i.e., walls, ceiling, and floor) set
to zero to simulate anechoic propagation. The clean signal is
convolved with the synthetic impulse responses to generate the
microphone data. Since the purpose of the simulations is to com-
pute experimental broadband beampatterns, noise is not added
to the microphones.

In the experiment, the steered response power (SRP) algo-
rithm [29], [30] is utilized to estimate the broadband steered
pattern. The SRP algorithm is a direct estimate of (33)—the al-
gorithm computes, for each candidate DOA, the following sum:

(63)

where , is a
function that translates the steered DOA to the relative delay
experienced between microphones and :

(64)

and the summation in (63) is usually taken over the set of unique
microphone pairs . In the implementation, the cross-corre-
lations are upsampled (and interpolated) by a factor of 20 to
allow for smooth steered response patterns. A single “frame” of
2 s is employed to compute the cross-correlation estimates.

Fig. 5 displays the obtained experimental broadband steered
response patterns for the various values of . The resulting
beampatterns strongly resemble those in Fig. 1 which do not
take into account the bifrequency spectrum. In other words,
the SRP algorithm conveys only the stationary component of
the steered response power. This is somewhat problematic as
SRP is generally accepted as the most reliable algorithm for
the localization of speech, which is nonstationary. Indeed, for a
WSS signal, the mean-square of the BST reduces to

(65)

where which reduces
to under stationarity,
and

(66)

by definition. Thus, the SRP algorithm fails to capture the
bifrequency (nonstationary) portion of the broadband steered
response.

Lastly, the experiment is repeated with a two-second female
English speech signal. Fig. 6 shows the experimental SRP: it is
clear that the resulting steered pattern is not negatively impacted
by sampling at a sub-Nyquist rate. The power spectral density of
the speech signal used in the simulation is shown in Fig. 6(b),
where the narrowband aliasing cutoff frequency of 500 Hz is
indicated.

It appears that a variant of SRP which does not make the
WSS assumption is needed to provide more accurate estimates
of the broadband steered response pattern, and consequently,
the location estimates. Indeed, Figs. 5 and 6 are missing their
nonstationary counterparts as an algorithm to estimate the more
general broadband steered response power does not exist. The
development of a suitable algorithm is the subject of current
work.
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Fig. 5. Experimental steered response patterns of a real signal consisting of
all aliased frequencies: (a) 1 tone, (b) 2 tones, (c) 3 tones, (d) 5 tones, (e) 10
tones, (f) 100 tones. Careful examination of the plots in comparison with Fig. 1
reveals that the SRP method fails to capture the bifrequency terms present with
a nonstationary signal.

VI. CONCLUSION

This paper has proposed a definition of the broadband beam-
pattern. It was shown that in order to characterize the time-do-
main response of a microphone array to an impinging broad-
band plane wave signal, the signal’s bifrequency spectrum must
be considered. The BST was derived as the limiting case of the

Fig. 5. (Continued.) Experimental steered response patterns of a real signal
consisting of all aliased frequencies: (a) 1 tone, (b) 2 tones, (c) 3 tones, (d) 5
tones, (e) 10 tones, (f) 100 tones. Careful examination of the plots in comparison
with Fig. 1 reveals that the SRP method fails to capture the bifrequency terms
present with a nonstationary signal.

broadband beampattern as the number of sensors tends to in-
finity. The aliasing conditions in broadband arrays were then
derived based on the effect of estimating the BST with a discrete
aperture. Unless a wideband signal possesses a strong harmonic
component, spatial aliasing is not experienced with broadband
signals. It was also revealed that the well-known and extensively
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Fig. 6. (a) Experimental steered response pattern of a speech signal with a
34-cm sensor spacing and (b) power spectral density of speech signal. A sig-
nificant portion of the signal’s energy falls above the spatial Nyquist cutoff fre-
quency of 500 Hz; however, due to the broadband and nonstationary nature of
speech, the broadband steered pattern shows no aliasing artifacts.

used SRP algorithm captures only the stationary portion of the
broadband steered response pattern.

More generally, the results of this paper point to a need to an-
alyze broadband arrays in a distinct fashion to their narrowband
counterparts. One cannot simply “superimpose” narrowband
array results onto broadband arrays without careful thought.

APPENDIX

Consider a source signal of the form:

(67)

The corresponding Fourier transform is written as

(68)

By definition, the bifrequency spectrum is given by

(69)

Since , where

otherwise
(70)

one obtains

(71)
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