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Cramér-Rao Lower Bounds for NDA SNR
Estimates of Square QAM Modulated Transmissions

Faouzi Bellili, Alex Stéphenne, and Sofiène Affes

Abstract—In this paper, we derive for the first time analytical
expressions for the exact Cramér-Rao lower bounds on the
variance of unbiased non-data-aided (NDA) signal-to-noise ratio
(SNR) estimators of square QAM-modulated signals. The channel
is assumed to be constant over the observation interval and the
received signal is supposed to be corrupted by additive white
Gaussian noise (AWGN). The derived expressions corroborate
previous attempts to numerically compute the considered CRLBs.
It will be shown that the NDA CRLBs differ widely from one
modulation order to another especially at moderate SNR levels.

Index Terms—SNR estimation, Cramér-Rao lower bounds,
non-data-aided estimation, QAM signals.

I. INTRODUCTION

IN modern communication systems, the SNR is an impor-
tant measure of the channel quality. For instance, it pro-

vides necessary information for power control, link adaptation
and adaptive modulation [1, 2], a few domains of application
among many. Roughly speaking, depending if the a priori
knowledge of the transmitted symbols is assumed or not,
the SNR estimators can be categorized as data-aided (DA)
or non-data-aided (NDA), respectively. On the other hand,
SNR estimators are said to be envelope-based if the estimation
process is based on the envelope of the received samples [3,
4, 5]. However, it is frequently of interest to obtain more
accurate SNR estimates using the inphase/quadrature (I/Q)
components of the received samples [3], and, in this case,
the SNR estimators are called I/Q-based estimators.

A well-known common lower bound on the variance of any
unbiased estimator is the Cramér-Rao lower bound (CRLB)
and it has been widely used as a measure of the attainable
precision of parameter estimates from a given set of obser-
vations. The CRLB for NDA envelope-based SNR estimates
of QAM-modulated signals was derived in [5] and [6] for a
known and an unknown noise variance, respectively. But, this
CRLB does not represent the actual performance that can be
achieved if we want to exploit all of the information contained
in the I/Q components of the received samples. The I/Q CRLB
for DA SNR estimates of QAM signals, for which all the
transmitted symbols are supposed to be perfectly known to the

Paper approved by G. E. Corazza, the Editor for Spread Spectrum of
the IEEE Communications Society. Manuscript received October 28, 2008;
revised June 30, 2009 and October 11, 2009.

The authors are with INRS-EMT, 800, de la Gauchetière Ouest, Bureau
6900, Montreal, Qc, H5A 1K6, Canada. A. Stephenne is also with Huawei
Technologies Canada, 411 Legget Drive, Ottawa, Ontario, K2K 3C9, Canada
(e-mail: bellili@emt.inrs.ca, stephenne@ieee.org, affes@emt.inrs.ca).

This work is supported by the Cooperative Research and Development
Program of NSERC, PROMPT Inc., Ericsson Canada and a Canada Research
Chair in Wireless Communications. Work published in part in WCNC’09.

Digital Object Identifier 10.1109/TCOMM.2010.093010.080568

receiver, was derived in [7]. On the other hand, the analytical
expressions for the exact I/Q CRLBs for NDA SNR estimates
were derived in [8], but only in the cases of BPSK and QPSK
signaling, whereas, for higher-order QAM modulations, these
analytical expressions have not yet been derived. They were
only computed numerically or empirically in recent works (see
[9] and [10]).

In this paper, considering square QAM constellations, the
most popular, and using the I/Q components of the received
signal, we derive analytical expressions for the CRLBs of
NDA SNR estimates in AWGN channels. The final results
introduced in this paper generalize the elegant CRLB expres-
sions for the SNR estimates of BPSK- and QPSK-modulated
signals presented in [8] to higher-order square QAM modula-
tions.

The rest of this paper will be organized as follows. In
section II, we will introduce the system model that will be
used throughout the article. Section III will be dedicated to
the results that are available in the open literature, regarding
the I/Q CRLBs for NDA SNR estimates of QAM-modulated
signals. Then, in section IV, we will derive analytical expres-
sions for these CRLBs in the case of square QAM constel-
lations. Finally, before moving to the concluding remarks in
section VI, we will present and comment on some graphical
representations of these analytical expressions in section V.

II. SYSTEM MODEL

Consider a traditional digital communication system broad-
casting and receiving a QAM-modulated signal. The channel
is supposed to be of a constant gain coefficient 𝑆 over the
observation interval. The received samples are assumed to be
AWGN-corrupted with noise power 2𝜎2. Assuming an ideal
receiver with perfect synchronization, the received signal at
the output of the matched filter can be modelled as a complex
signal as follows:

𝑦(𝑛) = 𝑆 𝑎(𝑛) 𝑒𝑗𝜙 + 𝑤(𝑛), 𝑛 = 1, 2, . . . , 𝑁, (1)

where {𝑎(𝑛)}𝑛=1,2,⋅⋅⋅ ,𝑁 are the 𝑁 transmitted symbols and
{𝑦(𝑛)}𝑛=1,2,⋅⋅⋅ ,𝑁 are the corresponding received samples. The
complex noise components {𝑤(𝑛)}𝑛=1,2,⋅⋅⋅ ,𝑁 are assumed to
be white and normally distributed with independent real and
imaginary parts, each of variance 𝜎2. Moreover, the transmit-
ted symbols, with equal a priori probability, are assumed to be
independent and identically distributed (iid) and drawn from
an 𝑀 -ary square QAM constellation, where 𝑀 = 22𝑝 for
any integer 𝑝. The parameter 𝜙 accounts for any non-random
phase shift introduced by the channel. In addition, to derive
standard CRLBs, which hold irrespectively of the transmission
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powers, the squared QAM constellation power is supposed to
be normalized to one, i.e., E{∣𝑎(𝑛)∣2} = 1.

Using the multiple observations {𝑦(𝑛)}𝑛=1,2,⋅⋅⋅ ,𝑁 , the true
SNR, 𝜌, that we wish to estimate, is defined as

𝜌 =
𝑆2 E{∣𝑎(𝑛)∣2}

2𝜎2
, (2)

=
𝑆2

2𝜎2
. (3)

From (3), we see that there are two unknown parameters which
are involved in the derivation of the SNR CRLBs, which are:
𝑆 and 𝜎2. Therefore, it is mathematically more convenient to
use the following parameter vector:

𝜽 = [𝑆 𝜎2]. (4)

In addition, since using the decibel (dB) scale often provides
easier interpretation of the performance of any SNR estimator,
we will henceforth consider the following parameter transfor-
mation:

𝑔(𝜽) = 10 log10

(
𝑆2

2𝜎2

)
. (5)

As shown in [11], the CRLB for parameter transformations is
given by

CRLB(𝜌) =
∂𝑔(𝜽)

∂𝜽
𝐼−1(𝜽)

∂𝑔(𝜽)

∂𝜽

𝑇

, (6)

where the derivative of the parameter transformation,
∂𝑔(𝜽)/∂𝜽, is given by

∂𝑔(𝜽)

∂𝜽
=

[
20

ln(10)𝑆
−10

ln(10)𝜎2

]
, (7)

and 𝑰(𝜽) is the Fisher information matrix (FIM) defined as

𝑰(𝜽)=

⎛
⎜⎜⎝
−E

{
∂2ln(𝑃 [𝒚;𝜽])

∂𝑆2

}
−E

{
∂2ln(𝑃 [𝒚;𝜽])

∂𝑆∂𝜎2

}

−E
{

∂2ln(𝑃 [𝒚;𝜽])
∂𝜎2∂𝑆

}
−E

{
∂2ln(𝑃 [𝒚;𝜽])

∂𝜎22

}
⎞
⎟⎟⎠, (8)

where 𝒚 is a vector that contains the 𝑁 data records, i.e., 𝒚 =
[𝑦(1), 𝑦(2), ⋅ ⋅ ⋅ , 𝑦(𝑁)]𝑇 , and 𝑃 [𝒚; 𝜽] is the probability density
function (pdf) of 𝒚 parameterized by 𝜽. The expectation E{.}
is taken with respect to 𝒚.

Usually, the derivation of the CRLB involves tedious alge-
braic manipulations. These mainly consist in the derivation of
the FIM elements.

III. BACKGROUND ON THE I/Q CRLBS FOR NDA SNR
ESTIMATORS IN QAM TRANSMISSIONS

Although the problem of SNR estimation dates back to
the 1960’s [12], the derivation of the CRLBs for NDA SNR
estimators was first considered in 2001 [8], but only for BPSK
and QPSK signals. So far, for higher-order QAM modulations,
these CRLBs have only been obtained numerically or com-
puted empirically (cf. [9] and [10], respectively). However,
their exact analytical expressions, as a function of the true
SNR, have not been derived yet.

A. NDA I/Q CRLB for QPSK transmissions

The analytical expressions for the exact I/Q CRLB on
the variance of unbiased NDA SNR estimators of QPSK-
modulated signals, including phase distortion, were earlier
derived in [8]. In fact, it was shown that the FIM is given
by

𝑰(𝜽) =
𝑁

𝜎4

⎛
⎜⎜⎝

𝜎2 − 𝜎2𝑓
(𝜌
2

)
𝑆𝑓

(𝜌
2

)

𝑆𝑓
(𝜌
2

)
1− 𝑆2

𝜎2
𝑓
(𝜌
2

)
⎞
⎟⎟⎠ , (9)

where

𝑓(𝜌) =
exp (−𝜌)√

2𝜋

∫ +∞

−∞

𝑡2

cosh(𝑡
√
2𝜌)

𝑒−
𝑡2

2 𝑑𝑡. (10)

Then, using (9) and (10), it was shown that

CRLBQPSK(𝜌) =
100

(
2
𝜌 − 𝑓

(
𝜌
2

)
+ 1

)
𝑁(ln(10))2

(
1− 𝑓

(
𝜌
2

)− 2𝜌𝑓
(
𝜌
2

)) .
(11)

From (11), it can be seen that the SNR CRLB was shown to
be independent of the phase distortion 𝜙 introduced by the
channel.

B. NDA I/Q CRLB for higher-order QAM transmissions

This problem has been recently addressed in [9] and [10],
where the exact analytical expressions were not derived, but
the CRLBs were approximately computed in two different
ways. In fact, the major difficulty recognized by the authors
of these two papers is the analytical derivation of the expected
values, with respect to the received samples 𝑦(𝑛), of the
second partial derivatives in (8). Indeed, in [10], this step was
carried out using Monte Carlo simulations where samples of
𝑦(𝑛) were generated via computer simulation and the expected
value computed empirically. However, in [9], the expectation
(with respect to 𝒚) involved in (8) was numerically carried
out using a Gauss-Hermitian quadrature and the obtained
numerical values for the FIM elements were used to evaluate
the CRLB without any analytical expression.

IV. NEW ANALYTICAL EXPRESSIONS FOR THE EXACT

NDA I/Q CRLBS IN CASE OF SQUARE QAM
CONSTELLATIONS

In this section, we will derive closed-form expressions for
the FIM elements and hence for the exact CRLB of NDA SNR
estimates when the transmitted symbols are drawn from any
square QAM constellation. Under the assumptions made so
far, for a general 𝑀 -ary QAM constellation (i.e., square and
non-square constellations), it can be shown that the pdf of the
𝑛𝑡ℎ received sample 𝑦(𝑛), parameterized by 𝜽, 𝑃 [𝑦(𝑛); 𝜽], is
given by:

𝑃 [𝑦(𝑛); 𝜽]=
1

2𝑀𝜋𝜎2
exp

{
−𝐼(𝑛)

2 +𝑄(𝑛)2

2𝜎2

}
𝐷𝜽(𝑛), (12)

where

𝐷𝜽(𝑛) =
∑
𝑐𝑘∈𝒞

exp

{
−𝑆

2∣𝑐𝑘∣2
2𝜎2

}
exp

{
𝑆ℜ{𝑦∗(𝑛)𝑒𝑗𝜙𝑐𝑘}

𝜎2

}
.

(13)
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In these equations, ℜ{.} and the superscript ∗ refer, respec-
tively, to the real part and the complex conjugate of any
complex number; 𝒞 = {𝑐1, 𝑐2, ⋅ ⋅ ⋅ , 𝑐𝑀} is the constellation
alphabet; 𝐼(𝑛) and 𝑄(𝑛) are, respectively, the inphase/real and
quadrature/imaginary component/part of the corresponding
received sample 𝑦(𝑛), which means 𝑦(𝑛) = 𝐼(𝑛) + 𝑗𝑄(𝑛).
As stated in the previous section, it is mainly the complexity
of the term 𝐷𝜽(𝑛) that prevented the authors, in [9] and
[10], to provide analytical expressions for the considered
CRLBs. However, in this article, by only considering square
QAM constellations, we notice that 𝐷𝜽(𝑛), and therefore
𝑃 [𝑦(𝑛); 𝜽], can be factorized. Consequently, we are able after
tedious algebraic manipulations, which will be briefly outlined
in the following, to provide analytical expressions for the
FIM elements given by (8), and therefore exact analytical
expressions for the considered CRLBs as a function of the
true SNR 𝜌. Indeed, it can be seen that, for square QAM
constellations (i.e., with 𝑀 = 22𝑝 for any 𝑝 ≥ 1), we
have 𝒞 = {±(2𝑖 − 1)𝑑𝑝 ± 𝑗(2𝑘 − 1)𝑑𝑝}𝑖,𝑘=1,2,⋅⋅⋅ ,2𝑝−1 where
𝑗2 = −1 and 2𝑑𝑝 is the intersymbol distance in the I/Q
plane, which is appropriately selected to set the constellation
power to a desired level. For a normalized-power square QAM
constellation, 𝑑𝑝 is computed using the following rule:

∑22𝑝

𝑘=1 ∣𝑐𝑘∣2
22𝑝

= 1, (14)

which yields the following result:

𝑑𝑝 =
2𝑝−1√

2𝑝
∑2𝑝−1

𝑘=1 (2𝑘 − 1)2
. (15)

Now denoting by 𝒞 the subset of the alphabet points that lie
in the top right quadrant of the constellation, i.e., 𝒞 = {(2𝑖−
1)𝑑𝑝 + 𝑗(2𝑘 − 1)𝑑𝑝}𝑖,𝑘=1,2,⋅⋅⋅ ,2𝑝−1 , we have 𝒞 = 𝒞 ∪ (−𝒞) ∪
𝒞∗ ∪ (−𝒞∗) and we rewrite (13) as follows:

𝐷𝜽(𝑛) =
∑
𝑐𝑘∈𝒞

exp

{
−𝑆

2∣𝑐𝑘∣2
2𝜎2

}
×

(
exp

{
𝑆ℜ{𝑦∗(𝑛)𝑒𝑗𝜙𝑐𝑘}

𝜎2

}
+ exp

{
𝑆ℜ{𝑦∗(𝑛)𝑒𝑗𝜙(−𝑐𝑘)}

𝜎2

}

+exp

{
𝑆ℜ{𝑦∗(𝑛)𝑒𝑗𝜙𝑐∗𝑘}

𝜎2

}
+ exp

{
𝑆ℜ{𝑦∗(𝑛)𝑒𝑗𝜙(−𝑐∗𝑘)}

𝜎2

})
.

(16)

Then using the fact that 𝑒𝑥 + 𝑒−𝑥 = 2 cosh(𝑥), we obtain:

𝐷𝜽(𝑛) = 2
∑
𝑐𝑘∈𝒞

exp

{
−𝑆

2∣𝑐𝑘∣2
2𝜎2

}[
cosh

(
𝑆ℜ{𝑦∗(𝑛)𝑒𝑗𝜙𝑐𝑘}

𝜎2

)

+ cosh

(
𝑆ℜ{𝑦∗(𝑛)𝑒𝑗𝜙𝑐𝑘∗}

𝜎2

)]
. (17)

Moreover, we have cosh(𝑥) + cosh(𝑦) =
2 cosh(𝑥+𝑦

2 ) cosh(𝑥−𝑦
2 ), and using the fact that

𝑐𝑘 + 𝑐∗𝑘 = 2ℜ{𝑐𝑘} and 𝑐𝑘 − 𝑐∗𝑘 = 2𝑗ℑ{𝑐𝑘}, (17) is

rewritten as follows:

𝐷𝜽(𝑛) = 4
∑
𝑐𝑘∈𝒞

exp

{
−𝑆

2∣𝑐𝑘∣2
2𝜎2

}
×

cosh

(
𝑆ℜ{𝑐𝑘}ℜ{𝑦∗(𝑛)𝑒𝑗𝜙}

𝜎2

)
×

cosh

(
𝑆ℑ{𝑐𝑘}ℑ{𝑦∗(𝑛)𝑒𝑗𝜙}

𝜎2

)
, (18)

= 4

2𝑝−1∑
𝑖=1

2𝑝−1∑
𝑘=1

exp

{
−𝑆

2((2𝑖− 1)2 + (2𝑘 − 1)2)𝑑2𝑝
2𝜎2

}
×

cosh

(
𝑆(2𝑖− 1)𝑑𝑝ℜ{𝑦∗(𝑛)𝑒𝑗𝜙}

𝜎2

)
×

cosh

(
𝑆(2𝑘 − 1)𝑑𝑝ℑ{𝑦∗(𝑛)𝑒𝑗𝜙}

𝜎2

)
.(19)

Finally, splitting the two sums in (19), it can be shown that
𝐷𝜽(𝑛) is factorized as follows:

𝐷𝜽(𝑛) = 4𝐹𝜽(𝑈(𝑛))× 𝐹𝜽(𝑉 (𝑛)), (20)

where

𝐹𝜽(𝑥) =

2𝑝−1∑
𝑖=1

exp

{
−𝑆2(2𝑖− 1)2𝑑2𝑝

2𝜎2

}
cosh

(
(2𝑖− 1)𝑑𝑝𝑆𝑥

𝜎2

)
,

(21)

and

𝑈(𝑛) = ℜ{𝑦∗(𝑛)𝑒𝑗𝜙},
= 𝐼(𝑛) cos(𝜙) +𝑄(𝑛) sin(𝜙),

𝑉 (𝑛) = ℑ{𝑦∗(𝑛)𝑒𝑗𝜙},
= 𝐼(𝑛) sin(𝜙) −𝑄(𝑛) cos(𝜙). (22)

Note that the proposed factorization is a generalization of the
one used in [8] in the special case of QPSK constellation.
Furthermore, injecting (20) in (12) and noticing that 𝐼(𝑛)2 +
𝑄(𝑛)2 = 𝑈(𝑛)2+𝑉 (𝑛)2, it can be shown that 𝑃 [𝑦(𝑛); 𝜽] can
be factorized as follows:

𝑃 [𝑦(𝑛); 𝜽] = 𝑃 [𝑈(𝑛); 𝜽]𝑃 [𝑉 (𝑛); 𝜽], (23)

where

𝑃 [𝑈(𝑛); 𝜽] =

√
2√

𝑀𝜋𝜎2
𝑒−

𝑈(𝑛)2

2𝜎2 𝐹𝜽(𝑈(𝑛)), (24)

𝑃 [𝑉 (𝑛); 𝜽] =

√
2√

𝑀𝜋𝜎2
𝑒−

𝑉 (𝑛)2

2𝜎2 𝐹𝜽(𝑉 (𝑛)). (25)

On the other hand, since 𝜙 is assumed to be deter-
ministic, then we have 𝑃 [𝑦(𝑛); 𝜽] = 𝑃 [𝑦(𝑛)∗𝑒𝑗𝜙; 𝜽] =
𝑃 [ℜ{𝑦(𝑛)∗𝑒𝑗𝜙},ℑ{𝑦(𝑛)∗𝑒𝑗𝜙}; 𝜽] = 𝑃 [𝑈(𝑛), 𝑉 (𝑛); 𝜽]. Con-
sequently, from (23), it follows that

𝑃 [𝑈(𝑛), 𝑉 (𝑛); 𝜽] = 𝑃 [𝑈(𝑛); 𝜽]𝑃 [𝑉 (𝑛); 𝜽], (26)

which means that the two real random variables 𝑈𝑛 and 𝑉𝑛
(whose realizations are 𝑈(𝑛) and 𝑉 (𝑛), respectively) are inde-
pendent and identically distributed according to (24) and (25),
respectively. Moreover, since the transmitted symbols are as-
sumed to be iid and the additive noise is white, then the corre-
sponding received samples {𝑦(𝑛)}𝑛=1,2⋅⋅⋅ ,𝑁 are independent
and the pdf of the received vector 𝒚 = [𝑦(1), 𝑦(2), ⋅ ⋅ ⋅ , 𝑦(𝑁)]
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is simply the product of the marginal pdfs {𝑃 [𝑦(𝑛), 𝜽]}𝑁𝑛=1

such that:

𝑃 [𝒚; 𝜽] =

(
2

𝑀𝜋𝜎2

)𝑁

exp

{
−
∑𝑁

𝑛=1 𝑈(𝑛)2 + 𝑉 (𝑛)2

2𝜎2

}
×

𝑁∏
𝑛=1

𝐹𝜽(𝑈(𝑛))𝐹𝜽(𝑉 (𝑛)). (27)

Finally, the log-likelihood function of the received samples
reduces simply to

ln(𝑃 [𝒚; 𝜽]) = 𝑁 ln

(
2

𝑀𝜋𝜎2

)
−

𝑁∑
𝑛=1

𝑈(𝑛)2 + 𝑉 (𝑛)2

2𝜎2
+

𝑁∑
𝑛=1

ln (𝐹𝜽(𝑈(𝑛))) +
𝑁∑

𝑛=1

ln (𝐹𝜽(𝑉 (𝑛))) . (28)

As it can be seen from (28), due to the factorization of 𝐷𝜽(𝑛),
the log-likelihood function involves the sum of two analogous
terms. This reduces the complexity of the derivation of the
second partial derivatives and their expected values, although
it remains tedious. The derivation of the first diagonal element
of 𝑰(𝜽) will be briefly outlined in the following and more
details can be found in Appendix A.

First, it is worth noting that averaging with respect to the
complex univariate random variable 𝑦𝑛 (whose realization is
𝑦(𝑛)) is equivalent to averaging with respect to the real bi-
variate random variable (𝑈𝑛, 𝑉𝑛), i.e., E𝑦𝑛{.} = E(𝑈𝑛,𝑉𝑛){.}.
Moreover, it can be easily shown that:

E

{
∂2ln(𝑃 [𝒚; 𝜽])

∂𝑆2

}
= 𝑁 E(𝑈𝑛,𝑉𝑛)

{
∂2ln(𝐹𝜽(𝑈(𝑛)))

∂𝑆2

}
+

𝑁 E(𝑈𝑛,𝑉𝑛)

{
∂2ln(𝐹𝜽(𝑉 (𝑛)))

∂𝑆2

}
. (29)

But since 𝑈(𝑛) and 𝑉 (𝑛) are independent and identically
distributed, (29) reduces simply to:

E

{
∂2ln(𝑃 [𝒚; 𝜽])

∂𝑆2

}
= 2𝑁 E𝑈𝑛

{
∂2ln(𝐹𝜽(𝑈(𝑛)))

∂𝑆2

}
(30)

= 2𝑁 E𝑈𝑛

{
𝐻

(1)
𝜽 (𝑈(𝑛))

}
−

2𝑁 E𝑈𝑛

{
𝐻

(2)
𝜽 (𝑈(𝑛))

}
, (31)

where 𝐻(1)
𝜽 (𝑈(𝑛)) and 𝐻(2)

𝜽 (𝑈(𝑛)) are defined as follows:

𝐻
(1)
𝜽 (𝑈(𝑛)) =

∂2𝐹𝜽(𝑈(𝑛))
∂𝑆2

𝐹𝜽(𝑈(𝑛))
, (32)

𝐻
(2)
𝜽 (𝑈(𝑛)) =

(
∂𝐹𝜽(𝑈(𝑛))

∂𝑆

𝐹𝜽(𝑈(𝑛))

)2

. (33)

Moreover, we show in Appendix A that:

E𝑈𝑛

{
𝐻

(1)
𝜽 (𝑈(𝑛))

}
= 0, (34)

and

E𝑈𝑛

{
𝐻

(2)
𝜽 (𝑈(𝑛))

}
=

1

2𝑝−1𝜎2
𝐹 (𝜌), (35)

where 𝐹 (𝜌) is defined as:

𝐹 (𝜌) =
1√
2𝜋

∫ +∞

−∞

𝑓2
𝜌 (𝑡)

ℎ𝜌(𝑡)
𝑒−

𝑡2

2 𝑑𝑡, (36)

with

𝑓𝜌(𝑡) =
2𝑝−1∑
𝑘=1

𝑒−(2𝑘−1)2𝑑2
𝑝𝜌 ×

[
(2𝑘 − 1)𝑑𝑝𝑡 sinh

(
(2𝑘 − 1)𝑑𝑝

√
2𝜌 𝑡

)
−

(2𝑘 − 1)2𝑑2𝑝
√
2𝜌 cosh

(
(2𝑘 − 1)𝑑𝑝

√
2𝜌 𝑡

)]
, (37)

ℎ𝜌(𝑡) =

2𝑝−1∑
𝑘=1

𝑒−(2𝑘−1)2𝑑2
𝑝𝜌 cosh

(
(2𝑘 − 1)𝑑𝑝

√
2𝜌 𝑡

)
. (38)

Therefore, we obtain:

E

{
∂2ln(𝑃 [𝒚; 𝜽])

∂𝑆2

}
= − 𝑁

2𝑝−2𝜎2
𝐹 (𝜌). (39)

For the second diagonal element of 𝑰(𝜽), it can be shown that:

E

{
∂2ln(𝑃 [𝒚; 𝜽])

∂𝜎22

}
= −𝑁 ∂2 ln(𝜎2)

∂𝜎22
−

𝑁
∂2

(
1
𝜎2

)
∂𝜎22

E𝑈𝑛

{
𝑈(𝑛)2

}
+

2𝑁 E𝑈𝑛

{
∂2ln(𝐹𝜽(𝑈(𝑛))

∂𝜎22

}
. (40)

Note that 2𝑁 E𝑈𝑛

{
∂2ln(𝐹𝜽(𝑈(𝑛))

∂𝜎22

}
in (40) is equivalent to

2𝑁 E𝑈𝑛

{
∂2ln(𝐹𝜽(𝑈(𝑛))

∂𝑆2

}
in (30) and it is hence derived in

the same way. Moreover, we have:

E𝑈𝑛

{
𝑈(𝑛)2

}
=

∫ +∞

−∞
𝑈(𝑛)2𝑃 [𝑈(𝑛), 𝜽]𝑑𝑈(𝑛)

=

√
2√

𝑀𝜋𝜎2

∫ +∞

−∞
𝑈(𝑛)2𝑒−

𝑈(𝑛)2

2𝜎2 𝐹𝜽(𝑈(𝑛))𝑑𝑈(𝑛)

=

√
2√

𝑀𝜋𝜎2

2𝑝−1∑
𝑘=1

√
2𝜋𝜎(𝜎2 + 𝑆2(2𝑘 − 1)2𝑑2𝑝).

(41)

Therefore, using these properties and straightforward develop-
ments, starting from (40), yield the following result:

E

{
∂2ln(𝑃 [𝒚; 𝜽])

∂𝜎22

}
=

𝑁

2𝑝−2𝜎4
×[

−2𝑝−2 − 𝑆2

𝜎2
[2𝑝−2 +𝐺(𝜌)] + 𝜌

(
2𝑝 − 𝜌𝐴

(𝑝)
4

)]
, (42)

where 𝐴(𝑝)
4 and 𝐺(𝜌) are given by:

𝐴
(𝑝)
4 = 22(𝑝−2)

∑2𝑝−1

𝑘=1 (2𝑘 − 1)4(∑2𝑝−1

𝑘=1 (2𝑘 − 1)2
)2 , (43)

𝐺(𝜌) =
1√
2𝜋

∫ +∞

−∞

𝑔2𝜌(𝑡)

ℎ𝜌(𝑡)
𝑒−

𝑡2

2 𝑑𝑡, (44)
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and 𝑔𝜌(𝑡) is defined as follows:

𝑔𝜌(𝑡) =

2𝑝−1∑
𝑘=1

𝑒−(2𝑘−1)2𝑑2
𝑝𝜌 ×

[
(2𝑘 − 1)𝑑𝑝𝑡 sinh

(
(2𝑘 − 1)𝑑𝑝

√
2𝜌 𝑡

)
−

(2𝑘 − 1)2𝑑2𝑝

√
𝜌

2
cosh

(
(2𝑘 − 1)𝑑𝑝

√
2𝜌 𝑡

)]
. (45)

Equivalent derivations yield the following expression for the
off-diagonal element of 𝑰(𝜽):

E

{
∂2ln(𝑃 [𝒚; 𝜽])

∂𝑆∂𝜎2

}
= − 𝑁

2𝑝−2𝜎4
𝑆[2𝑝−2 −𝐻(𝜌)], (46)

where 𝐻(𝜌) is defined as:

𝐻(𝜌) =
1√
2𝜋

∫ +∞

−∞

𝑓𝜌(𝑡)𝑔𝜌(𝑡)

ℎ𝜌(𝑡)
𝑒−

𝑡2

2 𝑑𝑡. (47)

Therefore, the Fisher information matrix is given by:

𝑰(𝜽) =
𝑁

2𝑝−2𝜎4

⎛
⎝ 𝜎2𝐹 (𝜌) 𝑆[2𝑝−2 −𝐻(𝜌)]

𝑆[2𝑝−2 −𝐻(𝜌)] 𝐼2,2

⎞
⎠ ,

(48)

where

𝐼2,2 = 2𝑝−2 +
𝑆2

𝜎2
[2𝑝−2 +𝐺(𝜌)] − 𝜌(2𝑝 + 𝜌𝐴

(𝑝)
4 ). (49)

Finally, injecting (7) and (48) in (6), we obtain the following
analytical expression for the NDA I/Q CRLB:

CRLBNDA(𝜌) =
25× 2𝑝

𝑁 ln2(10)𝜌
× 𝐾(𝜌)

𝐷(𝜌)
, (50)

where

𝐾(𝜌) = 2𝐴
(𝑝)
4 𝜌2 − [𝐹 (𝜌) + 4𝐺(𝜌)− 4𝐻(𝜌)]𝜌− 2𝑝−1, (51)

𝐷(𝜌) = 𝐹 (𝜌)[𝐴
(𝑝)
4 𝜌2 + 2(2𝑝−2 −𝐺(𝜌))𝜌− 2𝑝−2] +

2[𝐻(𝜌)− 2𝑝−2]2𝜌. (52)

It is worth noting that the above analytical expression for the
CRLB, as function of the true SNR, generalizes to higher-
order square QAM modulations the elegant CRLB expression
derived in [8] for QPSK. In fact, it can be verified that the
CRLB expression of QPSK-modulated signals, which was
earlier derived in [8] and given by (11), can now be directly
obtained from our newly derived general expression, after
tedious manipulations, by taking 𝑝 = 1. Moreover, as it can be
seen from (50), for higher-order square QAM constellations,
the CRLB does not depend also on the phase distortion
𝜙 introduced by the channel, as shown earlier in [8] for
BPSK and QPSK. This general property was only explained
intuitively in [9].

V. GRAPHICAL REPRESENTATIONS

In this section we include the graphical representations of
the lower bounds given by (50), for a fixed value of 𝑁 = 100
received samples. Beforehand, we verify from Figs. 1, 2 and 3
that the three integrand functions 𝑓𝜌(𝑡)

2

ℎ𝜌(𝑡)
, 𝑔𝜌(𝑡)

2

ℎ𝜌(𝑡)
and 𝑓𝜌(𝑡)𝑔𝜌(𝑡)

ℎ𝜌(𝑡)

involved in (36), (44) and (47), respectively, take extremely

small values as ∣𝑡∣ increases. The integrals over [−∞,+∞]
can be therefore accurately approximated by finite integrals
over [−𝑇, 𝑇 ], for which the Riemann integration method can
be adequately used. In our simulations, it should be noted
that 𝑇 = 100 and a summation step of 1 provided very
accurate values for the infinite integrals and that the CRLB
curves obtained in this paper are identical to those previously
presented in [8, 9, 10]. In fact, Figs. 4 and 5 depict the SNR
CRLBs in [dB2] and the square root of the CRLB in [dB] (that
corresponds to the standard deviation of the SNR estimators),
respectively, for different modulation orders. It can be verified
in the special cases of QPSK and 16-QAM constellations that
the CRLB curves plotted using our analytical expressions are,
respectively, similar to those presented in [8] (QPSK) and [10]
(16-QAM).

Furthermore, we see from Fig. 4 that, in the low SNR
region, the NDA CRLBs deviate significantly from the DA
CRLBs. Hence, it is in this SNR region where the DA
techniques lend themselves as the only reliable solution to
accurately estimate the SNR. However, for relatively high SNR
values, we see that the NDA CRLBs reach the DA CRLBs
over a range that varies from one modulation to another.
But, ultimately, they coincide over one common SNR region
since the DA CRLB itself has the same expression for all the
modulation orders [8]:

CRLBDA(𝜌) =
100

𝑁 ln2(10)

(
1 +

2

𝜌

)
. (53)

This means that, for sufficiently high SNR values, NDA
SNR estimation techniques can exhibit performances that are
equivalent to those that could be achieved if all the transmitted
symbols were perfectly known. This is because, in this SNR
region, the useful signal is not too much corrupted by the
additive noise and, consequently, the signal and noise powers
can be estimated quite adequately, even if the transmitted
symbols are completely unknown to the receiver.

We see also that the NDA CRLB becomes very high as
the SNR becomes very low. This means that in the low
SNR region, unless the number of the available received
samples 𝑁 is very high, all the unbiased NDA techniques
will fail to provide sufficiently accurate SNR estimates and
DA SNR estimation techniques are, therefore, well motivated.
On the other hand, NDA estimation techniques are also of
great importance at relatively high SNR levels. In fact, as the
NDA CRLB is inversely proportional to 𝑁 , the number of
the received samples can be increased in order to achieve
a desired estimation accuracy, without any penalty on the
throughput of the system. However, for the DA estimators,
𝑁 cannot be increased without limiting, in counter part, the
whole throughput of the system. On the other hand, we see in
the moderate SNR region, that the CRLBs differ widely from
one modulation order to another.

It is also worth noting that unlike the DA CRLB, the
NDA CRLB becomes not strictly decreasing with the SNR
as the number of levels in the constellation increases (i.e., 𝑀
increases). In fact, there is a moving (with respect to the mod-
ulation order) range of SNR values over which the decreasing
speed of the CRLB is slower than over the other ranges. This
speed even reaches zero for 64-QAM and higher modulation
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orders for which the CRLB becomes even increasing over
these specific ranges. This implies that over these ranges the
received signal is not highly dependent on the parameter to
be estimated which is the SNR in our case. It means that
a slight change of the SNR, in this range, does not result
in considerable variations of the received signal, which in
turn does not bring much information about the SNR and the
corresponding CRLB varies slowly. This behavior seems to be
inherent to all constellations with non-constant modulus as it
was also observed with the CRLBs for the NDA estimation of
other parameters, from general QAM-modulated signals, such
as the carrier frequency and the carrier phase [13].

VI. CONCLUSION

In this paper, we derived for the first time analytical
expressions for the exact CRLBs on the variance of NDA SNR
estimators of square QAM modulated signals as a function of
the true SNR. The CRLB turns out to be inversely proportional
to the number of independent data records and therefore it does
not need to be recomputed as we move from one observation
interval size to another. Moreover, our analytical expression
corroborates the numerical and empirical approaches for the
evaluation of these CRLBs which were proposed in [9] and
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[10], respectively. Finally, the derived expressions are of great
value in that they allow analyzing the achievable performance
and quantifying the performance of unbiased NDA SNR
estimators operating on square QAM-modulated signals.

APPENDIX A - PROOFS OF (34) AND (35)

In this appendix, we first detail the proof of (34) then of
(35). In fact, we establish the first and second derivatives of
𝐹𝜽(𝑈(𝑛)) with respect to 𝑆 as follows:

∂𝐹𝜽(𝑈(𝑛))

∂𝑆
=

2𝑝−1∑
𝑘=1

𝑒−
(2𝑘−1)2𝑑2𝑝𝑆2

2𝜎2 ×
[
(2𝑘 − 1)𝑑𝑝𝑈(𝑛)

𝜎2
sinh

(
(2𝑘 − 1)𝑑𝑝𝑆𝑈(𝑛)

𝜎2

)

− (2𝑘 − 1)2𝑑2𝑝𝑆

𝜎2
cosh

(
(2𝑘 − 1)𝑑𝑝𝑆𝑈(𝑛)

𝜎2

)]
, (54)

∂2𝐹𝜽(𝑈(𝑛))

∂𝑆2
=

2𝑝−1∑
𝑘=1

𝑒−
(2𝑘−1)2𝑑2𝑝𝑆2

2𝜎2 ×
[
(2𝑘 − 1)2𝑑2𝑝𝑈(𝑛)2

𝜎4
cosh

(
(2𝑘 − 1)𝑑𝑝𝑆𝑈(𝑛)

𝜎2

)
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−2(2𝑘 − 1)3𝑑3𝑝𝑆𝑈(𝑛)

𝜎4
sinh

(
(2𝑘 − 1)𝑑𝑝𝑆𝑈(𝑛)

𝜎2

)

+

(
(2𝑘 − 1)4𝑑4𝑝𝑆

2)

𝜎4
− (2𝑘 − 1)2𝑑2𝑝

𝜎2

)
×

cosh

(
(2𝑘 − 1)𝑑𝑝𝑆𝑈(𝑛)

𝜎2

)]
. (55)

The expectation of 𝐻
(1)
𝜽 (𝑈(𝑛)) with respect to 𝑈(𝑛) is

calculated as follows:

E𝑈𝑛

{
𝐻

(1)
𝜽 (𝑈(𝑛))

}
=

∫ +∞

−∞
𝐻

(1)
𝜽 (𝑈(𝑛))𝑃 [𝑈(𝑛), 𝜽]𝑑𝑈(𝑛),

(56)

with the pdf of 𝑈(𝑛), 𝑃 [𝑈(𝑛), 𝜽], being given by (24). There-
fore, plugging the expressions of 𝐻(1)

𝜽 (𝑈(𝑛)) and 𝑃 [𝑈(𝑛), 𝜽]
in (56), we obtain the following result:

E𝑈𝑛

{
𝐻

(1)
𝜽 (𝑈(𝑛))

}
=

2𝑝−1∑
𝑘=1

𝑒−
(2𝑘−1)2𝑑2𝑝𝑆2

2𝜎2 ×
[
(2𝑘 − 1)2𝑑2𝑝

𝜎4
𝛼𝜽(𝑘)−

2(2𝑘 − 1)3𝑑3𝑝𝑆)

𝜎4
𝛾𝜽(𝑘)

+

(
(2𝑘 − 1)4𝑑4𝑝𝑆

2

𝜎4
− (2𝑘 − 1)2𝑑2𝑝

𝜎2

)
𝜆𝜽(𝑘)

]
, (57)

where 𝛼𝜽(𝑘), 𝛾𝜽(𝑘) and 𝜆𝜽(𝑘) are defined as :

𝛼𝜽(𝑘) =

∫ +∞

−∞
𝑈(𝑛)2𝑒−

𝑈(𝑛)2

2𝜎2 cosh

(
(2𝑘 − 1)𝑑𝑝𝑆𝑈(𝑛)

𝜎2

)
𝑑𝑈(𝑛),

𝛾𝜽(𝑘) =

∫ +∞

−∞
𝑈(𝑛)𝑒−

𝑈(𝑛)2

2𝜎2 sinh

(
(2𝑘 − 1)𝑑𝑝𝑆𝑈(𝑛)

𝜎2

)
𝑑𝑈(𝑛),

𝜆𝜽(𝑘) =

∫ +∞

−∞
𝑒−

𝑈(𝑛)2

2𝜎2 cosh

(
(2𝑘 − 1)𝑑𝑝𝑆𝑈(𝑛)

𝜎2

)
𝑑𝑈(𝑛).

It can be shown that:

𝛼𝜽(𝑘) =
√
2𝜋(𝜎3 + (2𝑘 − 1)2𝑑2𝑝𝜎𝑆

2)𝑒
(2𝑘−1)2𝑑2𝑝𝑆2

2𝜎2 , (58)

𝛾𝜽(𝑘) =
√
2𝜋(2𝑘 − 1)𝑑𝑝𝜎𝑆𝑒

(2𝑘−1)2𝑑2𝑝𝑆2

2𝜎2 , (59)

𝜆𝜽(𝑘) =
√
2𝜋𝜎𝑒

(2𝑘−1)2𝑑2𝑝𝑆2

2𝜎2 . (60)

Then, injecting (58), (59) and (60) into (57), we obtain:

E𝑈𝑛

{
𝐻

(1)
𝜽 (𝑈(𝑛))

}
= 0. (61)

On the other hand, to show (35), we denote by 𝐺𝜽(𝑈(𝑛))
the first derivative of 𝐹𝜽(𝑈(𝑛)) with respect to 𝑆 as given by
(54). Therefore, we have:

E𝑈𝑛

{
𝐻

(2)
𝜽 (𝑈(𝑛))

}
=

∫ +∞

−∞
𝐻

(2)
𝜽 (𝑈(𝑛))𝑃 [𝑈(𝑛), 𝜽]𝑑𝑈(𝑛),

=

√
2√

𝑀𝜋𝜎2

∫ +∞

−∞

𝐺𝜽(𝑈(𝑛))2

𝐹𝜽(𝑈(𝑛))
×

𝑒−
𝑈(𝑛)2

2𝜎2 𝑑𝑈(𝑛). (62)

We simplify (62) by changing 𝑈(𝑛)
𝜎 by 𝑡 and using 𝜌 = 𝑆2

2𝜎2 .
Thus, we obtain the following result:

E𝑈𝑛

{
𝐻

(2)
𝜽 (𝑈(𝑛))

}
=

1

2𝑝−1𝜎2
𝐹 (𝜌), (63)

where 𝐹 (𝜌) is defined as:

𝐹 (𝜌) =
1√
2𝜋

∫ +∞

−∞

𝑓2
𝜌 (𝑡)

ℎ𝜌(𝑡)
𝑒−

𝑡2

2 𝑑𝑡, (64)

with

𝑓𝜌(𝑡) =

2𝑝−1∑
𝑘=1

𝑒−(2𝑘−1)2𝑑2
𝑝𝜌 ×

[
(2𝑘 − 1)𝑑𝑝𝑡 sinh

(
(2𝑘 − 1)𝑑𝑝

√
2𝜌 𝑡

)
−

(2𝑘 − 1)2𝑑2𝑝
√
2𝜌 cosh

(
(2𝑘 − 1)𝑑𝑝

√
2𝜌 𝑡

)]
, (65)

ℎ𝜌(𝑡) =

2𝑝−1∑
𝑘=1

𝑒−(2𝑘−1)2𝑑2
𝑝𝜌 cosh

(
(2𝑘 − 1)𝑑𝑝

√
2𝜌 𝑡

)
. (66)
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