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Abstract—In this paper, the performance of the cooperative mul-
tiuser direct-sequence code-division multiple-access (DS-CDMA)
system is analyzed in the asymptotic regime where both the
spreading codes and the number of users grow unboundedly
large with the same ratio. Assuming that each terminal is paired
with another user which, in addition to transmitting its own data,
estimates and relay the information transmitted from its partner, a
simple approximate signal-to-interference-plus-noise ratio (SINR)
expression is derived that is independent from the spreading
codes and explicitly accounts for the effects of the multiple-access
interference (MAI) and the relay noise. The so-obtained SINR
expression is then computed based entirely on the available local
information and without any knowledge about the interfering
users. The results obtained above are then used to optimally design
the cooperative system. In particular, it is shown how the amount
of cooperation between each collaborating pair can be adjusted to
simultaneously achieve a preassigned target SINR for both users.
Based on the local information, the globally optimal amount of
the relay power is obtained that maximizes the achieved SINR at
the access point. It is shown that increasing the relay power does
not necessarily result in improving the quality of reception at the
access point and, to maximize each user’s SINR, its relay power
should be carefully adjusted based on the environmental parame-
ters such as the interpartner channel link and the powers of MAI
and the relay noise. The connection between the cooperative and
the conventional multiuser systems is also studied and simulations
are used to demonstrate the validity of the analytical results.

Index Terms—Cooperative communications, cooperative system
design, multiuser networks, performance analysis.

I. INTRODUCTION

O NE of the major challenges in wireless communications
is the severe fluctuations in the received signal power

due to the inherent fading effect of wireless channels. An ef-
fective method to counter the detrimental impact of fading is
to exploit diversity techniques whereby redundant replicas of
the same signal are transmitted in different time or frequency
slots, or, alternatively, from multiple locations [1]–[3]. In partic-
ular, the latter approach which is known as spatial diversity tech-
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nique has gained a significant attention as it may not entail any
delay or spectrum expansion while can be used in conjunction
with the other forms of diversity [4]–[6]. Spatial diversity may
be achieved by means of sending the same data from multiple
transmit antennas, aiming to feed the receiver with different in-
dependently faded copies of the transmitted data. Unfortunately,
practical constraints such as size, cost, complexity, and power
consumption may render it infeasible to equip the transmitter
with multiple colocated antennas [7]–[11]. This fact has recently
sparked a surge of research on providing spatial diversity by the
alternative means of cooperation among terminals distributed
in the network [7], [8], [12]–[15]. Commonly known as coop-
erative diversity to underline its distinction to the conventional
form of spatial diversity, this novel scheme is based on the col-
laboration among single-antenna terminals which not only may
transmit their own signals but also emulate virtual antenna ar-
rays by relaying the received information from their partners.

In this paper, we are concerned about the cooperative diver-
sity in multiuser direct-sequence code-division multiple-access
(DS-CDMA) systems. Cooperative DS-CDMA systems have
been introduced to the literature by the pioneering work of
Sendonaris et al. [7], [8] wherein a pair of users with orthogonal
spreading codes is considered and the effect of cooperation
between the pair on each user’s throughput is investigated.
The design of cooperative DS-CDMA systems has been gen-
eralized in [16] to the multiuser scenario with nonorthogonal
user spreading codes. Building upon the assumption that all
interterminal channel links, the spreading codes, and the relay
noise powers are globally known, the authors of [16] propose
the use of the minimum-mean-squared error (MMSE) receivers
at the relays and the destination (access point) to recover
the transmitted signal from the user of interest. Taking into
account the presence of multiple-access interference (MAI),
the decode-and-forward (DF), and amplify-and-forward (AF)
relaying schemes for multiuser cooperative systems are studied
in detail in [11]. The authors of [11] trade the global knowledge
of the interterminal channel links for some feedback from the
cooperative terminals to form a blind MMSE receiver estimate
at the access point. In [17] and [18], idle terminals are recruited
as relays and, in conjunction with the active terminals, form
a spectrally-efficient cooperative multiuser system. The appli-
cation of cooperative diversity to asynchronous DS-CDMA
systems is studied in [19] while the effect of out-of-band
relaying to increase the capacity of cooperative DS-CDMA
systems is investigated in [20].

In spite of many recent advances in analysis and design of
the cooperative systems, there is a real need to improve our
in-depth understanding of the isolated effects of the parameters
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influencing the performance of the multiuser cooperative sys-
tems. The parameters of interest include but are not limited to
the transmission power quota dedicated by each user to relay for
its partner, the level of MAI inflicted from other active users,
the interpartner channel links as well as the relay noise power.
The understanding of the effects of the above parameters not
only facilitates a more accurate knowledge of the receiver per-
formance, but also is an indispensable prerequisite to optimally
design any practical cooperative system. Let us give the fol-
lowing explanatory example. Consider a pair of partnering users
in a multiuser cooperative DS-CDMA system. Either member of
this pair is constrained by a preassigned limited power resource
a percentage of which is used to transmit the user’s own signal
while the rest is spent to relay for its partner. Taking into account
the MAI from the other active users as well as the relay noise, is
it possible to simultaneously achieve a given target signal-to-in-
terference-plus-noise ratio (SINR) pair at the access point just
by adjusting the power percentages at which the two partners
transmit their own signals? If it is possible, what is the optimal
power percentage pair that achieves the given target SINRs?

Finding an effective solution to such a problem largely de-
pends on the existence of a simple analytical expression that
clearly explains the effects of the parameters influencing the re-
ceiver SINR performance. However, even if a simple matched-
filter (MF) is used at the access point, it turns out that the SINR
of the multiuser cooperative system is an extremely complicated
function of all users’ spreading codes. This, in turn, results in the
obscurity of the connection between the parameters of interest
and the receiver performance.

Recently, the large system analysis approach [21]–[25] has
shown its effectiveness in tackling quite similar problems in the
conventional (noncooperative) multiuser DS-CDMA systems.
Large system analysis techniques are based on the assumptions
that the user spreading codes are the realizations of some in-
dependent and identically distributed random vectors and the
number of users and the spreading factor go to infinity with the
same rate. Under these assumptions it can be shown that the re-
ceiver SINR converges to a simple deterministic value that is
independent of the spreading codes. This enables to uncover
the effects of many physical parameters of interest on the re-
ceiver performance which remain hidden when using the clas-
sical nonasymptotic performance analysis techniques. Interest-
ingly, the results obtained based on the large system analysis
turn out to hold with high accuracy in the practical systems with
typical number of users and the common values of spreading
factor [21]–[25].

Although the large system analysis is now a well-established
approach to evaluate the performance of the noncooperative
DS-CDMA systems, to the best of our knowledge, it has not
been used before to investigate the performance of multiuser
cooperative DS-CDMA systems.1 In this paper, we adopt the
above approach to analyze and design multiuser cooperative
DS-CDMA systems. We use the transmission protocol of [11]
(see, also, [7], [8], and [14]) wherein the users are paired and
each user estimates the symbol transmitted from its partner and,

1We should remark that the large system approach has been recently applied
in [26] and [27] to analyze the single-user multi-relay cooperative DS-CDMA
systems.

then, relay it to the access point. Similar to [7], [8], [17], and
[18], we limit our discussion to the suboptimal yet practical sce-
nario wherein MF is used at all relays and the access point and
leave the more involved analysis of the MMSE receiver-based
multiuser cooperative systems to our later reports. The main
contributions of the paper are as follows.

• Assuming that the number of users and the spreading factor
go to infinity with the same rate, a simple approximate
SINR expression is obtained that is independent of the
spreading codes while it explicitly accounts for the effects
of the parameters such as MAI and the relay noise.

• Although the SINR of every user is affected by the signals
transmitted from the interfering terminals, it is shown how
to compute each user’s SINR based only on the local in-
formation distributed among that user, its partner, and the
access point and without requiring any feedback from the
interferences. This enables us to propose a simple tech-
nique that solely relies on the available local information
to determine the particular amount of cooperation between
the partnering pair that simultaneously achieves the target
SINRs for the two partners.

• Based on the available local information, the globally op-
timal amount of cooperation that should be offered from
each user’s partner to maximize the user’s SINR is derived.
It is shown that, due to the presence of MAI and noise, the
user’s SINR is not necessarily an increasing function of the
amount of cooperation offered by its partner, and, even in
some cases, the partner may have a detrimental effect on
the reception performance at the access point. Sufficient
conditions under which the cooperation from the partner
decreases (increases) the user’s SINR are obtained.

• The connection between the receiver performance in the
cooperative and the noncooperative systems is investigated
and special scenarios are explored wherein the SINR per-
formance of the cooperative system is the same as that of
an equivalent noncooperative counterpart.

The rest of the manuscript is organized as follows. Section II
presents the signal and the receiver model and describes the
cooperative protocol. Section III includes the receiver perfor-
mance analysis while Section IV shows how the so-obtained
analytical results can be used to optimize the cooperative
communication scheme. Computer simulations are presented
in Section V and the paper is concluded in Section VI.

Notation: Uppercase and lowercase bold letters denote ma-
trices and vectors, respectively. , and stand for
the th column, the th entry, and the trace of a matrix, re-
spectively. is a matrix obtained by deleting the columns

of and is a vector achieved by deleting the th
entry of . is the identity matrix while denotes a
diagonal matrix. , and are the conjugate, the
transpose, and the Hermitian transpose, respectively. is
the 2-norm of a vector or a matrix. , and
denote the statistical expectation, the conditional statistical ex-
pectation, and the variance, respectively. stands for the
real part while denotes the absolute value. is the Kro-
necker delta and stands for the almost sure convergence.
As , we use to show that
for two random variables and .
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II. SYSTEM DESCRIPTION

We consider a -user cooperative synchronous DS-CDMA
system wherein each user is paired with a
unique partner which, in
addition to transmitting its own information, exclusively relays
information for user . It is assumed that all users are able to
operate in the full-duplex mode and perform perfect echo can-
cellation [7], [8], [11], [19]. Note that the relaying strategy is not
required to be bidirectional, and hence may be different
from [11]. Similar to [11] (see, also, [7], [8], and [14]), we use
the following two-phase AF protocol for the cooperative infor-
mation transmission: During the odd transmission intervals each
user transmits its own information that is received by all other
users as well as the access point. In this phase, each user also
uses an MF to obtain a soft estimate of the symbol transmitted
from its partner. During the even transmission intervals, all users
behave as relays by simultaneously transmitting the normalized
version of the so-obtained symbol estimate of their partners.

Denoting the access point as terminal , the discrete-
time received signals during the odd transmission intervals at
the terminals and the even transmission intervals
at the access point can be written as

(1)

(2)

where is the channel link from terminal to terminal
and is given by with and repre-
senting the average power transmitted from the th user during
two consecutive transmission intervals and the fading coeffi-
cient between terminals and , respectively. The weighting
factor is the ratio of the th user transmitted en-
ergy in the odd symbol intervals to the total energy transmitted
from this user during two consecutive transmission intervals,
is the unit-energy spreading vector of user and
and are the th zero-mean unit-variance i.i.d. symbol of
the th user data stream and the normalized soft estimate of
this symbol obtained at , respectively. The symbol estimate

is normalized to maintain the same energy level as ,
avoiding an over-quota power transmission during the relaying
phase. Finally, is the zero-mean noise at terminal with

, that is, the noise is temporally
and spatially white with probably different powers at different
terminals.

Note that the flat fading channel assumption is used mainly
for the ease of exposition as well as to avoid the intertwined ef-
fects of the user cooperation and the frequency-selective fading
channel on the receiver performance (see [7], [8], [11], and
[16]–[19] for a similar treatment) and our results can be readily
generalized to the frequency selective fading scenario. Denoting
the length of each transmission interval as , it should also
be mentioned that the th user transmitted energy during the
odd and even transmission intervals are, respectively, given by

and , keeping the total transmitted energy
during two consecutive transmission intervals equal to . In

fact, by increasing in the interval , one can increase the
th user allocated power for the transmission of its own symbol

at the cost of decreasing the power level at which this user relays
for its partner. Note also from (2) that each user employs its own
spreading code to spread the estimated symbol of its partner.

Let us denote
, and

, where . Equation (1) can
be represented as

(3)

Following (1) and assuming that the terminal has the
knowledge of , and , the filter matched at this
terminal to the signal received from user is given by

(4)

and, hence, the (unnormalized) soft estimate of is equal to
. From (3), (4), and the expression

of , it follows that

(5)

and

(6)

where

(7)

(8)

It is obvious that

(9)

where the expectations are over the transmitted symbols and
noise. Note from (6) that is the sum of a scaled version
of by the fix factor of and a corrupting random term

. The corrupting term is the normalized version of the
soft symbol estimation error at the relay due to the noise as
well as the residual MAI from all interfering users (users other
than and ).

To represent in a more compact form than
(2), let us introduce and

, and
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. From (2) and (6), it
follows that

(10)

Using (3) and (10), the received data vector at the access
point corresponding to two consecutive transmission intervals is
given by

(11)

Denoting , it can be readily shown from
(8) that

(12)

where represents the residual MAI induced by user
at the MF output of the relay .

Due to the access point’s limited processing power as well as
the practical complications in computing the MMSE multiuser
receiver coefficients in a cooperative system (see [11] for a de-
tailed discussion), similar to [7], [8], [17], and [18], we assume
that the access point intends to use the suboptimal but more prac-
tical MF to recover from . Introducing
and , the receiver vector is given by

(13)

While the first term at the right-hand side (RHS) of (13) rep-
resents the vector matched to the signal carrying the main part
of the energy of and impinging from users and ,
the second term is due to the residual interference inflicted by
the th user at the MF outputs of all users in the network other
than the pair and . Note from (12) and (13) that capturing
the residual MAI energy of the th user requires the knowl-
edge of the received powers as well as the
channel links at the access
point. While is assumed to be known at and,
hence, may be fed back to the access point, none of the terminals
have the means to follow the interterminal interfering channel
links . Therefore, it is
more practical to ignore the residual MAI energy of con-
tained in the signals transmitted from the users other than and

and use

(14)

as the approximated MF at the access point (see also [11] for a
similar treatment). It should also be mentioned that, following
the argument in [11], if the relayed noise power is fed back
from all users to the access point, then a subspace-based esti-
mation technique can be applied to estimate the interterminal

interfering channels, facilitating obtaining an estimate for .
However, this approach demands for an excessive computa-
tional complexity overhead in return to almost no receiver
performance improvement [11].

Applying to the received data , the th user’s energy
at the receiver output is

(15)

Denoting the th user’s SINR as , it follows from (11) and
(15) that

(16)

where

(17)

and

(18)

with . Note that is due to the residual
MAI after despreading at the output of the terminals .
Using (8), it can be readily shown that

(19)

Note that, according to (9), the diagonal entries of can be
more compactly represented as

(20)

As it can be observed from (16)–(19), depends on all param-
eters in the system, that is, all the spreading codes ,
all the weighting factors , all the channel links be-
tween the users and the access point , all the noise
powers , and, in addition, all the interterminal
channel links which are unknown
unless and are partnering users. This very crowded scene
with unknown parameters hampers
obtaining any clear insight into the performance of the coop-
erative system and makes it practically impossible to analyze
the isolated effect of individual parameters on the users’ SINR
and distinguish the parameters with significant impact on the re-
ceiver performance from those with marginal effect. More im-
portantly, this fact also poses a major challenge when one in-
tends to optimally design the cooperative system. For instance,
exploring how and depend on the weighting factors
and is of vital importance to optimize the above weighting
factors aiming to achieve the maximum gain from the coopera-
tive communication system at hand.
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It should also be taken into account that as the number of
parameters that contribute to the receiver SINR is proportional
to the square of the number of terminals, any approach taken
to analyze the receiver performance should be scalable when
the number of terminals grows. In the next section, the asymp-
totic analysis approach for large CDMA systems with random
spreading codes [21]–[25] will be adopted to provide a simple
yet reliable approximate SINR expression that only depends on
a few parameters. As it will be shown, the number of these pa-
rameters does not grow with the number of terminals, and, more
interestingly, all of these parameters are known or can be easily
estimated.

III. ASYMPTOTIC PERFORMANCE ANALYSIS

In this section, we analyze the SINR performance of the co-
operative multiuser DS-CDMA system when the user spreading
codes are i.i.d. random vectors and both and go to infinity
with the same rate. Then, we propose a technique to compute
the SINR expression based only on the local information dis-
tributed among the user of interest, its partner, and the access
point.

Note that analyzing SINR is of major practical importance
not only due to the fact that the probability of error at the MF
output of the access point is a decreasing function of the user
SINR, but also because of the fact that an increased SINR due to
the cooperation received from the terminal makes it pos-
sible to decrease the th terminal transmission power without
increasing the probability of error at the access-point. Moreover,
it can be shown that the increased SINR due to the cooperation
may easily counter the effect of the repetition-based cooperation
on reducing the throughput (see, for instance, [7]). It should also
be mentioned that an increased SINR facilitates using higher-di-
mensional signal constellation or multiple spreading codes per
user (which directly result in increasing the transmission rate),
while keeping the probability of error at the access point below
a required level. Note also that all practical CDMA systems use
automatic repeat request (ARQ) when the user’s received signal
quality is not high enough [28]. An increased SINR in the con-
sidered cooperative system directly results in less ARQ, and,
hence, higher throughput.

Following two common assumptions [21]–[24] will be used
throughout the rest of the manuscript:

A1) for where the entries
of are zero-mean unit-variance i.i.d. random variables
with a finite eighth-order moment.

A2) There is a constant such that
.

The following lemma is critical for our later developments.
Lemma 1: If goes to infinity with , then

(21)

where

(22)

We also have

(23)

and

(24)

(25)

(26)

Proof: See Appendix B.
Let us turn our attention to obtaining the limiting value of
as goes to infinity while . It can be observed

from (16)–(18) that obtaining the asymptotic value of re-
quires computing the limiting value of . According to
(12), (18), and (19), the latter quantity is the sum of the terms
that are of up to the eighth-order of the entries of the spreading
codes.2 Note that applying classical techniques such as Borel-
Cantelli lemma [22], [23], [25] to prove the almost-sure con-
vergence of requires obtaining the fourth-order central
moment of this quantity, which, in turn, necessitates computing
up to the thirty-second-order cross-moments of the entries of the
spreading codes. To avoid such an extremely tedious computa-
tion, we use (24)–(26) along with the fact that to
approximate

(27)

Using (27) in (18), it directly follows from (16) and (17) that
is well approximated by

(28)
Note that does not necessarily converge to in the exact
mathematical sense. However, simulation results in Section V
show that, even for typical values of and , the difference
between and remains in the range of a small fraction of dB.

The following theorem obtains the limiting value of in the
asymptotic regime of our concern.

Theorem 1: As goes to infinity with , we have
(29) as shown at the bottom of the next page, wherein [see (30)-
(31) also at the bottom of the next page].

Proof: See Appendix C.
The following remarks are in order.
Remark 1: As follows from (14), the access point completely

suppresses the relayed signals received in the even transmission
intervals if at least one of the following conditions holds: a)

, that is, uses all of its transmission power to
send its own information symbols during the odd intervals; b)

, that is, the communication link between and
the access point is in deep fade; c) , which, according to
(23), corresponds to the case when the link between the pair
and is in deep fade. Noting to (29), the asymptotic value of

2It should be mentioned that the SINR expression of a MF in a conventional
noncooperative CDMA system involves only up to the fourth-order entries of
the spreading codes [21].
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simplifies in each of the above cases to
which is exactly the asymptotic SINR expression derived in [21]
for the noncooperative DS-CDMA system with the users’ trans-
mission powers of .

Remark 2: According to (29), when the link between the pri-
mary terminal and the access point is in deep fade, that is,
when , the asymptotic SINR due to the relayed signal
from is given by

(32)

It should be noticed from (32) that is an increasing func-
tion of , and . Moreover, if con-
verges to one, or, equivalently, approaches , we have
that . According to [21], this
is the SINR of user in a noncooperative system wherein
the transmission power of user is given by

.
Remark 3: As it can be observed from (29)–(31) and the def-

inition of in (23), the asymptotic value of is independent
from all spreading codes and noise powers .
More importantly, only depends on .
Through , and also depends on some weighted av-
erages of and , while it is en-
tirely independent of all other channel links. Note that as
and are known at the access point,
and may be obtained at this terminal from (30) and (31), re-
spectively. However, it is more appealing in practice if one does
not need to rely on the knowledge of all to
compute and . Apart from the above concern, the major
practical difficulty in computing is due to the need for deter-
mining . According to (23), this parameter depends on ,
which, itself is a function of a weighted average of unknown

. The following theorem addresses the
above impediments.

Theorem 2: Assume that the interterminal fading coefficients
are independent random variables with

for . Then, as goes to infinity while

(33)

(34)

(35)

Moreover, we have

(36)

(37)

(38)

where is the received signal at the access point in the non-
cooperative mode, that is, when for .

Proof: See Appendix D.
Convergences (33)–(35) show that, in the asymptotic regime

of our concern, in fact are only dependent on
and but not on

and . Moreover, as it can be observed from (36)
and (37), the knowledge of and is not required
to obtain and in practice and the aforementioned param-
eters can be directly computed from the signal received at the
terminal and the access point during only one odd trans-
mission interval. Similarly, as it follows from (38), if and
are known at the access point, only one noncooperative symbol
transmission suffices to obtain at this terminal. In the absence
of a noncooperative symbol transmission mode, can be alter-
natively obtained from (35). The fact that (35) depends only on

is practically appealing since are
mainly determined by the transmitted power and the path-loss
and, hence, do not require frequent estimation updates.

Investigating (23), (29), (36)–(38), it can be observed that if
only the elements of the set

(39)

(29)

(30)

(31)
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are known, then can be determined from (29). This is in sharp
contrast to the nonasymptotic scenario wherein, as discussed
at the end of Section II, depends on all parameters in the
system. To explore this property in more details, let de-
note the subnetwork consisting of the terminals and the
access point and denote its complement that consists of
all other terminals . Note that
is viewed by as a disruptive subnetwork that interferes
with the communication among its members. Assume that, if
required, the members of are capable of sharing their
knowledge about or collaborating in the estimation of the ele-
ments of . Then, it can be observed from (39) that all the ele-
ments of , and, therefore, , can be autonomously obtained
by using a very limited information exchange among its
members and without requiring any feedback from or any mea-
surement on the members of .

Note also that if , that is, the terminal relays
for , then, the expression for is simply given by ex-
changing the places of and in (29). In such a case, we
have (40) as shown at the bottom of the page. Moreover, it is
easy to verify that depends only on the elements of ,
the set obtained by substituting and in lieu
of and in (39). Therefore, can also
be computed solely based on the information distributed among
the members of . It is of a major practical importance
that can autonomously compute and entirely
based on its available local information. Further elaboration in
this matter is provided in Section IV where it is shown how
and can properly be chosen to optimize the performance
of the cooperative communication scheme.

IV. DESIGN OF THE WEIGHTING FACTORS

Assume that aims to solve the following problem:
P1) Is it possible to achieve a target SINR pair

just by adjusting and ?
If such a SINR pair is achievable, what is the weighting
pair that obtains ? As and
depend on all parameters in the system, to solve the
above problem, requires to have the knowledge
of all the system parameters many of which cannot be
easily estimated in practice. To get around this hurdle,

can set and, instead,
consider solving the following problem:

P2) Is it possible to achieve a target asymptotic SINR pair
just by adjusting and ? If such

an asymptotic SINR pair is achievable, what is the
weighting pair that obtains ?
The technique to solve P2) is quite straightforward: Let

and be the unknown variables of interest. Then,
knowing all the other parameters in and , the

RHS of (29) and (40) can be considered as two rational
functions of and , respectively, denoted by

and . Then,
requires to solve the following set of two equations:

(41)

for and . As and
are rational functions, (41) can be

cast as a pair of polynomial equations and solved using
standard numerical techniques (for a comprehensive
treatment of these techniques, see, for instance [31]).
Note that the second equation in (41) is in fact a polyno-
mial equation of order 2 in terms of , and, therefore,
can be used to obtain a solution for in terms of
in the form of . Therefore, one may alter-
natively substitute the latter result in the first equation
of (41) to obtain . The
latter equation can be easily converted to a univariate
polynomial equation . As such, the joint
solution of the bivariate polynomial equations (41)
boils down to finding the possible roots of the univariate
polynomial equation in the interval .
This can be easily done by simple standard bisection,
Newton-Raphson, or Bairstraw ([32, Ch. 3, Sec. 4.4])
root finding methods. Note that, as is a
polynomial equation, one may use Sturm’s theorem
(see, for instance, [32, Ch. 3, Sec. 4.2]) prior to solving
it to determine the number of possible roots in .

If among all pairs of solutions to (41) there is no pair both
of whose entries are in the interval , then is not
achievable. On the other hand, if such a solution exists, then, it
is .

Note that when and are large enough, P1) and P2) tend
to become equivalent problems. Therefore, if is not

achievable, so is not . In turn, if is achiev-

able, should also be achievable and

.
It is straightforward to generalize the proposed algorithm for

optimizing and to the cases where : Con-
sider the general case where nodes cooperate
such that for and .
Note that can be any integer between 2 and . For a general
, it is direct to show from (29) that (41) can be extended to

...
(42)

(40)
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TABLE I
THE BEHAVIOR OF �� AS A FUNCTION OF � � ��� ��

where the functions at the RHS of (42) are rational functions.
As such, the above set of equations can be cast as polynomial
equations and can be efficiently solved using a variety of con-
ventional numerical techniques [31]. Note that, we are only in-
terested in a possible set of solutions where

for . This significantly shrinks the
search region and facilitates choosing a proper initializing point
to the iterative algorithm used to solve (42).

Apart from making it feasible to jointly optimize and
, our results in Section III facilitate the analysis of the

effect of on the SINR of user . In particular, in con-
trary to what might be the initial perception, it can be shown
from (29) that the SINR performance of the latter user does
not necessarily improve if the terminal reduces
to decrease the power at which it transmits its own symbols,
in favor of increasing the power at which it relays the esti-
mate of . To discuss this issue in more detail, let us take
the derivative of in (29) with respect to to obtain

where is a function of and

(43)

We are interested in analyzing the behavior of as a func-
tion of and determine , the optimal value
of that maximizes . Note that has two roots
at and and the behavior of

as moves from 0 to 1 only depends on the value of
and the sign of . For instance, if while ,
then for and
for . Hence, is an increasing function of
when while it is a decreasing function of
when , and, consequently, . De-
pending on the sign of and the inclusion of in one of the
intervals , or , the behavior of as a
function of can be classified into six different cat-
egories illustrated in Table I. In Table I, stands for for
the case when .

It is important to notice that may use its available local
information to compute and from (43), and, then, directly
obtain from Table I. Note that, depending on and the
sign of takes one of the following three values:

• : In such a case, the maximal value of is
obtained when allocates all of its transmission power
to relay for terminal . Note that, this maximal value is
achieved at the expense of not transmitting .

• : Such means that the relay terminal
has a destructive effect on the SINR of the user and the
terminal relaying for user should be changed.

• : In this case, is maximized for some values
of . Choosing allows not only to
maximize , but also to allocate some power to transmit

.
It should be noticed that, under perfect relaying conditions,

that is, in the absence of MAI and the relay noise, is al-
ways equal to zero. To clarify this point, let us consider a hypo-
thetical MAI-free system with . It is easy to verify for
such a system that and . Using the latter
equation in (23), it follows that . Using the above results
in (43), it is immediately obtained that and ,
and, therefore, according to Table I, . In the practical
scenarios where MAI is present, it is quite difficult in general to
provide a straightforward physical interpretation for all of the
six different cases shown in Table I. However, under some con-
ditions, Table I can be used to derive significant insight into the
effect of physical parameters on . The following theorem
is based on the results given in Table I.

Theorem 3: Let and
. Assume that and

for and denote .
Then, in the high SNR regime as and converge to zero,
if

(44)

(45)

we have that . In turn, if

(46)
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(47)

then .
Proof: See Appendix E.

Note that measures the average amount of coop-
eration among the terminal pairs in the system. For instance,
when all users transmit with equal average transmission power

, we have . In gen-
eral, the smaller the , the less the tendency of the terminals to
transmit their own data and the more the amount of collaboration
that the terminals are willing to offer to their partners.
measures the quality of the channel between the th user and
the terminal relative to the quality of the channel between
the th user and the access point. Finally, note that

(48)

where the inequality follows from the independency of
and and the Jensen’s inequality. As it can

be observed from (48), is a measure that shows the
average quality of the channel between an arbitrary user and
the terminal relative to the average quality of the channel
between that user and the access point. Obviously, we have
that . Noting to the above interpretations
of , and , it follows from inequalities (44) and
(45) that if the channel quality between the th user and its
relay is so poor that drops below times

, and, moreover, the average amount of collaboration
between the cooperating pairs is so high that the relayed signal
from in the even transmission intervals is subject to a
significant amount of MAI, then the relayed signal from
has a destructive effect on the SINR of the terminal . In such
a case, it is better that does not relay for user at all,
or, alternatively, the access point ignores the received signal
in the even transmission intervals when estimating . On
the other hand, if the average collaboration among the users
is not excessively high such that (47) holds and, moreover,
the channel quality between the th user and its relay is good
enough such that (46) is satisfied, then the SINR of the th user
is maximized if dedicates all of its transmission power to
relay the estimate of . Note that all parameters in (44)–(47)
are known at , and, therefore, either of the access point
or the terminal is able to verify when (44) and (45) (or,
(46) and (47)) hold and act accordingly.

Table I can also be used to prove the following simple result
concerning the case when is the only cooperative terminal
in the system.

Theorem 4: Assume that is the only cooperative ter-
minal in the system, that is, for all . Then, in
the high SNR regime as converges to zero, we have

where

(49)

Fig. 1. SINR results versus ��� when � � � and � � ��� for � �

�� � � � � � with 	 � ��� (upper subplot) and 	 � ��� (lower subplot).

Proof: See Appendix E.
Note that, through depends on and, hence,

can be changed by adjusting .

V. SIMULATIONS

Following A1) and [21]–[24], we randomly generate the
entries of the spreading codes from in all examples.
Moreover, in all figures but the last, .
Throughout the simulations it is assumed that for

, and, unless otherwise stated, for
and all the interterminal fading coefficients

are randomly and independently drawn from the zero-mean
unit-variance circular Gaussian distribution. For the sake of
simplicity, we consider the bidirectional cooperation scheme
wherein for , and without any loss
of generality, we choose the first user as the user of interest and
the second user as its partner.

In Fig. 1, and for . In this
example, a total of 100 sets of spreading codes are randomly
generated and then, for each set, the resulting is displayed
versus and is compared to . Fig. 1 also shows the empir-
ical average curves of and . The upper and lower subplots
display the results corresponding to and ,
respectively. As it can be observed from the figure, the empir-
ical average curves of and are very close. This verifies
that in (28) is a reliable approximation of in (16). Inter-
estingly, both of the above curves are also very closely followed
by the curve of the asymptotic SINR derived in (29). This,
in turn, verifies the reliability of our asymptotic results in pre-
dicting the performance of the practical multiuser cooperative
systems with bounded values of and . It can also be no-
ticed that, as the spreading factor increases from to

, all the aforementioned three curves become almost
indistinguishable. This is expected, since both the approxima-
tion in (28) and the asymptotic SINR expression in (29) are ob-
tained based on the assumption that goes to infinity. It can
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Fig. 2. SINR results versus � when � � �� � � ���� � � �� � � � � � .

Fig. 3. � � � � �� and � � � � �� versus �� � � 	 for �� � 
 (dB) and
�� � � (dB).

also be observed that, as increases, the spread of different re-
alizations of around tends to decrease. For instance, while
the empirical root-mean-square (RMS) of at
(dB) is equal to 1.05 (dB) for , this value decreases to
0.7 (dB) for . This is due to the fact that any arbitrary
set of the spreading codes that satisfies A1) results in the same
asymptotic SINR.

In all the following examples is chosen and the
user spreading codes are randomly generated only once and kept
fixed throughout the simulation. All the empirical average re-
sults are obtained by averaging over 100 realizations of the in-
terterminal fading coefficients. In Figs. 2–5, the value of
is chosen equal to 15 (dB). Fig. 2 displays the curve of as
well as the empirical average curves of and versus for

and . As it can be observed
from Fig. 2, all three curves remain very close throughout the
whole range of . Fig. 2 also shows that, for the afore-
mentioned values of and the i.i.d. fading coefficients, is a
decreasing function of .

Fig. 4. SINR results versus � for the case that � � �� � � ���� � �
�� � � � � � , and � � ����.

Fig. 5. SINR results versus � for the case that � � �� � � ���� � �
�� � � � � � , and � � �.

The next example examines how one can, by adjusting and
, simultaneously achieve a target SINR pair for the first and

the second users. Choosing
(dB), and (dB), 100 sets of fading coefficients realiza-
tions are generated, and, then, for each set, (41) is numerically
solved to obtain and . If both entries of the so-obtained
pair are in the interval , the pair is feasible and is regarded
as the target weighting pair . Then, to assess how ac-
curately can deliver the target SINR pair, each of the
achieved target weighting pairs is used in (16) to obtain the cor-
responding values of and . Fig. 3 shows and

for all pairs of . The small values of
and show the effectiveness of the proposed technique to ob-
tain the target SINRs. Note that, the empirical averages of
and are only 0.09 and 0.19 dB, respectively, while the empir-
ical RMSs of and are 0.79 and 0.86 dB, respectively.

In Fig. 4, and are chosen to
guarantee (45). Moreover, to assure that (44) holds, each random
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Fig. 6. SINR results versus � when � � � for � �� � and � � ���.

realization of the fading coefficients is followed by a normaliza-
tion of such that . Fig. 4 shows the curve of
and the empirical average curves of and versus . As
it can be observed from Fig. 4, is an increasing function of

, or, in other words, is a decreasing function of the amount
of cooperation offered from Terminal 2. This observation veri-
fies Theorem 3 and shows that, under the conditions specified
by (44) and (45), cooperation deteriorates the reception quality.

Fig. 5 displays and the empirical averages of and
versus for the case that , and

. Note that these values of and guarantee that
both (46) and (47) hold. In such a case, as predicted by Theorem
3 and can be observed from Fig. 5, is a decreasing function
of .

Fig. 6 shows the SINR results versus when for
, that is, the only relaying terminal is Terminal 2. The

average transmit powers from all terminals but Terminal 2 are
equal to with (dB) while is determined such
that in (49) is equal to 0.5. As we can observe from the figure,
the experimental SINR curves are in accordance with their an-
alytical counterpart, and, in particular, the maximal value of
occurs around . This verifies the result of Theorem 4
and shows that can in fact be adjusted by tuning .

Fig. 7 shows a similar experiment as in Fig. 6 with the dif-
ference that is adjusted such that . Again, perfect
match between analytical and the experimental results can be
observed.

Fig. 8 displays the SINR results versus for the case that
, and (dB).

As can be observed, the asymptotic SINR more accurately
predicts the experimental SINRs for the larger values of .

VI. CONCLUSION

In this paper, the performance of large cooperative multiuser
DS-CDMA systems has been studied and, under various condi-
tions, the optimal amount of cooperation between the partnering
users has been obtained. Taking into account the practical im-
pairments such as the presence of MAI and the relay noise, a

Fig. 7. SINR results versus � when � � � for � �� � and � � ���.

Fig. 8. SINR results versus� for the case that � � �� � � �� � � ���� � �
�� � � � � � , and �	
 � �� (dB).

simple approximate SINR expression has been obtained that is
independent from the user spreading codes. Then, it has been ex-
plained how to compute the so-obtained SINR expression based
only on the local information available at the user of interest, its
partner, and the access point and without requiring any feedback
from the interfering users. The above results have then been used
to obtain the particular cooperating weight factors required to
simultaneously achieve a given target SINR pair for each part-
nering users. Based on the available local information, the glob-
ally optimal value of the relay’s cooperation weighting factor
has been derived and it has been shown that, due to the presence
of MAI and the relay noise, increasing the amount of coopera-
tion from the relay does not necessarily improve the reception
performance. The connection between the cooperative and the
conventional multiuser systems has been investigated and the
particular cases wherein the SINR expression in the coopera-
tive system simplifies to that of the conventional system have
been studied. Computer simulations have been used to verify
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the accuracy of the analytical results and the effectiveness of
the techniques to determine the optimal level of cooperation.

APPENDIX A
PRELIMINARY RESULTS

We need the following lemma from [22] and [25] to prove
Lemma 1 and Theorem 2.

Lemma 2: Let be an random matrix with uniformly
bounded second-norm for all and
be an random vector independent of where ’s are i.i.d.
zero-mean unit-variance random variables with a finite eighth-
order moment. Then, as goes to infinity

(50)

(51)

where is a random vector independent of and with the same
statistical properties.

Choosing , it immediately follows from (50) and (51)
that

(52)

where and are as defined in A1). The following theorem
is frequently used to establish our results.

Theorem 5: Let where is defined
as in A1). Assume that is a random matrix
independent of with uniformly bounded second-norm for all

. Let and . Then,
as and go to infinity while , we have3

(53)

(54)

Proof: To prove (53), first note that
. Using [29, Theorem 2], it can be shown that

. As is uniformly bounded, it follows
that is also uniformly bounded with probability
one and, hence, (50) can be used to prove that

(55)

where . Once again (50) can be used to show
that for , and, therefore

(56)

Using the latter result in (55), (53) directly follows.
Note that and are not independent from , and,

therefore, (51) is not directly applicable to prove (54). However,

3It has been earlier proved in [21] that the convergence in (53) holds in prob-
ability for a diagonal matrix �.

partitioning , and to ,

and , it is straightforward to show that

(57)

Using an argument similar to that prior to (55), it can be proved
that , and are also uni-
formly bounded. From (52) along with the boundedness of

, and it follows that all the first three
terms at the RHS of (57) almost surely converge to zero. Since

is uniformly bounded and , and
are statistically independent, (51) can be used once again to
prove that the fourth term at the RHS of (57) also almost surely
converges to zero. This completes the proof.

APPENDIX B

First, note that

(58)

As is bounded, the convergences (52)
and (53) can be used to prove the fact that

(59)

We have

(60)

where the convergence in (60) holds since
. This completes the proof of (21). Convergences (23) and (24)

are the immediate results of (7), (20), and (21). As, in the asymp-
totic regime of our concern, it holds with probability one that

, (51)
can be used in (12) to prove (25). Finally, (26) directly follows
if (52) is used in (12).

APPENDIX C

To prove the theorem, we first need to establish that

(61)

To show (61), let us use (11) and (12) to obtain

(62)
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where the diagonal matrix is given by

(63)

From (14) and (62), we obtain

(64)

To make the proof easier to follow, it should be mentioned that
we intend to use (54) to prove the almost sure convergence of
to zero. However, as , and, hence, the entries
of depend on the spreading codes, (54) cannot be applied
directly to (64). To get around this problem, we introduce

(65)

where is obtained by substituting in lieu of for
at the RHS of (63). Then, according to (64)

and (65), we have

(66)

where is a bounded scalar (it can be easily shown from (53)
that both and almost surely converge to

). As and for all ,
it follows that the RHS of (66) almost surely converges to
zero, and, hence, . Therefore, instead of proving

, we can equivalently prove that . Introducing
, it is straightforward to show that

and where and are two
permutation matrices. Hence, (65) can be represented as

(67)

From A1) it can be easily shown that is upperbounded.
As is statistically independent from the spreading vectors, it
immediately follows from (54) that . This completes the
proof of (61). Substituting (66) in (28), we obtain

(68)

To prove (29), it is required to derive the asymptotic limit of
all the terms at the RHS of (68). Let us first find the limiting
value of . Using (14) to obtain and applying (23)
and (52) to acquire the asymptotic limit of this random variable,
it is straightforward to show that

(69)

To derive the asymptotic value of , we first use (11)
and (14) and represent

(70)

where and

, while

. Applying a
similar technique as in (65)–(67), it can be proved for
that

(71)

where is obtained by exchanging for
in the expression of

the corresponding . Using A1), it can also be directly shown
that , and

are bounded. Therefore, one
can use (53) to obtain and

. Similarly, it follows

from (54) that . Using the asymptotic values of ,
and in (70) yields

(72)

Now, let us turn our attention to compute the limiting value of
, which, according to (11) and (14), is given by

(73)

with and

. It immediately

follows from (52) that .
To obtain the asymptotic value of , we can again use an ap-
proach similar to (65)–(67) and show that where

is obtained by substituting
in lieu of in the expression of

. Using (54), it can then be shown that
. Putting all pieces together, we obtain

(74)
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Using (69), (72), and (74) in (68) yields (29) wherein and
are given by (30) and (31), respectively.

APPENDIX D

To prove (33), first note that as are independent, so are
. Moreover, due to A2), the latter random variables

have bounded expectations and variances, and, hence, satisfy
the Kolmogorov condition .
Therefore, we have [30, Theorem 1.8.D]

(75)

This completes the proof of (33). Proofs of (34) and (35) are
similar to that of (33) and we skip them. Convergences (36)–(38)
can be proved as follows. From (3) we have

(76)

where
and , while

. As the entries
of are i.i.d. zero-mean unit-variance, and, moreover,

is upper-bounded, it follows
from (50) that ,
and, therefore

(77)

where the second convergence in (77) holds due to (56) and the
last convergence follows from (75). It can also be easily shown
from (50) that

(78)

Again, as the entries of are i.i.d. zero-mean with
variance , (50) and (56) can be used to prove that

. Finally,
it is direct to show that . Using the so-obtained
asymptotic values of , and in (76) yields

(79)

Convergences (36) and (37) immediately follow from the fact
that (79) holds for any arbitrary . To establish
(38), note that

(80)

APPENDIX E

Proof of Theorem 3: It can be observed from Table I that
if and , it is guaranteed that . Further,
it directly follows from the definition of that if , then

, that is, and are two equivalent
events (one yields another). From (43) along with the definition
of in (23), it can also be readily shown that

(81)

Using the assumptions given in the theorem in (33)–(35), it can
be verified that

. Substituting the latter limiting values in (81), (44),
and (45) follow. The proof of the second part follows the similar
steps and we skip it.

Proof of Theorem 4: As for all and
converges to zero, it follows from (31) that . Using the
latter result in (43) and noting to the fact that ,
we have

(82)

where is given in (49). As and , it
can be observed from Table I that

. This completes the proof of the theorem.
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