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Abstract—As the nodes in wireless sensor networks (WSNs) are
independent units, an intensive communication among them is re-
quired to generate a common signal and synchronize before en-
tering a distributed beamforming (DBF) phase. Therefore, it is cru-
cial to select the participating nodes in DBF such that not only
the resulting beampattern meets the beamforming design require-
ments but also the internode connectivity is retained.

We consider a DBF technique for WSNs with uniformly dis-
tributed nodes and derive an average beampattern expression for
a general scenario wherein the participating nodes in DBF are lo-
cated on a ring with arbitrary inner and outer radii. It is proved
that increasing the ring inner radius from zero to a value close
to the ring outer radius, the width of the average beampattern
mainlobe continuously decreases. Further, it is shown that selecting
the nodes from a neighborhood close to a disc perimeter, that is,
choosing the nodes from the narrow ring adjacent to the inner side
of the disc boundary, facilitates a substantial decrease in the net-
work energy waste and the node isolation probability compared
to the case that the nodes are randomly selected from the whole
disc. A simple approximate expression for the average beampat-
tern is obtained in the case where the nodes are selected from a
narrow ring and is used to derive the sidelobes’ null and peak po-
sitions as well as a tight lower bound on the average beampattern
directivity. The proposed technique is then extended to the case
where the nodes are located on multiple concentric rings and the
set of rings’ radii are derived that guarantee an average beampat-
tern null at a required position while substantially decreasing the
sidelobe peak levels compared to the single-ring case. Finally, an
average beampattern expression is obtained in the case that the
nodes’ signals are contaminated by noise to show that most prop-
erties of the average beampattern in the noise-free signal case carry
over to the noisy signal scenario.

Index Terms—Beampattern, distributed beamforming, energy
efficiency, network connectivity, wireless sensor network.

I. INTRODUCTION

O NE of the major problems in wireless sensor networks
(WSNs) is to establish a reliable communication link be-

tween small battery-powered sensor nodes and an access point
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(AP) that may be located far beyond the nodes’ limited trans-
mission range. Adopting the transmit beamforming approach
from the centralized array processing literature, distributed
beamforming (DBF) for WSNs has recently been proposed to
tackle the above problem. In DBF, each node among a set of
selected nodes transmits a properly weighted version of (an
estimate of) a common signal such that all transmitted signals
are coherently combined in the direction of the intended AP.
As a result, the nodes aggregate transmission range is substan-
tially increased without requiring to amplify their transmission
power. As an effective solution to the problem of long distance
communication in WSNs, the DBF approach has received a
growing attention [1]–[9].

Assuming that the DBF nodes (the nodes that participate in
DBF) are uniformly distributed on a disc, DBF beampattern
properties are analyzed in [1] where it is shown that a narrow
average beampattern mainlobe entails selecting the DBF nodes
from a large cluster in the network. The results of [1] are then ex-
tended to two-dimensional Gaussian distributed nodes in [2] and
to ad-hoc networks with multiple simultaneous source-destina-
tion pairs in [3]. The feasibility of DBF in presence of synchro-
nization errors is investigated and a distributed synchroniza-
tion technique is proposed in [4]. Assuming a finite-rate feed-
back on the channel state information from the AP, a DBF tech-
nique is proposed in [5] that minimizes the total average transmit
power subject to average rate and bit-error rate (BER) require-
ments. Considering a two-step amplify-and-forward protocol,
[6] and [7] propose several DBF techniques subject to total
and per-node power constraints as well as signal-to-noise ratio
(SNR) requirements. A robust DBF technique against channel
estimation errors is introduced in [8] and an overview on current
challenges and progresses of the DBF approach is presented in
[9].

A common denominator in most DBF approaches including
[1]–[9] is the implicit assumption that the DBF network is in-
terconnected, for otherwise, implementing a DBF technique is
practically impossible in most cases. Note that when imple-
menting a DBF technique in a real world scenario, one typi-
cally has to deal with two main challenges: First, as the nodes
in WSNs are independent sensing units, their common signal
may need to be generated through a rumor spreading or a con-
sensus process [10]–[12] among the nodes. Second, as the nodes
do not have a common time reference, they should synchronize
with one another [1], [4], [13] to be able to coordinate the trans-
mission of their common signal. These prerequisite steps ne-
cessitate intensive internode communications prior to the actual
DBF procedure. Therefore, it is crucial that the DBF nodes form
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a connected network such that a signal originating from any of
them can eventually reach all others.1

When the DBF nodes cluster has a fixed topology, it may be
reasonable to assume that the DBF nodes form a connected net-
work. However, it is not always a well-justified assumption as
optimizing the DBF performance frequently entails changing
the topology of the DBF nodes cluster. For instance, as dis-
cussed above, it has been shown in [1]–[3] that the far-field
beampattern heavily depends on the relative locations of the
DBF nodes. In particular, when a WSN is comprised of uni-
formly distributed nodes on a large plane, the width of the av-
erage beampattern mainlobe is almost inversely proportional to
the radius of the disc that includes the DBF nodes [1]. There-
fore, as a principal aim in many beamforming applications is
to generate a narrow mainlobe and a high beampattern direc-
tivity, the DBF nodes may have to be selected from an exces-
sively large disc in the network. This, in turn, results in in-
creasing the distances among the DBF nodes, and, consequently,
increasing the probability that some of these nodes get discon-
nected from others. As a remedy, one may use the common
approach of reestablishing the DBF nodes interconnections by
means of using some idle nodes as relays. However, this can
cause a substantial increase in the network energy consump-
tion and the earlier depletion of the nodes’ valuable energy re-
sources.

A main contribution of this work is to show how nodes can be
properly selected and used in DBF to simultaneously address the
conflicting requirements of a high beampattern directivity and a
strong network connectivity/high energy efficiency. Assuming
that the WSN nodes are uniformly distributed on a large plane
[1], [3], [14]–[17], we study the DBF technique in a general case
where the DBF nodes are located on a ring of arbitrary inner and
outer radii. While setting the ring inner radius to zero reduces
our node selection region to the case considered in [1]–[3], we
show how the ring inner and outer radii may be chosen differ-
ently than those in [1]–[3], not only to achieve the target average
beampattern properties, but also to reduce the network energy
waste and the DBF nodes disconnectivity probability. To this
end, an average beampattern expression is derived for the case
when the DBF nodes belong to an arbitrary ring. Then, given
the ring outer radius, it is shown that the first null of the average
beampattern is a decreasing function of the ring inner radius.
This result is of particular practical importance as it shows that
when the nodes are randomly located on a disc, the mainlobe of
the average beampattern can be considerably shrunk just by let-
ting the nodes in the inner parts of the disc remain in the sleeping
mode to preserve energy while selecting the DBF nodes from
a close vicinity of the disc perimeter. Similarly, given a target
position of the first null of the average beampattern, it is also
shown that the disc radius can be considerably reduced if the
DBF nodes are selected from a narrow neighborhood close to
the disc boundary.

The probability of having no isolated node is also obtained
for two essential cases, namely, when the active nodes are se-
lected from a large disc and when they are selected from a large
narrow ring. Considering a large narrow ring and a disc with

1In some cases, the nodes common signal may also be obtained by decoding
the source transmitted signal. In such scenarios, the nodes connectivity should
still be maintained for synchronization purposes.

the same radius as the outer radius of the ring and assuming
that both areas include the same number of active nodes, it is
proved that the isolation probability of a node on the disc is
much higher. It is further shown that when the nodes are se-
lected from a disc, there are two approaches to reduce the node
isolation probability: 1) Increasing the number of active nodes
on the disc at the cost of a substantial increase in the network
power consumption; and 2) reducing the disc radius at the ex-
pense of a considerable increase in the mainlobe width of the
average beampattern.

Assuming that the DBF nodes are located on a large narrow
ring, a simple approximate expression for the average beampat-
tern is derived and then used to determine the null and the peak
positions of the average beampattern as well as the peak values
of its sidelobes. A tight lower bound on the average directivity of
the beampattern is also derived. A simplified expression for this
lower bound is offered and it is shown that the minimum rate at
which the normalized directivity converges to unity is the same
in both cases when the nodes are selected from a disc or from a
narrow ring. However, when the nodes are selected from a disc,
a large normalized directivity is associated with a substantial in-
crease in the probability that the nodes lose interconnection.

When the number of DBF nodes is not large enough, the ran-
domness of the nodes locations may cause a noticeable dis-
crepancy between the average and a particular realization of
the beampattern. For such scenarios, we derive an approximate
complementary cumulative distribution function (CCDF) of the
beampattern. Using the so-obtained CCDF, the probability that
the beamformers’ gain exceeds a given threshold can be evalu-
ated at any arbitrary direction.

The proposed DBF technique is then extended to the case that
the nodes are selected from multiple concentric rings. The av-
erage beampattern expression is derived for such a case and it
is shown that if the rings radii are properly selected, the side-
lobe peak levels can be substantially reduced. Finally, the case
that the nodes’ signals are contaminated by noise is studied.
Considering an arbitrary noise correlation matrix, a SNR-op-
timal beamforming vector is derived and the associated average
beampattern is obtained. It is shown that most properties of the
average beampattern in the noise-free signal case carry over or
can be directly extended to the noisy signal scenario.

The rest of the paper is organized as follows. Section II repre-
sents the proposed DBF technique and Section III analyzes the
effects of the node selection region on the DBF performance.
Section IV extends the proposed DBF technique to the mul-
tiple-ring scenario and Section V studies the noise-contami-
nated signal case. Simulation results are presented in Section VI
and concluding remarks are given in Section VII.

II. PROBLEM FORMULATION

A. Background

Consider a large WSN cluster whose nodes are uniformly
distributed on , the disc centered at with radius

[1], [14]–[17]. Let denote the ring cen-
tered at with the inner radius and the outer radius

. It is assumed that and are selected
such that has an area
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large enough to include at least nodes with a high prob-
ability. Note that as the nodes are uniformly distributed on a
large plane, they are points of a homogenous two-dimensional
Poisson process [14], [16]. Therefore, having at least nodes
on with a probability not less than requires
that

(1)

where is the incomplete Gamma function and is the
node density. Given , , and , the minimum feasible
can be obtained from (1). Selecting a close to one ensures
the presence of at least nodes on with a
high probability. After nodes are randomly selected from

, they share a common signal by means of, for
instance, intercommunicating their sensed signals to distribu-
tively reach a consensus [10]–[12].2 Then, members of
the set participate in a DBF [1], [2] and collaboratively transmit
their common signal aiming primarily to maximize the received
power at the direction of AP located in the far-field of the plane
containing . Optimal values of and depend
on the application and all of our results hold for arbitrary and

. However, it is instructive to overview the following
guidelines on sensible choices of and .

• When the nodes “generate” their common signal by
reaching a consensus, should be large enough such
that the reached consensus is a good approximation of
the one that would be achieved if all cluster nodes joined
in the consensus process. On the other hand, the number
of internode transmissions required for nodes to reach a
consensus typically shows a quadratic growth with respect
to the number of nodes [10], [12]. Therefore, should
be selected as small as possible to avoid unnecessary
internode transmissions. Note that the power consump-
tion of a typical transceiver in the transmission/listening
mode is three order of magnitude higher than its power
consumption in the sleeping mode [18]. Therefore, when
the nodes are selected, all other nodes may be left in
the sleeping mode to preserve energy.

• As the transmission range of a single node is typically far
less than its distance to the AP, should be large enough
to substantially increase the nodes composite transmission
range and keep the SNR at the AP above the required
threshold. However, as nodes have independent clocks and
do not share a common time reference, they should be
synchronized prior to DBF [1], [4]. State of the art dis-
tributed synchronization algorithms require se-
rial internode transmissions to synchronize nodes [13].
Therefore, an excessively large not only results in an
unnecessary network power depletion, but also may intro-
duce an unacceptable delay in the communication process.
Note that, one may alternatively use to avoid
any possible system overhead that may be associated with
the procedure of selecting DBF nodes out of the
available nodes. However, this causes unnecessary
nodes to participate in DBF instead of switching back to
the sleeping mode and save energy. As discussed above,

2The case that the sensor nodes only have access to noisy versions of the
common signal is studied in details in Section V.

such a policy also increases the number of internode trans-
missions and the time required for synchronizing the DBF
nodes.

The above discussion underlines the fact that one should re-
frain from choosing unnecessarily large and . Another im-
portant fact that follows from the above argument and will be
further discussed in Section III-C is that the selected nodes have
to extensively communicate with one another to gain access to
a shared signal and synchronize prior to DBF. Therefore, these
nodes should form a connected graph, and, in particular, none
of them may be isolated: If the nodes transmission range is ,
any selected node should have at least one other selected node
in its -neighborhood.

B. DBF Beampattern

The WSN cluster in a polar coordinate system is depicted in
Fig. 1. Without loss of generality, we consider as the pole
and the line connecting to the AP as the -axis of the co-
ordinate system. Let and denote, re-
spectively, the polar coordinates of the node and the AP. We
consider the case that the AP is in the far-field and, therefore,

and assume that the channels from all nodes to the AP
are coherent [1]–[3], [9]. Let nodes with random positions on

share a zero-mean unit-variance signal
where is the transmission slot index. Among them,
nodes with the location vectors and

synchronize and form a virtual antenna array
to transmit to the AP. It is noteworthy that as the channels
from nodes to the AP are coherent, the signals received from all
nodes at the AP have a similar quality. Therefore, the node se-
lection procedure is substantially simplified as nodes out of
the available nodes can be randomly selected to participate in
DBF without causing any detrimental effect on the SNR at the
AP. The base-band representation of the transmitted signal from
the th node in the th transmission slot is
where is the th node beamforming weight. As the channels
from all nodes to the AP are coherent, the base-band equivalent
of the received signal from the th node at an arbitrary point

is [3]

(2)

where is a constant that does not depend on the node index,
is the Euclidian distance between the th node and ,

while and are the carrier wavelength and the path loss ex-
ponent, respectively. Note that

(3)

where the approximation is due to the fact that . Using
(3) in (2), we have

(4)

Introducing the steering vector towards as
and the
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beamforming vector as , the total received
signal at due to all cluster nodes is approximately equal to

(5)

Denoting the noise power at the AP by , the SNR at the AP can
then be expressed as where .
Our goal is to find a that maximizes subject to the total
power constraint . It is straightforward to show that
the optimal beamforming vector is given by .
Substituting in (5) and using the definition of to simplify
the result, the received power at is then given by

(6)

where

(7)

with and .
is usually called the array factor at the direction [1]–[3]. Let
and denote, respectively, the random variable representing the
distance of the selected nodes from the origin and the random
variable representing the angular distance of the selected nodes
from the -axis minus . Then, and are realizations of

and , respectively. As the selected nodes are uniformly dis-
tributed on , the probability density functions
(PDFs) of and are given by

elsewhere

(8)

For the random variables and with the PDFs given in (8),
it is shown in Theorem 5 in Appendix A that the PDF of

is equal to in (9), shown at the bottom of the page.
Let . It follows from the above discussion that

(6) can be equivalently represented as
where

(10)

is an alternative representation of the array factor (7) and
is a realization of a -dimensional

random vector with independent entries
that are identically distributed according to (9). Let us define

Fig. 1. The WSN cluster in a polar coordinate system.

the far-field beampattern as the received power from the WSN
cluster normalized by , that is, . We
then have

(11)

The far-field beampattern is an essential feature of a beam-
former as it represents (a normalized version of) the spatial
distribution of the impinging power from the beamformer and,
therefore, not only its level at is proportional to the SNR
at the AP, but also determines the level of interference inflicted
on unintended receivers at any arbitrary angular direction

. In this work, is a random variable that depends
on the realization of . This justifies the practical value of the
study of . Note also that as the entries
of are independent random variables, it is direct to apply the
strong law of large numbers when to show that any
arbitrary realization of converges with probability one
to . It can be inferred from the above fact that, when
is large enough, the difference between and is
negligible at all directions (see [1] for a similar observation).
This further substantiates the practical importance of .

III. THE EFFECTS OF THE NODE SELECTION REGION ON THE
DBF PERFORMANCE

It is proven in Theorem 6 in Appendix A that, if a random
variable is distributed according to (9), we have

(12)

(9)
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(13)

where is the th order Bessel function of the first kind.
Using (12) and the fact that the entries of are independently
distributed, it is direct to show that (13), shown at the top of
the page holds. It is noteworthy that when , that is,
when the ring transforms to , the
disc centered at with radius , (13) simplifies to

(14)

The same expression as in (14) has been obtained for
in [1] that exclusively considers the special scenario of

. In Sections III-A–III-E, we analyze in (13) and ex-
plore some advantages of choosing with respect to
the conventional approach of [1] that selects the nodes from

.

A. The Mainlobe of the Average Beampattern

Similar to the beamforming for centralized antenna arrays, it
is crucial to form a beampattern with a narrow mainlobe when
using DBF. A narrow mainlobe implies that most of the trans-
mitted power concentrates in the direction of the target AP.
Moreover, when the target AP has a small angular distance from
other receivers such as other clusters’ APs, a narrow mainlobe
is essential to avoid inducing significant interference on the un-
intended receiving terminals. In particular, it is advisable in the
latter case to have the mainlobe narrow enough such that the first
null of the beampattern positions in the direction of the
unintended receiver with the smallest angular distance from the
target AP. It is noteworthy that, as is a random variable,
the positions of its nulls are also random quantities. However,
as discussed at the end of Section II-B, when is large enough,
all realizations of are close to , and, therefore,
the position of the first null of (in the sense of the second
term in (13)) is a reliable approximation of that of the first null
of for any arbitrary realization of .

As can be observed from (12) and (13), the position of the
th null of coincides with , the th positive root of

. In what follows, we analyze as a function
of . First, let us introduce

(15)
From (12), we have . The fol-
lowing theorem holds.

Theorem 1: Let be the smallest positive number such
that . We have

(16)

(17)

where and are the first positive roots
of and , respectively. For any

(18)

Moreover, is the only root of in and

(19)

Proof: See Appendix B.
Theorem 1 shows that, for any given , is a de-

creasing function of : If , or, equivalently, ,
(16) indicates that , or, in other words

(20)

Meanwhile, increasing results in increasing , which, ac-
cording to (19), decreases . The steady decrease in
continues until approaches , or, in other words, .
In such a case, as shown in (17), . This
means that

(21)

Note from (21) that, a narrow mainlobe, or, equivalently,
a small , requires having a large . This implies
that may be very close to in practice without
making so small that the number of
nodes on drops below . In other words,

can be a narrow ring but large enough to
include at least nodes.

It follows from (20) and (21) that, when is
large, for while

for . The following
results are directly obtained from the above observation.

• Since and , the first null of
can be reduced by up to 37% when increasing

from zero to a close proximity of . Interestingly, this
means that it is possible to considerably shrink the main-
lobe of just by selecting the active nodes from a
close vicinity of the perimeter of while leaving
all other nodes in the sleeping mode to preserve energy.

• Without having any effect on the target , the outer
radius of can be reduced from
to , just by increasing the inner
radius from zero to .
This property can be very useful when is smaller than

.

B. The Network Energy

As discussed above, all the nodes on as well as the
unselected nodes from are used neither in DBF
nor in the preliminary step of generating the common signal
using, for instance, a consensus process. Therefore, they may
be left in the sleeping mode. Note that, a node using a typical
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transceiver with the transmission range of several tens of meters
has a power consumption in the order of 10 mW in the transmis-
sion/listening mode while having a power consumption in the
order of 10 W in the sleeping mode [18]. Moreover, as pointed
out in Section II-A, the number of the internode transmissions
required to reach a consensus is typically proportional to
[10]. Therefore, even if one extra node, say, from ,
decides to join the consensus process, the total number of re-
quired internode transmissions may considerably increase. As
such, the technique proposed here tends to save a substantial
amount of energy as compared to the technique presented in [1]
that does not propose a policy to switch off any cluster nodes.

As an alternative to select the nodes from ,
one may randomly choose nodes from to reach a
consensus, while leaving all other nodes in the sleeping mode.
After the consensus is reached, nodes are delegated to per-
form DBF. Although such an approach increases to its
maximum value of , one may argue
that, as far as the energy saving is concerned, it is immaterial
whether the active nodes are selected from
or from . As will be shown in Section III-C, this is
not a correct argument in general as direct internode communi-
cations may be hampered when the active nodes are distributed
throughout the larger area of .

C. The Network Connectivity

As discussed in Sections II-A and III-B, the selected nodes
should form a connected network in the sense that a message
originating from any node should be able to diffuse throughout
the whole network. There is a rich literature [14], [15], [19], [20]
indicating that the connectivity analysis is a nontrivial problem
even in an asymptotic regime of infinite-size homogenous net-
work. This problem is more severe in our context due to the
facts that the number of selected nodes is finite and, moreover,
boundary conditions are involved as the nodes may be selected
from a narrow ring. Therefore, we approach the above problem
by establishing a necessary condition for the network connec-
tivity in the cases of our special interest. In particular, in view of
the fact that the absence of isolated nodes (the nodes that do not
have any other nodes in their transmission range) is a necessary
condition for the connectivity of a network, we derive the prob-
ability of having no isolated nodes for two essential cases when
the nodes are selected from a large disc and when they are se-
lected from a large narrow ring. Note that, the above probability
is an upper bound on the probability of the network connectivity,
and, as shown in [14], [15], [20], this bound is very tight when
the nodes are selected from a large disc. The following the-
orem is fundamental for our later developments.

Theorem 2: Assume that the nodes transmission range is .
If the nodes are uniformly distributed on a ring
where

(22)

then the probability that the distance of two arbitrarily selected
nodes3 is not greater than is

(23)

In turn, if the nodes are uniformly distributed on a disc
where then the probability that the

3It is assumed that � � � and, therefore, the distance between the selected
nodes is well-defined.

distance of two arbitrarily selected nodes is not greater than
is

(24)

Proof: See Appendix C.
Before proceeding to further developments, we would like

to stress that (22) is a practical assumption implying that
is a large narrow ring. In fact, if is kept

fixed, can always be chosen large enough such that both
inequalities of (22) hold true. The following example is also
helpful to verify the feasibility of (22) in practical scenarios.

1) Example 1: Consider the case that the node density is
, , , and we

aim to determine such that at least nodes are on
with a probability not less than .

Using (1), it is direct to show that an inner radius as large as
satisfies the above requirement.

It is interesting to observe from Theorem 2 that
decreases with a rate inversely proportional to , while

decreases with a much faster rate that is inversely
proportional to . From Theorem 2, it also follows that

where is
either or depending on the region from which the nodes
are selected. Note also that, when is large, the isolation of
different nodes can be considered as almost independent events
[20]. As such, the probability of having no isolated nodes is
given by

(25)

2) Example 2: Consider the parameters of Example 1.
Using (23) in (25), it follows that . As such, it
is extremely unlikely that any of the 200 nodes selected from

are isolated. Note that, if
nodes are selected from , then, it follows from
(24) and (25) that , and, therefore, it is almost
sure that at least one selected node is isolated, and, hence, the
network is disconnected. In fact, it can be shown from (25) that
at least nodes have to be selected from
to reach the target . Note that, reaching such a

target comes at the price of a substantial increase in the
network power waste due to 650% increase in the number of
active nodes.

As can be observed from (24) and (25), the only means to
increase without requiring to activate extra nodes is to de-
crease . In fact, it can be shown from (23), (24), and (25)
that, if the number of active nodes in both and

are the same, then and are approximately
equal when

(26)

Taking into account the assumption that , (26) shows
that should be considerably less than . According to
(20) and (21), this, in turn, means that the width of the re-
sulting average beampattern mainlobe becomes considerably
larger than that of the average beampattern mainlobe when the
nodes are chosen from .
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(27)

Our results in this subsection may be summarized as follows:
Consider a large narrow ring and a disc with the same radius
as the outer radius of the ring. If the number of active nodes on
the ring and the disc are equal, then the probability that some
nodes on the disc are isolated is much higher. There are two
approaches to reduce this probability: 1) Increasing the number
of active nodes on the disc at the cost of a substantial increase
in the network power consumption; and 2) reducing the disc
radius in exchange to a considerable increase in the width of
the average beampattern mainlobe.

D. Approximate Average Beampattern

As discussed in Section III-A, the practical interest in forming
a narrow mainlobe necessitates to be small. According
to the developments in the same subsection, is inversely
proportional to . Therefore, a narrow mainlobe can be in
fact associated with a large . At the same time, following
our results in the network energy preservation and the network
connectivity in Sections III-B and III-C, it may be preferable to
choose just large enough to make sure that

includes nodes. As discussed after Theorem
2, it is direct to show that increasing while keeping
fixed results in an that is close to , or, equivalently, a
large narrow ring . For such a scenario,
in (13) can be approximated as shown by (27) at the top of the
page. Using the fact that

(28)

in (27) can be further simplified to

(29)
for . Let and denote the th null and
the th peak positions of the average beampattern, respectively
(note that ). It follows from (29) that

(30)

for . It is noteworthy that the approximate ob-
tained from (30) is in fact very close to the approximate
derived in (21). Note also that, the approximations in (30) pro-
vide a simple technique to derive and : Given a desired

or , one may determine the required from (30),

and, then, use the preassigned to obtain
. We also obtain from (29) and (30) that the th peak of the

average sidelobe is approximately given by

(31)

Similar to the case where the nodes are selected from a disc [1],
it follows from (31) that only loosely depend on
while being completely independent from . As such, it is
not possible to effectively reduce the sidelobe peak levels in ei-
ther case that the nodes are selected from a disc or the case that
they are chosen from a narrow ring. To get around this problem,
it has been suggested in [1] to increase the disc radius aiming
to position most of the major sidelobe peaks around .
As can be observed from (30), the same technique may be used
when the nodes are selected from . However,
in the scenarios where unintended receivers are in a small an-
gular spread around the target AP, having multiple large side-
lobe peaks concentrated in a close vicinity of may result
in inflicting considerable interfering power on these receivers.
Note that, this interfering effect can be more significant when
the nodes are selected from a narrow ring as, in such a case, the
sidelobe peak levels of the average beampattern diminish with
a relatively low rate that is proportional to their index number.
Section IV presents a technique to effectively tackle the above
problem. In particular, it will be shown that can be
significantly reduced if the node selection region is expanded to
multiple concentric rings of proper sizes.

E. Average Directivity

Average directivity [1], [2]

(32)
is a parameter that measures the beamforming efficiency to
concentrate the transmitted power towards the desired direction.
Similar to [1], [2], in (32) cannot be computed in a closed
form. However, following Jensen’s inequality, it is direct to
show that [1]

(33)
Recalling the fact that for any
and any realization of , it is expected that

. This implies that is a tight lower-bound on for
large values of . The following theorem derives lower-bounds
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on the average directivity in terms of and in the case
that the nodes are selected from a large narrow ring.

Theorem 3: If (27) holds, we have

(34)

where is a generalized
hypergeometric function. Moreover, it holds for large
that

(35)

Proof: See Appendix D.
Note that .

Therefore, as grows, the normalized average directivity
converges to its maximum value of 1. The convergence rate is
more visible from (35) which indicates that

(36)

for large and . An inequality similar to (36) has been
obtained in [1], (33), for the case that the nodes are selected from

. Comparing (36) with its counterpart inequality in
[1], it follows that the minimum rate at which the normalized
directivity converges to unity is the same in both cases that the
nodes are selected from a disc and from a narrow ring. However,
while in either case should be small to have a nor-
malized directivity close to unity, when the nodes are selected
from a disc, a small necessitates having nodes
scattered throughout a disc with a large area of . This,
in turn, substantially increases the probability that the nodes
lose interconnection (see Section III-C). In contrast, if the nodes
are selected from a narrow ring, and may be chosen
such that is arbitrarily small while keeping

fixed. As discussed in Section III-C, this ame-
liorates the problem of lack of network connectivity when
grows.

F. Statistical Analysis of the Beampattern

When is not large enough, the realizations of may
be noticeably different from specially in the sidelobes
region [1]. In such scenarios, the technique presented in [1, Sec.
IV-A] can be directly applied to numerically compute the CCDF
of at any arbitrary direction . In view of the fact that

is the sum of independent identically distributed
(i.i.d.) random variables (see (10)), a more analytically tractable
alternative technique to evaluate the CCDF of is to use
the central limit theorem and approximate the distribution of

by that of a complex Gaussian random variable. The
so-obtained approximate distribution may then be used to de-
rive an approximate CCDF of [1]. Following the latter
approach, let us represent
where and

. To obtain the Gaussian approximate of the
joint distribution of and , it is required to derive the first and

the second moments of the latter two random variables. Using
(9), it can be readily proved that , while

(37)

Note that when the nodes are selected from a large narrow ring,
a similar approach as in (27) may be applied to show that

(38)

The joint PDF of and can then be computed as

(39)
Therefore, the CCDF of at is given by

(40)

In general, (40) may be efficiently computed using numerical
integration. However, if is large, we have from (37)
(or (38)) that . In such a case, (40) simplifies to

(41)

where is the first-order Marcum-Q function. Finally, if
is large enough such that , then

(42)

Note that similar results as in (41) and (42) have been obtained
before in [1] in the case that the nodes are selected from

with .

IV. EXTENSION TO MULTIPLE CONCENTRIC RINGS

As can be observed from (31), when , the first and
the largest sidelobe peak of the average beampattern is given by

which is around 8 dB less than
the mainlobe maximum value. In applications that such a side-
lobe peak level is not acceptable, the DBF nodes may be selected
from multiple concentric rings of proper radii to reduce the side-
lobe peak value. To show this, let us assume that the nodes
used in DBF are randomly selected from concentric rings
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where .
Similar to the single-ring case, it can be shown that

(43)

where, as proven in Appendix A, (44), shown at the bottom of

the page, holds. Assume that
for , that is, all rings have the same area

while their total area is equal to . As is independent from
, if increases, grows as well such that re-

mains unchanged. Under this condition, can be approx-
imated for a large as shown by (45) at the bottom of the
page. Using (28) in (45), it follows that

(46)
for . The above approximation shows that the
contributions of all rings to are simply summed up inside
the absolute value at the right-hand side of (46). This fact facil-
itates a simple approach to determine .
Assume that it is required to have a null positioned at . Se-
lecting

(47)

all the cosine functions at the right-hand side of (46) are equal
to zero at , while each of these functions is maximized
at a different set of points

(48)

for . This results in generating an average beam-
pattern null at while substantially reducing the sidelobe

peaks. Note also that, as all rings reinforce the null at , one
may conjecture that the null width around increases as the
number of rings grows. Numerical results in Section VI verify
this conjecture.

It should be mentioned that, if multiple narrow rings
are used, the inter-ring connectivity is maintained when

for . However,
if the latter inequality does not hold for an , some of the
nodes located between the rings and may be kept in
the active mode and used to establish the connection between
those rings. Alternative means to maintain the inter-cluster
connectivity [21], [22] may also be adopted to preserve the
connection between the rings.

V. TRANSMISSION OF A NOISY SIGNAL FROM THE DBF NODES

In this section, we study the case where the DBF nodes have
only access to noisy versions of the signal. Such a scenario may
occur if, for instance, the DBF nodes fail to reach a consensus or
when they receive noisy replicas of the signal that is broadcasted
from a source. In such cases, the signal transmitted from the

th node in the th transmission slot is
where is a zero-mean contaminating noise at node

. Let . We do not rule out noises’
possible correlations and assume that is
not a diagonal matrix in general. Then, the total transmit power
from the DBF nodes is

(49)

where
with denoting a diag-

onal matrix and standing for the th entry of a matrix
and is the identity matrix. Using similar steps as in those prior
to (5), it can be shown that the total received signal at
due to all DBF nodes is

(50)

(44)

(45)
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where is the element-wise product. Let
. It is

straightforward to show from (50) that the SNR at the AP is
where the subscript

“ ” differentiates the SNR in the noisy sensor case from its
noise-free sensor counterpart. Similar to Section II, our goal is
to find the optimal beamforming vector that maximizes sub-
ject to the total power constraint . In this case, the op-
timal is

(51)

where is a vector with all entries equal to 1. Using (51) in (50)
and taking the statistical expectation from the square norm of the
resulting expression, it can also be readily shown that the total
received power at from the DBF nodes is given by
(52), shown at the bottom of the page, where

and . From the
definition of we have

(53)

(54)

In view of (53) and (54) and following the same treatment as
in the noise-free sensor case presented in Section II-B, the total
received power can be equivalently represented as
(55), shown at the bottom of the page, where and

are two matrices whose th entries are given by
the right-hand sides of (53) and (54), respectively. Similar to the
noise-free sensor case, the far-field beampattern

is an important characteristic of the beamformer
as it determines the spatial distribution of the received power
from the DBF nodes, and, in particular, the level of interfer-
ence induced by the WSN cluster on any possible unintended
receiver at any arbitrary direction . The following theorem
explores the simple relation between the average beampattern
in the noisy sensor case and its noise-free sensor counterpart

.
Theorem 4: Let . We have

(56)

where is given by (13) when the DBF nodes are selected
from a single ring and by (43) and (44) when they are selected
from multiple concentric rings and and are two constants
that do not depend on and are given by (57) and (58), shown
at the bottom of the page. If noises at sensors are uncorrelated
and have equal power, that is, , then (56) simplifies to

(59)

Proof: See Appendix E.
Note that (59) is in the same spirit as [3, Eq. (16)] that of-

fers an average beampattern expression for an ad-hoc WSN with
i.i.d. sensor noises and a different power constraint than the total
power constraint used in our work.

Equation (56) shows that , the average beampattern
in the noisy sensor case, is only a scaled and a biased version
of and, further, the scaling factor and the bias are not
functions of and depend only on . Therefore, and

(52)

(55)

(57)

(58)



1914 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 58, NO. 3, MARCH 2010

share exactly the same set of null and peak positions,
respectively, at and while we have

and . Sim-
ilar to the noise-free sensor scenario discussed in Section III-A,
it follows from (56) that when selecting the active nodes from
a close vicinity of the perimeter of , the mainlobe
of can also be shrunk by up to 37% compared to
the case that the nodes are randomly selected from the whole

. Following a similar discussion as in Sections III-B
and III-C, it also holds that both the network energy waste and
the node isolation probability are substantially reduced in the
former case. The approximate expressions of derived
in (27) and (29) for a single narrow ring and in (45) and (46)
for multiple concentric narrow rings can also be used in (56) to
obtain the counterpart approximations of . Moreover,
when it is required to position a null in a particular direction, it
is possible to do so by selecting the rings outer radii from (47).
In light of (56), the results regarding the average directivity of
the beampattern presented in Section III-E and the statistical be-
havior of the beampattern obtained in Section III-F can also be
straightforwardly generalized to the noisy sensor case.

VI. SIMULATIONS

Numerical simulations are used to validate the analyt-
ical results derived in Sections III and IV. In all examples,

is selected. Fig. 2 shows versus for
the case that nodes are randomly selected from

with and four different values
of . Note that, corresponds to
the case that the nodes are selected from
and, assuming that , the expected number of
nodes located on the latter ring is . Moreover,
the inner and outer radii of satisfy (22).
Assuming that , we have obtained
from (26) and, for the sake of comparison, we have also
plotted in the case that the nodes are selected from

. Recalling our discussion in Section III-C, if the
numbers of active nodes in both and

are equal, then the probability of node isola-
tion in both cases is almost the same. As can be observed
from Fig. 2, increasing results in decreasing . More-
over, corresponding to and are in
fact very close to the analytical values obtained in (20) and
(21), respectively. Finally, all curves have only one null in

. The
above observations verify the results of Theorem 1. Fig. 2 also
shows that the peak values of increase with an increasing

. However, even when , the average beampattern
still enjoys much higher directivity than its disc-based coun-
terpart wherein the nodes are selected from . The
first row of Table I shows with for the four
considered values of as well as for the case that the nodes are
selected from . As can be observed from Table I,
when the nodes are selected from ,
increasing results in a small reduction in . At the
same time, for is substantially larger than

when the nodes are selected from .
Fig. 3 shows the same curves as in Fig. 2 for . While

all curves have deeper nulls in Fig. 3, most of the observations
made above from Fig. 2 also hold in this example. The second
row of Table I gives for all cases considered in Fig. 3.

Fig. 2. � ��� (dB) versus � (deg) for � � ��.

TABLE I
�� �� FOR � � �� AND � � ��� AND DIFFERENT �

Fig. 3. � ��� (dB) versus � (deg) for � � ���.

Again, the table shows that for is consid-
erably higher than when the nodes are selected from

.
The accuracy of (29) and (30) to model the behavior of

for a large is examined in Fig. 4. First, assuming the
target , is derived from (30). Then, the
so-obtained and are used to plot the approximate

for from (29). The same and are also
used to plot the limiting for from (27) as well
as curves for , , and from
(13). It can be observed from Fig. 4 that curves obtained
from (29) and (27) are almost indistinguishable throughout the
whole range of examined . This verifies the accuracy of (27)
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Fig. 4. � ��� (dB) versus � (deg) for � � �.

in predicting the behavior of the average beampattern when
approaches to one. Note from Fig. 4 that the curves drawn from
(27) and (29) closely follow those obtained from (13) especially
for a small . For larger values of , the smaller the , the more
the deviation of its corresponding curve from the lim-
iting curves (27) and (29). Finally, as can be observed from the
figure, is very close to the target value of 2 (deg) in all
curves. This confirms the reliability of (30) in estimating the
first null of the average beampattern when is close to 1.

In Figs. 5–7, and is selected. More-
over, for any given , is chosen to
guarantee that the expected number of nodes on the ring is in
fact equal to .

In Fig. 5, is selected. This figure shows the nor-
malized versions of in (33) as well as the average directivity

in (32) where the nodes are selected from
and the average is taken over 1000 independent realizations of
the node locations. Fig. 5 also displays the normalized version of

curve in (34) derived for the case that along
with the curve corresponding to the lower-bound obtained in
(35). Finally, for the sake of comparison, we have also shown
the normalized versions of in (33) for the scenarios wherein
the nodes are selected from and where

is obtained from (26) with . As can be observed
from Fig. 5, the normalized average directivity curve is very
closely followed by the normalized versions of curves ob-
tained from (33) and (34). This verifies that (33) is in fact a
tight lower bound on the average directivity. Moreover, it shows
that, for the selected values of , , and , expression in
(34) accurately predicts the beampattern directivity. Fig. 5 also
shows that although the simple lower-bound obtained in (35) is
correct, it is quite conservative especially for larger values of

. It is also important to observe that the directivity when the
nodes are selected from is substantially larger
than the directivity when the nodes are chosen from
while being less than the directivity when the nodes are chosen
from . However, recalling our discussion in Sec-
tion III-C, it should be taken into consideration that when the
nodes are selected from , the probability of node iso-

Fig. 5. Normalized average directivity and its lower bounds versus � .

Fig. 6. �� �� versus � �� for � � �� and � � ��� and corresponding
to the cases that the nodes are selected from 	�
�� �� �, ��
�� �,
and ��
�� �.

lation is much higher than the case that the nodes are selected
from or .

Fig. 6 displays versus for and
and three different cases that the nodes are selected

from , , and where
is obtained from (26) using . Fig. 6 shows that se-

lecting the nodes from and results
in approximately equal throughout the whole range of
examined . This substantiates the advantage of selecting
the nodes from that is associated with a much
more favorable network connectivity condition. It can also be
observed from Fig. 6 that when the nodes are selected from

which has a network connectivity condition similar
to , the directivity significantly degrades. This
further corroborates our discussion at the end of Section III-C.

Fig. 7 shows versus corresponding to the case
that nodes are selected from . This



1916 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 58, NO. 3, MARCH 2010

Fig. 7. �� �� versus � �� for the cases that the nodes are chosen from
����� �� �, ����� �, and ����� � with � corresponding to
� � �, � � ��, and � � ��.

curve is compared with the limiting curve derived in
(34) as well as curves corresponding to the cases that
the nodes are selected from with three different

values obtained from (26) for , , and
. This figure also draws curve for the sce-

nario in which the nodes are selected from . Note
from Fig. 7 that the actual and the limiting curves are
almost indistinguishable. This further verifies the accuracy of
the asymptotic expression in (34) in approximating the
actual value of when is a large narrow
ring. It can also be observed from Fig. 7 that, even for an as
large as , the directivity when the nodes are selected from

is higher than the case when the nodes are
chosen from .

Fig. 8 demonstrates the effect of using multiple concentric
rings on . Four cases of , and 4 are consid-
ered. In each case, the desired first null of the average beampat-
tern is set to and (47) is used to obtain

for . Then, and are
used to derive , the aggregate area of the rings. Finally, as-
suming that all rings have the same area, are achieved
for . As can be observed from Fig. 8, all four
curves have a null at . Moreover, increasing ,
not only the sidelobe peak levels substantially decrease, but also
the null width around increases. This validates our dis-
cussion in Section IV.

VII. CONCLUSIONS

A transmit beamforming technique was studied in wireless
sensor networks with uniformly distributed nodes and the ef-
fects of node selection on the average beampattern, the energy
efficiency, and the network connectivity were investigated. The
average beampattern expression was obtained for the general
case that the beamforming nodes are located on a ring with ar-
bitrary inner and outer radii and it was shown that increasing
the inner radius, or, equivalently, selecting the nodes from a
vicinity of the ring’s outer boundary, not only results in nar-
rowing the average beampattern mainlobe but also in a more en-

Fig. 8. 	 �
� versus 
 (deg) for � � ��� and � � 	� �� 
, and 4.

ergy efficiency and a less node isolation probability. In the case
that the beamforming nodes are located on a large narrow ring,
a simple approximate expression for the average beampattern
was obtained and a tight lower bound on the average beampat-
tern directivity was derived. It was shown that the lower bound
approaches to one with a minimum rate similar to that of the
technique proposed in [1]. Statistical properties of the beampat-
tern were analyzed and an approximate expression for the com-
plementary cumulative distribution function of the beampattern
was derived. The techniques was then generalized to the case
that the nodes are chosen from multiple concentric rings and
it was shown how the rings’ radii can be properly selected to
substantially reduce the sidelobe peak levels. A SNR-optimal
beamforming vector was also obtained in the case when the
DBF nodes only have access to noisy versions of the signal and
a simple relation was established between the beampattern ex-
pressions in the noise-free and noisy sensor cases.

APPENDIX A
PRELIMINARY RESULTS

Theorem 5: Consider concentric
rings4 with

and a random point where and
respectively denote the radial and the angular coordinates of
in the polar coordinate system with origin and an arbitrary

axis. Assume that is uniformly distributed on the region
(shown by hashes in Fig. 9), that is,

elsewhere

(60)

where is the area

of . Let and

. Then, the PDF of

is given by (61), shown at the bottom of

4Equation (9) is a special case of Theorem 5 for � � 	.
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Fig. 9. � concentric rings with � � � � � (left subfigure) and � � � � � (right subfigure).

the page, where and the superscript of is
used to emphasize the number of rings.

Proof: It is direct to show that .
Therefore, without any loss of generality, we prove the theorem
for . For any , there is an such that

. Using the fact that is uniformly dis-
tributed on , we have

(62)

where is the area of a part of that is above the line D

(see Fig. 9). Let us first assume that . From
the left subfigure of Fig. 9 it can be readily shown that

(63)

for . Note that and
. Using the latter equalities in (63) and

substituting the resulting expression in (62), the first equation
of (61) follows. For the case when , it can be
observed from the right subfigure of Fig. 9 that

(64)

while is given by (63) for . Using (64)
and (63) in (62), the second equation of (61) follows.

Proof of (12) and (44): We prove (44) for a general .
Equation (12) is treated as a special case of (44) for .
The following lemma is essential for the main proof presented
in Theorem 6.

Lemma 1: For any arbitrary scalars and we have

(65)

Proof: Introducing , it is direct to show that

(66)

where the second equation is obtained using integra-
tion by parts. Taking into account the fact that

, (65) follows from (66). This
completes the proof.

Theorem 6: Consider as described in Theorem 5. We
have

(67)

where is an arbitrary scalar.

(61)
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(69)

(70)

(71)

Proof: Proof is by induction over . According to (61),
for we have

(68)

From (68), we obtain (69), shown at the top of the page. Note
that the last equality of (69) follows from (65). This proves (67)
for . It remains to show that if (67) holds for , it
also holds for . To show this, it is useful to express

in terms of . This is done in (70), shown at the
top of the page. Equation (70) can be used to obtain (71), shown
at the top of the page, for . Note that the second
equation of (71) follows from the assumption that (67) holds for

and the third equation of (71) is due to (65). Equation
(71) shows that (67) holds for . This completes the
proof.

APPENDIX B
PROOF OF THEOREM 1

First, note that . This directly yields (16).
To prove (17), we have

(72)

Equation (17) is a direct result of (72). To proceed to the proof
of (18), we first need to show that

(73)

Let . We have

(74)

where and the second equality in (74) is due to the
mean value theorem. Note that as and ,
we have that , and, therefore, . This
establishes (73). An immediate result of (73) is that
for . We also have

for . The latter inequality along with (73)
show that for any given , the sign of changes
in . As is continuous, the latter result along
with the fact that prove (18).

Now, we need to prove that, is the only root of
in for any given . Note that, if and
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are two distinct roots of in and, more-
over, and

, then, considering the fact that is continuous, there
must be a third distinct root such that

. Therefore, to be able to show that
is the only root of in , it is sufficient to

prove that

(75)

for any that . To prove (75), note that
if is a root of , then

(76)

and, hence, we require to show that

(77)

The proof of (77) is by contradiction. Let us assume that

(78)

Since , we have . The latter result
along with (78) yield . This, in turn, implies that

. Let us introduce . Due to (78),
, and, hence, there is a such

that . Form
the latter inequality we have that . As

, the right-hand side of the latter inequality is larger
than zero, and, therefore, . This, along with the fact
that , imply that . The latter inequality con-
tradicts our earlier result that . This proves the cor-
rectness of (75) and, consequently, the uniqueness of the root of

in . It remains to prove (19). As is a
solution to ,

(79)

From the latter equation, it is direct to show that

(80)

Note that, according to (77), the denominator of (80) is less then
zero. Therefore, to prove (19), it is required to show that

(81)

To show (81), let . It directly follows from
(79) that , and, therefore, there is a

such that .
It holds from the latter equation that , and, hence,

. Inequality (81) is obtained from the latter result.
This completes the proof.

APPENDIX C
PROOF OF THEOREM 2

As the two nodes are arbitrarily selected, they are two
arbitrary points on (or ). As
such, in the case that the nodes are uniformly distributed on

, we have where
is the area of the -neighborhood of an arbitrary point

Fig. 10. An � -neighborhood of a node on ����� �� �.

on . The hashed region in Fig. 10 depicts this
neighborhood. Note that, due to the left inequality of (22), the

-neighborhood of is cut by both inner and outer boundaries
of . Moreover, not only , but also
it follows from (22) that .
The above observations imply that can be well ap-
proximated by the area of a rectangle of length and
width (see also Fig. 10). Therefore, we have

. This proves
(23). In the case that the nodes are uniformly distributed on

, we have where is the area
of the -neighborhood of an arbitrary point on .
Due to the assumption that , the probability that
the distance of from the disc boundary is less than is
negligible, and, hence, with a high probability.
This directly establishes (24).

APPENDIX D
PROOF OF THEOREM 3

Note that

(82)

Using the fact that , it can be
shown after some manipulation that
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(87)

(93)

(94)

(83)

where . Inserting (83) into
(82), (34) directly follows. To prove (35), let us first denote

and . From (82) we have

(84)

To derive a lower-bound on , we obtain an upper-bound
on the integral in the denominator of (84). First, note that (28)
implies that for where is a positive
scalar. Although it can be shown that the latter upper-bound
holds in fact for , we select a tighter upper-bound on
as follows

(85)

From (85) we have that

(86)

Using (86) and (84), inequality (35) follows. This completes the
proof.

APPENDIX E
PROOF OF THEOREM 4

First, note that (55) yields (87), shown at the top of the page.
From (53) we have

(88)

while from (54) it holds that

(89)

Note that in (88) is given by (12) when the DBF nodes
are selected from a single ring and by (44) when they are se-
lected from multiple concentric rings. In either case, it follows
from (13) and (43) that

(90)

Using (89) and (90), we obtain

(91)

(92)

Using (91) and (92) in (87) and following a straightforward ma-
nipulation, (56)–(58) are obtained. To prove (59), note that when

we have (93) and (94), shown at the top of the page.
Substituting (93) and (94) in (56), (59) follows. This completes
the proof.
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