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Broadband Source Localization From
an Eigenanalysis Perspective

Mehrez Souden, Student Member, IEEE, Jacob Benesty, and Sofiene Affes

Abstract—Broadband source localization has several applica-
tions ranging from automatic video camera steering to target
signal tracking and enhancement through beamforming. Con-
sequently, there has been a considerable amount of effort to
develop reliable methods for accurate localization over the last few
decades. Essentially, the localization process consists in finding the
candidate source location that maximizes the synchrony between
the properly time-shifted microphone outputs. In addition to using
well known cross-correlation-based criteria such as the steered re-
sponse power (SRP), minimum variance (MV), and multichannel
cross-correlation (MCCC), this synchrony can also be measured
using the averaged magnitude difference function (AMDF) and
the averaged magnitude sum function (AMSF) whose calculations
involve low computational cost. In earlier related works, the latter
techniques have been used for time delay estimation (TDE) of a
target source observed by only one pair of microphones. Their
generalization to the multiple microphone case and application
to source localization have not been studied yet. In this paper,
we consider both categories, i.e., cross-correlation and AMDF
(with AMSF)-based approaches, using an arbitrary number of
microphones, and analyze their performance. Specifically, we
first provide a unifying study of the most popular cross-correla-
tion-based techniques, such as the SRP, MV, and MCCC. In this
paper, we use the eigenanalysis of the parameterized spatial cor-
relation matrix (PSCM) to classify these methods and gain some
insight into their performance. We demonstrate, for instance,
that the MV and SRP consist in searching the major eigenvalue
of the PSCM, while the MCCC, essentially, combines its minor
eigenvalues when scanning for the source location. Inspired by this
analysis, we show, in the second part of this work, the efficiency
of the AMDF and AMSF in localizing an acoustic source using
multiple microphones. Indeed, we propose two new parameter-
ized matrices named as the parameterized averaged magnitude
difference matrix (PAMDM) and the parameterized averaged
magnitude sum matrix (PAMSM). The eigenanalysis of these
matrices also reveals new criteria for acoustic source localization.
Simulation results are provided to illustrate the effectiveness of all
the investigated and proposed methods.

Index Terms—A coustic source localization, averaged magnitude
difference function (AMDF), averaged magnitude sum function
(AMSF), beamforming, minimum variance (MV), multichannel
cross-correlation, steered response power (SRP).

1. INTRODUCTION

HE knowledge of the acoustic source location is of
paramount importance in several applications including
hands-free communication systems, teleconferencing, auto-
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matic camera steering, etc. In these applications, an array of
microphones is commonly deployed to monitor the source lo-
cation and perform either a required spatial filtering (focussing
the beam-pattern of the array toward the source of interest and
zeroing the array response toward the interference locations)
[1] or automatically pointing the deployed cameras toward an
active talker in a video-conferencing room for example [2].
This wide range of applications has boosted the development
of several localization methods over the last few decades in
order to achieve more robustness to the hostile nature of the
acoustic environments where reverberation and noise are still
major hindrances.

Essentially, the process of acoustic source localization consists
in measuring the synchrony between properly delayed (noise-
free) microphone outputs. Following this statement, we classify
the source localization methods into three main categories.
First, the most popular techniques are based on the second-
order-statistics of the microphone array outputs. The SRP [3],
MYV [4], and MCCC [5] are considered as the benchmark
methods in this category. Indeed, they have been applied in
several earlier contributions to either time delay estimation
(TDE) or localization. In [1], an overview of TDE techniques
and discussions of the pros. and cons. of the different frequency-
domain weighting functions were provided. In [6], [7], the
SRP with the phase transform was used for multiple speakers
localization. In[8], Domochowski etal. applied these well-known
TDE methods to the localization by directly taking into account
the relationship between the array geometry and the spatial
location of the source. Therein, the authors have shown that
these techniques are formulated using the PSCM that was first
introduced in [4]. Herein, we further study these methods based
on the eigenanalysis of the PSCM to justify their performance
in noisy and reverberant conditions. The synchrony between
the processed microphone outputs can also be measured from
an information theoretic point of view. This corresponds to the
second category of localization methods. In [9], for example, it
was shown that the mutual information maximization (or joint
entropy minimization) allows for accurate source localization.
This approach leads to the (cross-correlation-based) MCCC
for Gaussian signals. The speech distribution, however, is
generally assumed to have a Laplacian shape [10] and more
complicated calculations are required in the computation of the
mutual information of the multivariate Laplacian-distributed
microphone outputs. The final category consists in methods
based on simpler criteria in the sense that neither second- nor
higher-order statistics (or assumed distributions) are required.
In this category, the synchrony between the outputs of each
pair of microphones is measured using either the AMDF or
the AMSF [14]. The AMDF was previously applied for pitch
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estimation [11], [12], and also TDE [13], [14] using a single pair
of microphones. To the best of our knowledge, both methods
have not been yet generalized to the multiple microphone
case with application to source localization. In this paper, we
will only focus on the first and third categories since they
require much less computational load and can achieve good
performance without any prior knowledge about the wideband
source distribution.

Our contribution in this paper is twofold. First, we use the
eigenanalysis as a powerful tool to analyze and classify the
cross-correlation-based broadband source localization tech-
niques. The underlying idea of the eigenanalysis framework
investigated herein is that when the PSCM is steered toward
the source location, two subspaces can be identified. The first
one corresponds to the one-dimensional subspace spanned by
the vector associated with the largest eigenvalue of the PSCM.
Whereas the second subspace is spanned by the eigenvectors
of the PSCM which are associated with the remaining eigen-
values of this matrix. Instead of using a predefined form of the
steering vector as in narrowband high-resolution techniques
[15], [16], we scan the potential source locations and observe
the variations of the eigenvalues associated with these two
subspaces. To gain a better understanding of the functioning of
the MV and the SRP, we devise both criteria from a covariance
fitting perspective [17], [18] and show that they are essentially
equivalent to tracing the source location using the maximum
eigenvalue. We also show that the MCCC, in contrast, takes ad-
vantage of the joint variations of the noise-subspace-associated
eigenvalues. Alike the cross-correlation-based framework, our
second contribution consists in demonstrating the efficiency
of the AMDF and AMSF to localize acoustic sources when
multiple microphones are deployed. Indeed, for a given pair
of microphones the AMDF and the AMSF aim at maximizing
the synchrony between properly time-shifted output signals
by calculating the absolute difference or sum, respectively. By
taking advantage of all microphone pairs as in the PSCM-based
analysis, we propose two new parameterized matrices, namely,
the PAMDM and the PAMSM that contain all the combinations
of the AMDF and AMSF relating each pair of microphones.
The eigenanalysis of both matrices reveals new efficient criteria
for source localization.

This paper is organized as follows. Section II describes the
data model and the assumptions required to obtain a tractable
formulation of the problem. Section III reviews the cross-cor-
relation-based methods and presents the eigenanalysis of the
PSCM as a powerful tool for their understanding. In addition,
new criteria are devised using the same framework. Section IV
outlines the underlying idea of generalizing the AMDF and the
AMSF to the multi-microphone case and their application to
wideband source localization. The eigenanalysis of the new pro-
posed matrices, i.e., the PAMDM and the PAMSM, reveals other
criteria for source localization. Finally, Section V evaluates the
performance of the proposed methods with comparisons to the
existing ones.

II. DATA MODEL

Let s(¢) denote a signal generated by a broadband source
and captured by an array of N microphones. Let also ry =
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[0s b5 dS]T denote the 3-D space coordinates of the source,
where (-)7" denotes the transpose operator. The three entries of
r, are the azimuth, elevation, and range in the spherical coordi-
nate system. The output of the nth (n = 1, ..., N) microphone
is given by

xn(f) = an(rS)S (t_Tn(rS))+”n(t) (1)

where a,(r;) is the channel attenuation, v, (¢) is an additive
noise, and 7, (r;) is the propagation time delay from the source
to the nth microphone element. In the free-field case, the re-
ceived signal magnitude is attenuated at a rate proportional to
the inverse of the distance between the source and the micro-
phone. Such an information can be exploited to develop en-
ergy-based source localization algorithms as it was shown in
[21], for instance. However, such techniques generally exhibit
high sensitivity to additive noise and more importantly reverber-
ation. The time delay of arrival 7,,(r) is also a function of the
source location. Indeed,

Tn<rs) = dn(rS) (2)

C

where d,,(rs) is the distance between the source and the nth
microphone element and c is the sound velocity. Therefore, es-
timating 7,,(rs) amounts to estimating d,,(rs) which defines a
sphere with radius d,,(r;) and the nth microphone as a center.
Instead, the time difference of arrival (TDOA) between pairs of
microphones are commonly used for localization in addition to
some other simplifying assumptions [3], [8], [20]. The TDOA
between microphones n and m (n, m € {1,..., N})is simply
given by

fnmo‘s) = Tm(rs> _ Tn(rs) _ dm<rs) - dn(rs> ] (3)
By assuming that the source lies in the far-field, it can be shown
that 7y, (r5) 8, approximately, only dependent on 65 and ¢,.
To further simplify the problem, we can assume that the source
and microphone array are located on the same plane. Conse-
quently, the TDOA depends on 6 only. In the sequel, we will
make this assumption for the sake of simplicity. Finally, note
that F.,.,, () depends on the array geometry. Without loss of gen-
erality, we will consider a uniform circular array (UCA) whose
advantages are discussed in [8]. In this case, we have

Fum(0:)
_ [COS (95 . W) ~cos <as _ W)} )

where r is the array radius.

Using a general terminology, we state that the process of lo-
cating an acoustic source consists in measuring the synchrony
between the properly delayed microphone outputs. Although
most of the source localization techniques take advantage of
the microphone array outputs cross-correlation as a measure of
synchrony, one can also expect the AMDF and AMSF to be of
great help. Indeed, it was shown in [13] and [14] that these two
synchrony measures allow for accurate estimation of the TDOA
when a pair of microphones is used. Herein, we generalize both
criteria to the multi-microphone case and show their effective-
ness in locating acoustic sources. It is also worth mentioning
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that the mutual information is another potential synchrony mea-
sure. Its effectiveness in TDE was demonstrated in [9]. How-
ever, the estimation of the mutual information requires the prior
knowledge of the microphone outputs distribution and leads to
quite involved calculations [9]. The utilization of this criterion
falls beyond the scope of this work due to space constraint and
we would rather focus our attention in this contribution on the
first two synchrony measures (i.e., the cross-correlation and the
AMDF with AMSF).

The parameterized processing for acoustic source localiza-
tion [5], [8], [14], [19] consists in applying a delay F7,,(6) to the
observations seen by the nth microphone and optimize certain
criteria over the parameter 6. Note that we take the first micro-
phone as a reference, without loss of generality. The optimality
is reached when 6 = 6. For a given parameter 6, we define

x(t,0) = [z1(t) 22 (t + F12(0)) -+ zn (t+ Fin(O)]" (5)

where 2, (t+F1n(6)) = ans(t — mn(rs) + Fi1n(0)) + vn(t +
Fin(0)). This parameterized vector will be directly involved in
all the forthcoming processing.

Most of the cross-correlation-based techniques use the PSCM
either explicitly or implicitly [8]. In the sequel, we revisit the
definition of this matrix. Then, we propose a unifying frame-
work for PSCM-based source localization techniques which
takes advantage of the eigenanalysis of the PSCM. By analogy,
we next propose the PAMDM and PAMSM that generalize the
AMDF and AMSF to the multi-microphone case.

III. CROSS-CORRELATION-BASED SOURCE LOCALIZATION

The PSCM is simply defined as the correlation matrix of
x(t,0) and is given by

R..(0) = E {x(t,0)x" (t,0)}
=AR,,(/)A + Ry, (0) (©6)

where A = diag[a], a = [a1,as, ...,an]", and E {-} denotes
the mathematical expectation. Note that we avoid mentioning
the dependence of the channel attenuation coefficient on the
source location for notational convenience. R (6) and R.,,,(6)
are the resulting parameterized covariance matrices of the
source and noise, respectively. The (4, j)th entry of the PSCM
is given by
[Raa(0)]; ; = Taiae; (Fij (0))

5]

= aia;7s(Fij(0) = Fij(0s)) + ro.o, (Fij(0))

(N

where 7., (1) = E{zit)zj(t+71)}, Tow, (1) =
E{vi(t)v;(t +7)}, and r. (1) = E{s(t)s(t+7)}, for a
given time delay 7. The general procedure for parameterized
processing that was proposed in [8] for source localization
and that we consider in this paper consists in investigating the
broadband spatial spectrum (a certain criteria which is function
of the PSCM), denoted herein as S {R.,;(¢)}, and identifying
its peak that corresponds to the source location. Formally, the
approach consists in estimating 65 as [8]

f, = arg max S{R..(0)}. (8)
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So far, several criteria have been proposed for source localiza-
tion such as the SRP [3], MV [4], and MCCC that stems from
the linear spatial prediction [5], etc. Herein, we show that all
these methods can be devised from a general eigenanalysis-
based framework.

A. FEigenanalysis-Based Framework

When 6 = 6, the PSCM becomes
R..(0s) = ofaaT + R, (6s) )

where 02 = E{s%(t)}. Clearly, R....(f5) can be used to iden-
tify two subspaces: signal-plus-noise (major) and noise (minor)
subspaces. The first one is of dimension 1 while the second is
of dimension N — 1. In narrowband high-resolution techniques
such as MUSIC [15] and ESPRIT [16], the knowledge of the
so-called steering vector allows one to determine the DOA. In-
deed, the latter belongs to the signal subspace when f = 6. In
order to estimate the source direction of arrival, these methods
take advantage of the orthogonality of the steering vector to the
eigenvectors corresponding to the N — 1 smallest eigenvalues
of the observations’ covariance matrix (spanning the noise sub-
space). In our case, however, no explicit expression for this
steering vector is available because of the wideband nature of
the acoustic signal and the convolution involved in the data
model (1). In [22], a notable attempt was made to generalize
the MUSIC algorithm to broadband signals. But the proposed
approach was confronted to the choice of the steering vector.
Transforming the problem to the frequency domain may be in-
teresting in the sense that every frequency bin can be processed
separately from the others using the MUSIC algorithm [15], for
instance. Unfortunately, the combination of the location esti-
mates is not straightforward since the speech signal is sparse
in the frequency domain, thereby leading to poor location es-
timates in many frequency bins and affecting the overall per-
formance when combining the estimates at all frequencies [1].
Fortunately, the eigenanalysis of R,(f) can still be of a great
help. To proceed, let us first decompose R.;..(6) as

R....(0) = UT(6)D(6)U(0) (10)
where U(f) is a unitary matrix, D(6) =
diag [/\1(9) ceey /\N(9>], and /\1(9) > )\2(9) >

-+ > An(6) > 0 denote the eigenvalues of R,,..(f) sorted in a
decreasing order. This eigenanalysis will allow us to gain good
insights into source localization techniques.

B. Justifying the Importance of the Eigenanalysis for Source
Localization

Ignoring the noise component in (1), we see that when the
PSCM is steered toward 6, we have R,...(6,) = o2aal’. Then,
one can see that R, (,)a = o2 ||a||* a, meaning that a is an
eigenvector of R, () associated to the major eigenvalue (all
other eigenvalues equal 0) of this matrix

N
M(bs) = ol lal® = o7 Y a.

n=1

(1)
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Fig. 1. PSCM eigenvalues versus azimuth; anechoic enclosure, SNR = 0 dB.

It is apparent that A;(f) captures the overall energy of the re-
ceived signal (including the channel effect). Herein, we state
that when the PSCM is not steered toward the effective source
location, the received noise-free energy is smeared on more
than one dimension. To understand this phenomenon, we con-
sider the particular case where the desired source is tempo-
rally white with identically distributed components. In this case,
when 6 # 6,

R..(0,) = o2diag [a},...,a%] .

The nth eigenvalue of this matrix is obviously

A (0) = o2ad? (12)
and
N
M(8s) =D Aa(0). (13)
n=1

Hence, when the spatial correlation matrix is not steered toward
the main direction, the source energy is spread over the N di-
mensions. The analysis in the case of a temporally correlated
process such as speech is not straightforward, but one can ex-
pect a similar behavior. Figs. 1 and 2 depict the variations of all
the eigenvalues of R, (6) with respect to the azimuth. These
results were obtained in both anechoic and reverberant environ-
ments where a speech source is located at an azimuthal angle
fs = 60° and captured by a circular array of ten microphones
as described in Section V. These figures support our expecta-
tions since the major eigenvalue is maximized while all other
eigenvalues are minimized (see discussions in Section V-A). In
the light of this example, we gained some insight into the effect
of the choice of § on the behavior of the desired signal energy
distribution over the N dimensions: the energy is spread over
multiple dimensions when 6 # 6, and focused on a single one
when 0 = 6,.
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Fig. 2. PSCM eigenvalues versus azimuth; reverberant enclosure, SNR =
0 dB.

C. Analysis of the Major Eigenvalue

When 6 = 6, there is only one dominant eigenvalue (sup-
posing that the noise is weak enough or has independent and
identically distributed (i.i.d.) components) that corresponds to
the source (plus noise) energy. Physically, this can be explained
by the fact that the overall signal energy is impinging on the mi-
crophone array from a single direction. When 6 # 6, however,
the rank of R, (6) is larger than 1, meaning that the energy
of the source is spread over many dimensions. This intuition
was exploited in [8] by observing the maximum eigenvalue and
choosing this criterion

SMaxkig {Rex(0)} = A1(0).

In what follows, we take advantage of the covariance fitting
approach [17], [18] to demonstrate that the SRP and MV aim
in essence at analyzing the major eigenvalue. To this end, let us
suppose that a has a unit norm!. First, we see from (9) that in the
absence of noise, a is an eigenvector of R.,.() associated with
A1(8s). If we further suppose the knowledge of a, one can think
about finding an estimate of A1 () (denoted as ;\1) knowing a
certain estimate of R, (6s), say R”. From a covariance fitting
perspective [17], [18], this can be easily formulated as

(14)

(15)

‘/\aaT — f{,TT

A1 = arg m}}n
The straightforward solution to this optimization problem is
M =a’R,.a. (16)

If we further assume that there is no channel attenuation in the
data model (1), i.e., a = 1 which is an N—dimensional vector
with all its entries being equal to 1, and replacing R, by the

IThe analysis is valid in the general case ||a|| # 1, but with a independent
of 8, which is the case here.
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best available estimate of this matrix at a given direction 6, i.e.,
R....(0) , we obtain the well known SRP criterion [3]

A(0) = Ssrp {Rez(0)} = 17R,..(0)1 (17)
up to a constant scaling factor. Hence, in the absence of channel
attenuations, maximizing Ssgrp {Rq. ()} is equivalent to max-
imizing the maximum eigenvalue of R...(#) over 6 that leads to
/\1 (05) R

A second way to find A; consists in solving the following
covariance matching problem [17], [18]

2

M= argm}%n H(/\aaT)# -R;! (18)

where # denotes the pseudo-inverse of a matrix, leading to?

A = (@"R7la)"L (19)
Again, supposing that a = 1, and replacing R.. by the best
available estimate of this matrix at a given direction ), we obtain
the well known MV criterion [4], [8]

-1

A(0) = Suv {Raa(0)} = (1TR,}(6)1) (20)

up to a constant scaling factor. We conclude that the maximum
eigenvalue, the SRP, and the MV have essentially the same ob-
jective which consists in maximizing the maximum eigenvalue
of the PSCM over all potential candidate locations. Note, how-
ever, that the computation of the MV criterion involves the in-
version of the PSCM which makes it sensitive to the ill condi-
tioning of this matrix. This fact will be numerically illustrated
in Section V.

D. Analysis of the Minor Eigenvalues

In the absence of noise, we have

This is not the case in the presence of noise. However, one hopes
that the energy of speech is high enough compared to the noise’s
so that A1 (6) is much higher than all other eigenvalues, thereby
allowing to distinguish between the noise and speech contribu-
tions to the PSCM when steering it towards the source location.

The criteria that we propose herein are based on observing
the energy of the minor subspace. This energy can be calculated
by averaging it over \2(6), ..., Anx (). Moreover, one can use
either geometric or arithmetic averaging to obtain the two cri-
teria given as follows:

Snsa {Raz(0)} = <ﬁ > )\n(e)) (22)

N ~1/(N-1)
Snsc {Raz(0)} = <H An(0)> . (23

The subscripts “NSA” and “NSG” stand for “noise subspace
arithmetic averaging” and “noise subspace geometric aver-
aging,” respectively. We expect both criteria to reach their
maximum at 6.

21t can be easily verified that (Aaa”)# = (1/A)aa”.
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Another notable acoustic source localization method was pro-
posed in [5] where Benesty et al. took advantage of the linear
spatial predictability of the noise-free microphone signals from
each other (multiple redundancies) to develop the following cri-
terion:

Sicoc {Rae(0)} = 1 — det {Rm(a)} (24)
where R, (f) = A_l/ZRm(H)A_l/2 and
A = diag [E{z}(t)}, ..., E{aX (t+ Fin(9)}] is

a diagonal matrix containing all the diagonal terms of R..,(6)
which turn out to be scaling factors independent of # due to
the speech local stationarity.

In addition, maximizing Syccoc {Ra(6)} is equivalent to

maximizing 1/ det {RM (0)} orequivalently 1/ det {R...(0)}
since A is independent of 6. It is known that

N
det {Ruo(0)} = [ An(6). (25)
n=1

Thus, we find, once again, that we are able to define another well
known criterion for source localization by using the eigenvalues
of the PSCM. Furthermore, we deduce that the MCCC is quite
different from the SRP and MV since its objective is to look for
the minor subspace and reach the optimality when det [R....(6)]
is minimal, i.e., when the effect of the minor eigenvalues is dom-
inant (due to the geometric averaging).

E. Common Eigenanalysis Framework

So far, we have shown that the information about the source
location can be traced using both types (i.e., major and minor)
of eigenvalues. Herein, we propose the following general form
that combines all the eigenvalues:

M=

SGSA {ng(e)} = Oén/\;;” (0) (26)
n=1
N
Sasc {Rua(60)} = T A2 (6) @)
n=1
where a,, v, and 3, ,n € {1,..., N}, are some multiplicative

and exponential weighting factors that have to be chosen prop-
erly. The subscripts “GSA” and “GSG” stand for “generalized
spectrum arithmetic” and “generalized spectrum geometric” av-
eraging, respectively. A similar framework for spatial spectral
estimation for narrowband sources has been recently proposed
by Stoica et al. in [18]. In our proposal, we take advantage of
this framework in the context of acoustic source localization by
focusing on the eigenalysis of the PSCM. It is clear that all these
localization techniques exploit the fact that when the spatial cor-
relation matrix is steered toward 6, their averaged spectrum
is minimal (or maximal) due to the dominance of the effect of
the eigenvalues associated with either the minor or major sub-
space. However, different weights have to be attributed to the
eigenvalues depending on whether they are associated with one
of either subspaces. By doing so, one wishes to obtain better
spectrum resolution and potentially improved localization. In
the absence of any prior knowledge of the noise statistics, we
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TABLE I
CLASSIFICATION OF THE PSCM-BASED EXISTING AND NEW SOURCE LOCALIZATION METHODS FROM AN EIGENANALYSIS PERSPECTIVE

Subspace Major subspace Minor subspace Minor & major subspaces
Localization method | SRP MV MaxEig || MCCC | NSA | NSG || CEig CMCCC

@ {lu1],}* | {[u®n],}* |1 - 0 1 -

an; n=2..N {lu©1],}* | {[u®1,}* | o - 1 — I

vy 1 -1 1 — — - 1 -

VUn; n=2..N 1 —1 — — 1 1 —

B — — 1 1 - 0 — 1

Brn; n=2..N — - 0 1 - -1 — -1

can simply assign the same weighting terms to the minor eigen-
values. Below, we give two examples to illustrate this strategy

Scrig {Rus(0)} = M (6) — ﬁ S8 @8)

N

Scmecc {Rax(0)} = A1 (0) H AH0).

n=2

(29)

The above criteria are actually based on the contrast between
both subspaces which reaches its maximum when the matrix
is steered toward 6. Since we have no prior knowledge about
the noise energy distribution, we averaged its eigenvalues (using
either arithmetic or geometric averages). Also different weights
are assigned to both minor and major subspace associated terms
to properly combine the effects of both subspaces on the spa-
tial spectrum. In Table I, we summarize and classify the PSCM-
based source localization techniques from an eigenanalysis per-
spective3.

As we stated above, the candidate azimuthal angle that
maximizes the synchrony between properly time-shifted micro-
phone outputs corresponds to the desired source location (angle
of arrival). We have shown that by using the cross-correlation
(through the PSCM) as a measure of synchrony, several criteria
can be devised thanks to the new proposed eigenanalysis-based
framework. Other alternatives to measure this synchrony con-
sist in properly applying the AMDF and AMSF criteria when
multiple microphone observations are available. In the fol-
lowing section, we take advantage of both criteria in addition to
the eigenanalysis to propose new source localization methods.

IV. MULTI-MICROPHONE AVERAGED MAGNITUDE DIFFERENCE
AND SUM-BASED SOURCE LOCALIZATION

The AMDEF is a well-known criterion in pitch estimation lit-
erature [11], [12]. More recently, it has been applied to the esti-
mation of the time delay of propagation between a pair of micro-
phones [13], [14]. Essentially, this criterion consists in scanning
for the proper parameter (time period in the context of pitch es-
timation and time delay in the context of TDE) that maximizes
the synchrony between two properly time-shifted signals. This
synchrony is measured using the magnitude of the difference be-
tween both signals of interest. This approach is known to offer

3Note that for the MV and SRP criteria, we took advantage of the eigende-
composition in (10). Also, we considered minimizing Sy;\, {R..(8)} instead
of maximizing Syrv {R..(6)} for the MV.

good performance in favorable noise conditions and even in re-
verberant environments [13], [14]. Furthermore, the calculation
of this criterion has low complexity since it involves no multi-
plications. In the light of this discussion, it is surprising to find
that this criterion has neither been generalized to the multi-mi-
crophone case for TDE nor applied to source localization. More-
over, it was proven by Chen et al. that the AMSF is a promising
simple and accurate synchrony measure for TDE [14]. Indeed,
it is measured using the magnitude of the sum between both
signals of interest. In this part, we take advantage of both cri-
teria to localize acoustic sources using multiple microphones.
Similar to the cross-correlation-based approaches, we process
the parameterized vector x(t,6) by scanning all potential can-
didate locations and measuring the synchrony (using AMDF or
AMSEF-based criteria) between its entries.

When a block of data having a size () > 1, say for example
x(t,0), x(t — 1,0), ..., x(t — Q + 1,0), is available, the
AMDF of a given pair (4, j) of microphones, 7,j € {1,...,N},
is expressed as

Q
Jijaspe(8) = 5 S it 4 Fri(8)) — (¢ + F15(6)].

(30)
To avoid rounding issues, it is better to use the TDOA F;;(0) =
F1;(8) — F1:(0) and obtain the following criterion, instead

Q
Jijampr(0) = é D lwit) —w (b4 Fiy(0)]. 3D
t=1

In order to take full advantage of the multiple microphones,
we define the PAMDM, A(), whose (%, j)th entry is defined as

[A(0)];; = Jijavpr(6).

Note first that for equal channel attenuation coefficients and no
additive noise in the data model (1), ||A(6)||*> — 0 when 6 —

(32)

65, where ||| denotes any matrix norm. In particular, we con-
sider the norm ||A(8)[|> = tr{A(a)AT(a)} =N 82(9),

where 6,,(f),n = 1,..., N are the eigenvalues of the PAMDM
sorted such that |61(6)| > |62(8)| > --- > |6n(6)|- Hence, we
deduce that ||A(6)|| reaches its minimum at the source location
and so do |61(0)[, |62(0)|, ..., |65 (6)]. Figs. 3 and 4 depict
the variations of the inverses of the magnitudes of the eigen-
values of A(f) with respect to the azimuth. These results were
obtained in the same conditions as in Figs. 1 and 2 discussed



SOUDEN et al.: BROADBAND SOURCE LOCALIZATION FROM AN EIGENANALY SIS PERSPECTIVE

=3

o o
ke kA
s 4 i R ; s 4
0 60 120 180 240 300 359 0 60 120 180 240 300 359
0 [degree] 0 [degree]
o 0 T o 0 T T
8 ‘ ‘ 8 :
- 1 : ; ~ 05 !
o =
s, : S : :
0 60 120 180 240 300 359 0 60 120 180 240 300 359
6 [degree] 6 [degree]
g 0 =y
k= o
— -05f — =0
e e :
Y = -04 .
0 60 120 180 240 300 359 0 60 120 180 240 300 359
6 [degree] 6 [degree]
g 0 oy
b= B
— -0.1 %
© ©
= <02 = k
60 120 180 240 300 359 0 60 120 180 240 300 359
6 [degree] 6 [degree]
g ? g e
e = WA S et LV !
< < :
= 202 = -02
0 60 120 180 240 300 359 0 60 120 180 240 300 359
6 [degree] 6 [degree]
Fig. 3. PAMDM  eigenvalues versus azimuth; anechoic enclosure,
SNR = 0 dB.

in Sections III-B and V-A. We deduce that most of these eigen-
values can be used for source localization by scanning all can-
didate source locations and retrieving the maximum of the spa-
tial spectra that corresponds to 6. However, one can notice that
the spectra of the smallest eigenvalues exhibit several spikes. It
turns out that these spikes have a deleterious effect on source
localization as we verified through several numerical examples.
Large eigenvalues seem, in contrast, quite robust. We also no-
ticed that in the presence of reverberation, the largest eigenvalue
is the most reliable to be used as a criterion for source localiza-
tion. Consequently, we propose the first new multiple micro-
phone AMDEF-based criterion

1
[61(60)"
Moreover, we propose the second new criterion which is in-

spired from the SRP and termed herein as steered magnitude
difference (SMD)

Skigampr {A()} (33)

Ssuin {A(6)} = m.

(34
This criterion is rather heuristic, yet efficient, as it will be proven
by numerical examples. Furthermore, it reduces to the classical
pairwise AMDF criterion for source localization when only a
pair of microphones is used.

In [14], it was shown that the AMSF is also a promising
criterion for TDE. Herein, we generalize this measure to the
multichannel case in a similar fashion to the multi-microphone
AMDEF. Essentially, for a given pair of microphones, the AMSF
is maximized when the signals are perfectly aligned. In other
words, the synchrony between the outputs of a given pair of mi-
crophones (,7), 4,57 € {1, ..., N}, is maximized when the
AMSF criterion

Q
Jij avisr(0) = % S i) + 3 (t+ F @) (35)
t=1
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Fig. 4. PAMDM eigenvalues versus azimuth; reverberant enclosure, SNR =
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is maximized. Following the same procedure that led to the new
generalized multi-microphone AMDF-based criteria, we first
define the PAMSM, S(#), such that its (i, j)th entry is given
by

[S(0)];; = Jij,amsr(0). (36)
In [14], it was demonstrated that the correlation coeffi-
cients between AMDF and AMSF are approximately zero,
thereby meaning that both criteria contain supplemen-
tary information. This fact is also observed herein in the
PAMSM and PAMDM. Indeed, since the maximum syn-
chrony between all pairs is achieved when § = 605, we
expect [|S(O)|I° = tr{S(8)ST(A)} = 2N, ~2(6), where
71(8), v2(8), ..., yn(0) are the eigenvalues of S(f) sorted
such that |y1(0)] > |y2(8)] > --- > |y~ (0)|, to reach its
maximum when all pairs are aligned, in contrast to ||A(6)]]
which reaches its minimum. Figs. 5 and 6 depict the variations
of the absolute value of the first eigenvalue and the inverses of
the N — 1 other eigenvalues S(6) with respect to the azimuth.
These results were obtained in the same conditions as in Figs. 3
and 4 discussed in Sections III-B and V-A. We see that |y, (6)]
reaches its maximum at ¢ while all other eigenvalues are mini-
mized. To explain this result, recall that in the ideal case (neither
channel attenuation nor noise) S(f;) is of rank one. Thus, simi-
larly to the PSCM, the energy of the PAMSM is maximized and
focussed on the maximum eigenvalue when it is steered toward
the direction of arrival of the source. Otherwise, it is smeared
toward other dimensions. Similar to the PAMDM eigenvalues,
it is clear that most of these eigenvalues can be used for source
localization. However, the spectra of the smallest eigenvalues
exhibit several spikes that have a detrimental effect on source
localization as we verified through several numerical examples.
We empirically found that the largest eigenvalue is the most
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reliable to be used for source localization. Consequently, we
define the following new criterion:

Sgigamsr {S(0)} = [y1(0)]. 37

The other eigenvalues can be used, but they have been empiri-
cally verified to provide poorer results due to their sensitivity
to reverberation. Finally, we propose another ad-hoc yet simple
and accurate multi-microphone AMSF-based criterion for
source localization. This criterion is termed, herein, as steered
magnitude sum (SMS) and is given by

Ssus {S(6)} = 17S(6)1. (38)

IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 18, NO. 6, AUGUST 2010

In addition to their ability to accurately localize the acoustic
source, both criteria Ssyip and Ssyis have very low complexity
because they simply consist in summing up all the entries of the
PAMDM and PAMSM, respectively. These two matrices are,
in their turn, simpler to compute than the PSCM since they in-
volve no multiplications. However, the eigendecompositions of
the PAMDM and PAMSM are required to, respectively, com-
pute Sgigampr and Ssus, thereby requiring a computational
complexity in the order of O(N?).

V. NUMERICAL EXAMPLES

In this section, we analyze the performance of all the investi-
gated and proposed source localization approaches. We proceed
as in [8] and present our results in terms of percentage of anoma-
lies (estimates that differ from the actual angle of arrival by more
than 5 degrees), and root mean-square error of non-anomalous
azimuth estimates. Moreover, we provide the spatial spectra of
all the criteria.

In the investigated scenarios, the speaker is located in a re-
verberant room with dimensions: length = 304.8 cm, width =
457.2 cm, and height = 381 cm (z X y X z). The reverberant
enclosure is simulated using the modified version of Allen and
Berkley’s image method [23], [24]. We consider a uniform cir-
cular array of N = 10 microphones. The center of the circular
array is located at (152.4 cm, 228.6 cm, 101.6 cm) and its ra-
dius is chosen as to prevent the spatial aliasing for circular ar-
rays (see [8] and references therein). Precisely, we choose r» =
¢/ (4 fmax sin (7 /N)). In our case, the highest frequency of the
speech signal is fi,.x = 4 kHz. Hence, we have r =~ 6.9 cm. The
speaker generates a 2-minutes-long female speech. It is situated
ata distance 200 cm from the center of the array and forms an az-
imuthal angle f, = 60 degrees. Similar to [8], a white Gaussian
noise was added to all sensors with SNR values of 0 and 10
dB. The speech signal is sampled at a rate 48 kHz to achieve a
good angular resolution, and the frame length used to estimate
the required criteria is 128 ms. To scan the whole plane, the spa-
tial spectra are estimated at every degree over the range [0, 359]
degrees. The walls, ceiling, and floor reflection coefficients are
set to 0 and 0.75 to respectively model an anechoic and rever-
berant room with reverberation time Tgg = 210 ms measured
using the backward integration method (see [25], Chapter 2 for
more details). In what follows, we start by analyzing the eigen-
values of the three parameterized matrices: PSCM, PAMDM,
and PAMSM. Then, we compare the performance of all the lo-
calization criteria considered in this paper in both anechoic and
reverberant environments.

A. Eigenvalues of the Parameterized Matrices

In the classical high-resolution techniques for narrowband
source localization, a general trend has been to scan all the
potential source locations and observe the variations of a cer-
tain criterion (or spatial spectrum). For instance, this criterion
is known to be the orthogonality between the noise subspace
(defined by the lowest eigenvalues and their associated eigen-
vectors) and the steering vector in MUSIC [15]. Unfortunately,
speech signals are wideband by nature and there is no partic-
ular form of the steering vector to be used as in narrowband
approaches. However, we have shown that the eigenanalysis of
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TABLE II
PERCENTAGE OF ANOMALIES OF ALL INVESTIGATED AND PROPOSED LOCALIZATION METHODS: SNR = 0 AND 10 dB, ANECHOIC AND REVERBERANT ROOMS

Tao =0 ms Tso = 210 ms
Category Criterion SNR=0dB | SNR=10dB || SNR=0dB | SNR =10 dB
Ssrp 3.71 0 28.43 23.54
Smv (not reg.) 4.60 21.41 32.0 45.0
Smv (reg.) 3.71 0 28.43 23.35
SMaxEig 3.53 0 28.24 22.97
Smccc (not reg.) | 3.89 20.17 36.15 55.93
Crosscorrelation-based
Smoce (reg.) 3.71 0 28.62 21.84
Snsa 3.53 0 28.24 22.97
Snsa 4.07 19.46 33.52 55.17
ScEig 3.53 0 28.24 22.97
Scmecce 4.07 19.29 32.95 54.04
SEigAMDF 3.71 0 30.88 20.28
AMDF-based
Ssmp 3.71 0 30.69 21.71
SEigAMSF 6.54 0.17 33.89 25.98
AMSF-based
Ssms 6.72 0.17 33.71 25.98

PSCM can be of great help in Section III. We further support
this fact by analyzing the effect of the steering angle 6 on all the
eigenvalues of the PSCM matrix in Figs. 1 and 2. Similarly, the
eigenvalues of the PAMDM and PAMSM also exhibit remark-
able behaviors that can be exploited in acoustic source localiza-
tion as shown in Figs. 3—6. Note that all the results are obtained
by estimating the eigenvalues at the whole range of ¢, averaging
them over all the data frames, and normalizing them for the sake
of clarity. First, we see that while the absolute values of the max-
imum eigenvalues of the PSCM, \(f), and PAMSM, |v1(6)|,
reach their maximum at 6, = 60°, almost all the other eigen-
values reach their minimum at this particular angle (note that the
other spectra correspond to the inverses of these eigenvalues).
This is justified by the fact that when both matrices are steered
toward the source location, they become almost rank deficient
(of rank one in the absence of channel attenuations and noise).
The synchrony between the properly time-shifted microphone
signals is maximized and the overall captured speech energy is
focussed on a single direction that corresponds to the major sub-
space. The speech signal contribution to the energy contained
in the other eigenvalues is minimized when § = 6. Otherwise,
some speech energy is spread over these dimensions, thereby ex-
plaining the particular peaks at the source location. Regarding
the PAMDM, we have shown that when it is steered toward
the source location, its norm is minimal (zero in the absence of
channel attenuations and noise). Therefore, the absolute values
of all its eigenvalues are reduced when # = 6. Comparing the
behaviors of all eigenvalues for a given parameterized matrix,
we notice that the smallest eigenvalues, in contrast to the largest
ones, have very irregular spectra with several spurious spikes,
which is the case for 1/Ag(6), 1/A10(0), 1/|69(8)], 1/]610(0)],
1/]v9(8)], and 1/|v10(8)|, for instance. Thus, relying on them
may lead to poor location estimates. A good solution would con-
sist in masking the effect of these small eigenvalues as it will be
better illustrated in the following subsection. The variations of

the largest eigenvalues seem to be more regular and robust to the
effects of the reverberation in spite of the remarkable flattening
of all the spatial spectra.

B. Performance of the Proposed and Analyzed Localization
Methods

We implemented all the PSCM-based methods described in
Table I in addition to the criteria in (33), (34), (37), and (38)
which are based on the PAMSM and PAMDM* and evaluate
the effect of the SNR and reverberation on their performance.
Note that we also added the regularized MCCC and regular-
ized MV (where we added a positive diagonal loading factor
to the PSCM). We notice in Tables II and III that in an ane-
choic environment and at SNR = 0 dB, all the PSCM-based
localization methods exhibit very similar accuracy in terms of
both percentage of anomalies and RMSE of the non-anomalous
source location estimates. When the SNR is increased to 10 dB,
we see that the SRP, MaxEig, NSA, CEig criteria yield almost
exact source location estimate (0% anomalies and an RMSE of
around 0.65°). The performance of the MCCC (without regu-
larization), the NSG, the CMCCC, and the MV (without regu-
larization) are deteriorated. To explain this fact, recall that we
have previously shown that the MCCC, the NSG, CMCCC de-
pend on the minor subspace eigenvalues. We have also shown
that the smallest eigenvalues exhibit irregular variations with
respect to the azimuthal angle. When the SNR is increased to
10 dB, the masking effect of the noise (spatially white) is re-
duced and the effect of the minor eigenvalues become signif-
icant. Regarding the MV, recall that its criterion requires the
inversion of the PSCM which becomes problematic when this
matrix is ill conditioned. These problems translate into a loss

“Note that other criteria can be devised from this eigenanalysis framework.

However, the ones investigated herein are empirically found to be the most ro-
bust.
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TABLE III
RMSE OF NON-ANOMALOUS ESTIMATES OF ALL INVESTIGATED AND PROPOSED LOCALIZATION METHODS:
SNR = 0 AND 10 dB, ANECHOIC AND REVERBERANT ROOMS

TG() =0 ms TG() = 210 ms
Category Criterion SNR=0dB | SNR=10dB || SNR=0dB | SNR =10 dB
Ssrp 1.95 0.65 2.75 2.92
Smv (not reg.) 1.99 2.62 2.74 2.90
Swmv (reg.) 1.95 0.65 2.75 2.92
SMaxEig 1.97 0.64 2.74 2.96
Smccc (not reg.) | 1.98 0.86 3.0 3.92
Crosscorrelation-based
Smccc (reg.) 1.96 0.64 2.84 3.0
Snsa 1.97 0.64 2.74 2.96
Snsa 1.99 0.86 2.99 3.87
ScEig 1.97 0.64 2.74 2.96
Scmcce 1.98 0.86 2.92 3.76
SEigAMDF 2.06 0.65 2.75 3.0
AMDF-based
Ssmp 2.07 0.66 2.76 2.99
SEigAMSF 2.29 1.27 2.77 2.96
AMSF-based
Ssms 2.29 1.27 2.78 2.95

of accuracy for the three minor-subspace-based methods in ad-
dition to the MV. The regularized MCCC and MV exhibit a
much more robust behavior and their performance is as good
as the SRP, MaxEig, and CEig methods since the regulariza-
tion factor masks the effect of the smallest eigenvalues for the
MCCC and improves the conditioning of the PSCM for the MV.
In the reverberant scenario, similar behaviors are observed and
the regularization of the PSCM seems important for both the
MYV and the MCCC to improve their accuracy especially for
SNR = 10 dB. The new proposed NSA criterion provides com-
parable and even better accuracy than all other PSCM-based
criteria. The geometric averaging of the minor-subspace-associ-
ated eigenvalues (NSG) and CMCCC are sensitive to the effect
of the smallest eigenvalues and lead to high percentage of anom-
alies. Moreover, it is quite remarkable that PAMSM and espe-
cially the PAMDM-based criteria, namely the SMD, EigAMDE,
SMS, and EigAMSEF, are also good candidates for source local-
ization in reverberant and anechoic environments. For instance,
the two PAMDM-based criterion yield the lowest percentage of
anomalies in the reverberant environment at SNR = 10 dB.

In Figs. 7-10, we show the spatial spectra of all the inves-
tigated methods. We notice that the minor subspace-based
methods, especially the MCCC without regularization, the
NSG, and the CMCCC, exhibit the best spatial resolutions.
The arithmetic averaging over the minor-subspace eigenvalues
leads to improved performance as compared to other methods
from the same class in terms of percentage of anomalies, but, it
results in less spectral resolution. Assigning different weights
to the minor and major eigenvalues yields better spectral res-
olutions as it can be clearly seen when comparing the spectra
of the CMCCC to the MCCC, and the CEig to the MaxEig.
When the SNR is set to 10 dB, we see that the spectra of the
MYV, the MCCC, the NSG, and the CMCCC exhibit several
spikes due to the inaccuracies caused by the lowest eigenvalues

whose effect is dominant when a geometric averaging is used
or when the matrix inversion is involved as in the MV criterion.
By comparing Figs. 7 and 8 to Figs. 9 and 10, we observe the
deleterious effect of the reverberation on the spatial spectra of
the minor-subspace-based criteria as it increases the number of
their spurious spikes, especially for SNR = 10 dB, and flattens
the spectra. These two behaviors account for the increased
number of anomalies seen with the minor-subspace-based
methods. By diagonally loading the PSCM, the spurious spikes
disappear at the price of a deteriorated resolution as it can be
seen with the spatial spectra of the regularized MV and MCCC.

VI. CONCLUSION

In this paper, a new eigenanalysis-based framework for
broadband source localization was proposed. First, we ana-
lyzed and classified cross-correlation-based source localization
techniques using the eigenanalysis of the PSCM. This study
was motivated by the fact that when the PSCM is steered
toward the source location, two subspaces can be identified:
the first subspace is spanned by the vector associated with the
largest eigenvalue of the PSCM (major subspace) while the
second corresponds to the minor subspace and is spanned by
the eigenvectors of the PSCM which are associated with all the
remaining eigenvalues. By scanning the potential source loca-
tions and observing the variations of both types of eigenvalues,
we concluded that these eigenvalues bear very useful infor-
mation on the source location. To gain a better understanding
of the functioning of the MV and the SRP, we devised both
criteria from a covariance fitting perspective and demonstrated
that they essentially consist in tracing the source location in the
maximum eigenvalue. Moreover, we showed that the MCCC
takes advantage of the minor-subspace-associated eigenvalues.
Other criteria combining the PSCM eigevalues were also
proposed, namely the CEig, CMCCC, NSA, and NSG. In
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the second part of this work, we generalized the AMDF and
AMSEF to the multi-microphone case and applied both criteria
to acoustic source localization. Both criteria aim at maximizing
the synchrony between properly time-shifted microphone out-
puts by calculating the absolute difference or sum, respectively,
and require less computational load than cross-correlation
approaches. In an analogous fashion to the first part of this
work, we proposed two new parameterized matrices, namely,
PAMDM and the PAMSM that contain all the combinations of
the AMDF and AMSF relating each pair of microphones. The
eigenanalysis of both matrices revealed new efficient criteria

Fig. 10. All spatial spectra versus azimuth; reverberant enclosure, SNR =
10 dB.

for source localization. Our numerical evaluations showed
that, both types of eigenvalues (minor and major) can be used
for source localization. However, the lowest eigenvalues can
have a deleterious effect on the accuracy of some algorithms
such that the MCCC and the new proposed NSG and CMCCC
criteria. Furthermore, the MV requires a matrix inversion. This
fact makes it also sensitive to the ill conditioning of the PSCM.
By diagonally loading this matrix in this case, an improved
accuracy in terms of percentage anomalous estimates can be
obtained at the price of decreased spatial resolution. The new
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proposed contrast-based methods assign different weights to the
eigenvalues depending on which subspace they belong to, and
exhibit improved spectrum resolutions. Finally, we showed that
the new generalized AMSF and especially the AMDF-based
methods are good candidates that allow for accurate source
localization.
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