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On the Capacity of Log-Normal Fading Channels
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Abstract—In this letter we provide an analytical expression for
the moments of the capacity for the log-normal fading channel.
Since the developed expression involves infinite series, we show
that the error that results from the truncation of these series
is insignificant. We also analyze in more details the ergodic
capacity by giving a simpler expression for the remainder of the
truncated series. Relying on the fact that the sum of log-normal
Random Variables (RV) is well approximated by another log-
normal RV, we further utilize the obtained results to approximate
the capacity of diversity combining techniques in correlated log-
normal fading channels. The results that we provide in this
letter are an important tool for measuring the performance of
communication links in a log-normal environment.

Index Terms—Information rates, log-normal distributions, di-
versity methods.

I. INTRODUCTION

THE capacity of fading channels has attracted an extensive
interest in the last decade. This concern is motivated

by the need for a valuable tool to assess the achievable
performance of communication links over fading channels.
Although several studies on the capacity of different kinds
of fading channels are available [1]-[6], the results on the
capacity of log-normal fading channels are rather scarce. This
is to be contrasted to the fact that the log-normal distribution
is found to be the best fit to characterize several wireless
channels like, to name a few, indoor channels and Ultra
Wideband (UWB) channels [7]. In a recent study [8], we
have provided formulae to estimate the average capacity of
the log-normal channel and we have analyzed the capacity
with diversity combining techniques as well as the capacity in
interference-limited environments.

Higher order statistics (HOS) play generally an important
role in several areas of communications [9]. For example the
interested reader is referred to [10] for the use of HOS in
antenna subset diversity in fading channels. Due to the random
nature of the wireless channel, the capacity is generally viewed
as a random variable. As such the average capacity is not
enough to characterize the performance of the communication
system. One would be, for instance, interested in finding the
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variance of the capacity, which requires the computation of
the second-order moment. Several papers have addressed the
moments of the capacity for different types of fading channels
[11]-[17]. In this letter we provide a generic expression
to compute all the moments of the capacity in log-normal
fading channels. Since the obtained formula involves infinite
series, we study the error that results from the truncation
of these series. For the ergodic capacity, we further give a
simpler expression for the remainder of the series. Also, we
extend the second approximation given in [8] to allow for the
computation of higher order moments of the capacity. Finally,
we consider the capacity of diversity combining techniques
in a correlated log-normal environment. The results that we
provide in this letter are an important tool for measuring
the performance of communication links in a log-normal
environment, that supplement the performance analysis in
terms of outage probability that was conducted in [20], [21]
and the references therein. The remainder of the paper is
organized as follows, in Section II we derive the moments
of the capacity. In Section III, we study the average capacity
in more details. Based on the Gaussian approximation, section
IV provides a simple estimate of the moments of the capacity.
The obtained results are then used in Section V to calculate
the capacity of maximum ratio combining and equal gain
combining in a correlated environment. Numerical results are
provided in Section VI. Conclusions are given in Section VII.

II. THE MOMENTS OF THE CAPACITY

A. The Moments as an Infinite Series

In this paper, we are interested in deriving the moments of
the capacity defined as:

E[Cn] =
ξ

σ
√

2π

∫ +∞

0

lnn(1 + γ)
γ

e−
(ξ ln γ−μ)2

2σ2 dγ, (1)

where γ is the instantaneous SNR, ξ = 10
ln(10) = 4.3429, σ

and μ are, respectively, the standard deviation and the mean
of 10 log10(γ) and are expressed in dB. Note that we consider
that γ is normalized i.e., μ = ΓdB − σ2

2ξ with ΓdB = ξ ln(Γ) is
the average SNR in dB.

Theorem: The moments of the capacity are given by
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|E[Cn]−E[Cn]K |< n!e−
μ2

2σ2

(K + 1)!

⎛⎝1
2
|S(n)

K+1| erfcx
(
σ(K + 1)
ξ
√

2
+

μ√
2σ

)
+

1√
π

n∑
j=1

(√
2σ
ξ

)n−j

|S(j)
K+1|H−(n−j+1)

(
σ(K + 1)√

2ξ
− μ√

2σ

)⎞⎠
(11)

where S(n)
k denotes the Stirling number of the first kind, which

is equal to (−1)k−n times the number of permutations of k
symbols which have exactly n cycles (Section 9.74 in [19])
and where Hν(x) is the Hermite function [26] and erfcx(x) =
ex2

erfc(x) is called the scaled complementary error function.
Proof: By the change of variable y = ln(γ) in (1), the

capacity moments can be rewritten as

E[Cn] =
ξ√
2πσ

∫ +∞

−∞
lnn(1 + ey) exp

(
− (ξy − μ)2

2σ2

)
dy.

(3)
After some manipulations, the last integral can be rewritten as
follows:
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where Cj
n is the binomial coefficient. Since, for y > 0, we

have e−y < 1, then we may use the following identity [19,
Eq.(9.741.2)]:

lnj(1 + e−y) = j!
+∞∑
k=j

S
(j)
k e−ky

k!
. (6)

Plugging this last equality in the expression of E[Cn], we
obtain:
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as well as the fact that S(0)
k = δk, we obtain (2).

B. The Effect of the Truncation

In this section we study the error that results from the
truncation of the above series. Since this study hinges on
the theory of alternating series, it is useful to introduce the
following lemma. [19, (0.227)]

Lemma: Let
∑
k

(−1)kak be a convergent alternating

series, i.e., ak > ak+1 ≥ 0 and lim
k→∞

ak = 0. Then, we have

the following result:∣∣∣∣∣
+∞∑
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(−1)kak

∣∣∣∣∣ < aK+1. (10)

It can be easily shown that the n + 1 series that intervene
in (2) are alternating series. Consequently, if we denote by
E[Cn]K the truncated version of E[Cn] where all the series
are truncated at the Kth term, then using the lemma we obtain
the inequality given by (11) at the top of this page.

If K is selected large enough, using the fact that for large
x we have that {
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the last inequality reduces to
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For instance, if n = 1 (average capacity), the last inequality
reduces to

|E[C] − E[C]K | < ξ
√

2e−
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2σ2

√
πσ(K + 1 + ξμ

σ2 )(K + 1 − ξμ
σ2 )

. (13)

For a relatively large value of K , we will see in the numerical
results section that the impact of the truncation of the series
will be negligible.

III. THE AVERAGE CAPACITY

In this section we are interested in the first moment of
the capacity, the so-called ergodic capacity defined as E[C].
Setting n = 1 in (2), and using the following set of relations:{

S
(1)
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we obtain that the ergodic capacity of the log-normal channel
is given by1

E[C] = E[C]K +RK , (14)

where E[C]K is given by:
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and RK is the remainder of the series given by:
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For sufficiently large values of K , by using erfcx(x) � 1
x
√
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we obtain that
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Here two cases can be distinguished:

• First case (μ �= 0):
It can be easily shown using partial fractional decompo-
sition that
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where β(·) is given by [19, Eq. (8.372)] as
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where ψ(·) is the Digamma function defined by [19]

ψ(x) =
d
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ln(Γ(x)), (20)

where Γ(·) is the Gamma function. Finally, we obtain
that
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• Second case (μ = 0):

1We should note here that Schwartz and Yeh [22] obtained a similar
expression in the context of approximating the distribution of the sum of
log-normal random variables.

If μ = 0, we apply the same procedure and use the fact
that ((0.234.1) in [19])

+∞∑
k=K+1

(−1)k+1

k2
=
π2

12
−

K∑
k=1

(−1)k+1

k2
, (22)

to obtain that
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IV. A SIMPLE APPROXIMATION TO THE MOMENTS OF THE

CAPACITY

In [8], by approximating 1+γ by a log-normal RV, we were
able to provide a simple approximation to the average capacity.
We extend here this approach to obtain higher order moments
of the capacity. Hence we have C ≈ Ĉ ∼ N

(
μĈ , σ

2
Ĉ

)
, where⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
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.

Using the closed-form expression of the moments of the
Gaussian distribution provided in [18], the moments of the
capacity can be approximated as follows

E[Cn] ≈ n!σn
Ĉ

�n/2�∑
j=0

1
2jj!(n− 2j)!

(
μĈ

σĈ

)n−2j

. (24)

This approximation has the advantage of being simpler. How-
ever, its accuracy heavily depends on the value of σ: for
small values of σ this approximation will be more accurate,
but for large values of σ the approximation accuracy heavily
deteriorates. We will further investigate this point in the
numerical results section.

V. CAPACITY WITH MAXIMUM RATIO COMBINING AND

EQUAL GAIN COMBINING

At the output of an M -branch maximum ratio combiner
and equal gain combiner, the instantaneous received SNR is,
respectively, given by:{

γmrc =
∑M

i=1 γi,

γegc = 1
M (
∑M

i=1

√
γi)2.

Each SNR’s branch γi is log-normally distributed with a
logarithmic standard deviation equal to σi and a logarithmic
mean equal to μi = ΓdB − σ2

i

2ξ . As in [8], we resort to the log-
normal approximation [20]-[25] that states that the sum2 of
log-normal random variables can be correctly represented by
another log-normal RV. Therefore, γmrc and γegc will be viewed
as log-normal variates. The analysis in [8] was conducted in
independent fading. Since in practical cases correlation exists,
we generalize our previous work to account for any possible
correlation between the diversity branches. Here, we propose

2Since the square, the square root, as well as the multiplication by a constant
of a log-normal RV are all log-normal RVs, then γegc is also a sum of log-
normal variates.
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to use the extension of Wilkinson’s method developed in [20].
According to this method, we have the following expressions:⎧⎪⎨⎪⎩

μmrc = ξ ln(MΓ) − σ2
mrc

2ξ ,
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)
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where ρij denotes the correlation coefficient between
10 log10(γi) and 10 log10(γj). Note that for i.i.d. fading, these
expressions reduce to those in [8]. Finally, the capacity mo-
ments with MRC and EGC can be calculated by substituting
these values in the previously obtained results.

VI. NUMERICAL RESULTS

Figs. 1 and 2 show the first and second moments of the
capacity. The standard deviation is equal to 3 dB in Fig. 1
and to 6 dB in Fig. 2, and in both figures the sums in the
analytical formula are truncated at the 10th term. These figures
depict clearly the adequacy between the results obtained by
Monte-Carlo simulations and those generated by the analytical
formula (2). The approximation given by (24) is only accurate
for relatively small standard deviations. This is because (24)
is based on the well-known Fenton-Wilkinson approximation
which is not very accurate for large standard deviations. When
the standard deviation increases (like in Fig. 2), the accuracy
of (24) degrades3. This is, however, not the case for (2) which
retains its accuracy for all the values of σ, even for a small
truncation order like K = 10.

For the computation of the average capacity, at equal
complexity, the first approximation in [8] is the most precise,
because the coefficients ak in [8, (9)] are tailored in such a
way to give a very accurate approximation. As seen in Figs. 1
and 2, the accuracy of the second approximation in [8] (which
is given in (24) for n = 1) heavily depends on the accuracy
of the Fenton-Wilkinson method. The formula developed in
this letter (2) and [8, (9)] both give approximately the same
results and are identical4 to the results obtained by Monte-
Carlo simulations. However, the advantage of (2) is that it
provides a generic solution to compute all the moments of the
capacity.

The fact that truncating the series does not impair the
accuracy is depicted in Fig. 3, where we have plotted the
upper bound on the truncation error given by the right-hand
side of the inequality (12). It can be seen also that the error
decreases as the SNR increases.

Fig. 4 illustrates the capacity versus the SNR over a log-
normal fading channel with two different antenna settings;
M = 2 antennas (dual diversity) and M = 8 antennas.

3Note that the degradation will be more severe for higher standard devia-
tions.

4For the sake of clarity, the curve representing the performance of [8, (9)]
is not shown in the figure.
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The correlation model for these figures is exponential, i.e.,
ρij = ρ|i−j| with ρ taking the value 0.1. As described in
the figure, the logarithmic variance of the received power at
each antenna was set to either 5 or 6 dB. Here again, it can
be seen that the capacity generated by the analytical formula
accurately approximates the capacity given by Monte-Carlo
simulations.

VII. CONCLUSION

In this letter, we have provided an analytical expression for
the moments of the capacity of log-normal fading channels.
Because the developed expression contains infinite series, we
showed that the error resulting from truncating these series can
be neglected. Since the sum of log-normal RVs is well approx-
imated by another log-normal RV, the developed formula is
used as well to evaluate the capacity of uncorrelated/correlated
log-normal channels with Maximum Ratio Combining and
Equal Gain Combining. The analytical expressions obtained
match perfectly the capacity given by simulations.
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