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Abstract—In this paper, we address the problem of data-aided
(DA) and nondata-aided (NDA) per-antenna signal-to-noise ratio
(SNR) estimation over wireless single-input multiple-output
(SIMO) channels from linearly modulated signals. Under con-
stant channels and additive white Gaussian noise (AWGN), we
first derive the DA maximum-likelihood (ML) SNR estimator in
closed-form expression. The performance of the DA ML estimator
is analytically carried out by deriving the closed-form expression
of its bias and variance. Besides, in order to compare its perfor-
mance with the fundamental limit, we derive the DA Cramér-Rao
lower bound (CRLB) in closed-form expression. In the NDA
case, the expectation-maximization (EM) algorithm is derived to
iteratively maximize the log-likelihood function. The performance
of the NDA ML estimator is empirically assessed using Monte
Carlo simulations. Moreover, we introduce an efficient algorithm,
which applies to any one/two-dimensional � -ary constellation,
to numerically compute the NDA CRLBs. In this paper, the noise
components are assumed to be spatially uncorrelated over all
the antenna elements and temporally white. In both cases, we
show that our new inphase and quadrature I/Q-based estimators
offer substantial performance improvements over the single-input
single-output (SISO) ML SNR estimator due to the optimal usage
of the statistical dependence between the antenna branches, and
that it reaches the corresponding CRLB over a wide SNR range.
We also show that the use of the I/Q-based ML estimators can
lead to remarkable performance improvements over the mo-
ment-based estimators for the same antenna-array size. Moreover,
it is shown that SIMO configurations can contribute to decreasing
the required number of iterations of the EM algorithm.

Index Terms—Cramér-Rao lower bound (CRLB), data-aided
(DA), nondata-aided (NDA), single-input multiple-output (SIMO),
signal-to-noise ratio (SNR) estimation.

I. INTRODUCTION

M ANY modern communication systems require accurate
signal-to-noise ratio (SNR) estimates for the optimal

usage of radio resources [1]–[3]. For instance, the knowledge
of the SNR is a requirement in many applications in order to
perform efficient signal detection, power control or adaptive
modulation schemes. Roughly speaking, SNR estimators may

Manuscript received September 13, 2009; accepted August 13, 2010. Date of
publication September 09, 2010; date of current version November 17, 2010.
The associate editor coordinating the review of this manuscript and approving
it for publication was Prof. Ljubisa Stankovic. This work was supported by a
Canada Research Chair in Wireless Communications, the Cooperative Research
and Development program of NSERC, PROMPT Inc., and Ericsson Canada.

The authors are with the INRS-EMT, 800, de la Gauchetière Ouest, Bureau
6900, Montreal, QC, Canada H5A 1K6 (e-mail: boujelben@emt.inrs.ca;
bellili@emt.inrs.ca; affes@emt.inrs.ca; stephenne@ieee.org).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSP.2010.2074197

be divided into two major categories: data-aided (DA) and non-
data-aided (NDA). In contrast to DA methods which rely on the
a priori perfect knowledge of the transmitted symbols to facili-
tate the estimation process, NDA techniques base the estimation
process only on the received samples and they do not, therefore,
impinge upon the whole throughput of the system.

In both cases, SNR estimates can be obtained from the in-
phase and quadrature (I/Q) components of the received signal
or simply from its magnitude (i.e., envelope). They are, respec-
tively, referred to as I/Q-based and envelope-based SNR es-
timators. So far, for linearly modulated signals, various SNR
estimation techniques have been reported in the literature for
application over flat fading channels in traditional single-input
single-output (SISO) transmissions [4], [5]. These include the
maximum-likelihood (ML) I/Q-based estimator [6], [7] and the
ML envelope-based estimator [8], [9]. In both cases, the analyt-
ical derivation of the NDA ML estimator was recognized there
to be mathematically intractable, and the numerical computa-
tions of the ML SNR estimates were carried out using the it-
erative expectation-maximization (EM) algorithm [10]. On the
other hand, it has been recently shown in [11] for the first time
with moment-based estimators, termed there as , that the ex-
ploitation of the statistical dependence offered by SIMO sys-
tems can lead to remarkable improvements in SNR estimation
accuracy over current state-of-the-art techniques. However, con-
trarily to the I/Q-based estimators, it is well known that the en-
velope-based SNR estimators do not exploit the whole informa-
tion carried by the received signal.

Motivated by these facts, we develop in this paper per-an-
tenna maximum-likelihood SNR estimators which exploit the
entire information carried by the signal (i.e., I/Q-based estima-
tors) as well as the rich statistical dependence experienced by
multiple receiving antennas (i.e., SIMO estimators). In fact, we
derive a closed-form solution for the SIMO DA ML SNR esti-
mator. Moreover, we analytically assess its exact performance
by deriving its mean and variance in closed form. Then, in order
to assess the absolute performance of the DA ML estimator, we
derive the closed-form expression of the CRLB for the per-an-
tenna DA SNR estimates over SIMO channels (i.e., DA CRLB).

Unfortunately, for the NDA approach, an analytical deriva-
tion of the ML solution turns out to be fairly complex from the
computational point of view. Therefore, we resort to the EM
algorithm [10] which has been so far widely used in signal pa-
rameter estimation to numerically find the ML estimates. Its per-
formance will also be numerically assessed using Monte Carlo
simulations. Furthermore, we introduce in this paper, a func-
tional approach that allows the efficient numerical computation
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of the CRLBs for NDA SNR estimates over SIMO channels
from any one/two-dimensional -ary constellation-modulated
signal. Using the normalized mean square error (NMSE) as a
performance measure, we will show that the DA estimator per-
forms better than the NDA estimator especially in the low SNR
region and that the two estimators exhibit the same performance
over a wide range of medium-to-high SNR values.

The structure of the rest of this paper is as follows. In
Section II, we introduce the equivalent baseband model of the
signal. The ML SNR estimator for the DA approach, its bias,
its variance and the corresponding CRLBs will be derived in
Section III. In Section IV, the EM-based ML SNR estimator
for the NDA approach is developed and the NDA CRLBs are
derived. Simulation results are discussed in Section V and some
concluding remarks are drawn out in Section VI.

II. SYSTEM MODEL

We consider an array of receiving antenna elements. Over
the observation interval, the SIMO channel is supposed to be
with constant gain coefficients . We assume that
the same noise power, , is experienced over all the antenna
elements. Assuming an ideal receiver with perfect time and car-
rier frequency synchronization, the received signal at the output
of the matched filter, on the antenna element, is given by

(1)

where, at time index , is the transmitted symbol, and
is the corresponding received sample on the antenna

element. The noise components , assumed spatially
white, are modelled by zero-mean Gaussian random variables
with independent real and imaginary parts, each of variance 1/2
and stands for the size of the observation window. More-
over, the transmitted symbols are assumed to be independent
and identically distributed (iid) and drawn from any linear

-ary constellation. The constellation power is assumed to
be normalized to one, i.e., where returns
the norm of any complex number and stands for statis-
tical expectation. The parameter accounts for a nonrandom
known phase shift introduced by the channel, i.e., estimated
in practice,1 but assumed perfectly known here for simplicity.
Therefore, we will henceforth consider the derotated received
signal :

(2)
where the derotated noise components

have the same probability
distribution as , i.e., both and are
complex zero-mean AWGN samples with the same variance.
In the sequel, for simplicity, we refer to the “derotated received
samples” by simply “the received samples”. Based on the

1Note here that I/Q-based methods are sensitive to phase uncertainties (car-
rier/phase offsets, phase noise) whereas envelope-based methods are robust in
this sense.

received samples on each antenna branch, the true per-antenna
SNRs that we wish to estimate are given by

(3)

From (3), we see that there are parameters,
and , which are involved in the derivation

of the ML per-antenna SNR estimators and the corresponding
CRLBs. These parameters can be gathered in the following
parameter vector:

(4)

where stands for the transpose operator. Moreover, the re-
ceived samples on all the antenna elements, at a given instant

, can be more conveniently written in the following vectorial
form:

(5)
Then, considering the entire observation window, the received
signal can be written in the following matrix form:

(6)

III. DA ML SNR ESTIMATORS AND CRLBS

In this section, we suppose perfect a priori knowledge of
the transmitted data. We will firstly derive the DA ML solution
for the per-antenna SNR estimates in closed-form expression.
Then, we will derive the exact expression of the new estimator’s
bias and variance. Finally, we will derive the closed-form ex-
pression of the corresponding DA CRLBs.

A. Closed-Form Solution for Per-Antenna DA ML SNR
Estimation

DA approaches can only generate estimates when known data
are available. The particular application will impose whether
or not this limitation is objectionable. Nevertheless, in most
cases, there is no additional penalty by using SNR estimators
that employ known data in transmission systems that already
use training sequences for equalizer or synchronizer training.
Assuming the noise components to be spatially white, the re-
ceived samples are also iid. Therefore, it can be seen that the
probability density function (pdf) of the received matrix pa-
rameterized by is given by

(7)

Consequently, applying the logarithm to (7), the log-likelihood
function, denoted as , develops into

(8)
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where indicates complex conjugation and stands for
the real part of any complex number. Then, setting the partial
derivatives of (8) with respect to and to zero yields
the DA ML solutions as follows:

(9)

(10)

On the antenna branch the closed-form solution for the DA
ML SNR estimator is simply obtained as

(11)

where and are given by (9) and (10), respectively. Note
that the DA ML solution holds regardless of the modulation
order or type. Next, we derive the exact bias and variance of
the DA ML estimator (11).

B. Exact Expressions for the Bias and Variance of the DA ML
Estimator

In this section we focus on the exact performance of the DA
ML estimator. At high SNR, this analysis holds as well for the
NDA ML estimator that will be developed in the next section.
The closed-form expression of the performance criterion can
lead to a significant speed-up factor in the assessment of the
SNR estimator relative to computer simulations and can allow
accurate system design improvement and optimization. In this
context, we show in Appendix A that the bias and the vari-
ance of the DA ML SNR estimator are given by the following
expressions:

(12)

(13)

Another major goal of calculating the exact mean of is to im-
prove our estimator performance by calculating and removing
its bias. It is interesting to note that the DA ML estimator is bi-
ased with

(14)

It is also clearly seen that increasing or can significantly
reduce the bias. Yet to eliminate this bias, one could use the
estimator instead
of . However, in most applications, is sufficiently large so
that the bias will be negligible. The variance of the unbiaised
estimator is given by

(15)

Now examining the analytical form of the normalized mean
square error (NMSE) defined as

(16)

we can easily verify that asymptotically, as long as , the
NMSE of the unbiased estimator is given by

(17)

where is given by (15). It will be seen in the next
subsection that this is in fact the expression of the normalized
CRLB in DA scenarios, which means that our DA ML esti-
mator is asymptotically efficient [the minimum variance unbi-
ased (MVU) estimator]. Note also from (17) that the NMSE is
inversely proportional to and .

C. Derivation of SNR DA CRLBs Over SIMO Channels

In this subsection, based on the assumptions made so far,
we will derive the CRLBs for the SNR estimates in the DA
case (where all the transmitted symbols are assumed to be per-
fectly known to the receiver) from any AWGN-corrupted lin-
early modulated signal. To do so, we consider the following pa-
rameter vector:

(18)

The CRLB for the DA SNR estimates on the antenna element
is given by

(19)

where denotes the DA Fisher information matrix (FIM)
whose entries are defined as

(20)

where was defined in (7) but rewritten here in terms of
and as follows:

(21)

At this stage, it can be easily verified that
, for . More-

over, for ease of notation, we denote the remaining FIM
elements defined in (20) as follows:

(22)

(23)

(24)
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where is the log-likelihood function of the system
which immediately develops form (21) as

(25)

Note that ,
, and

and, therefore, the
dimensional FIM can be written as

. . .
. . .

...
...

...
...

. . .
. . .

...
(26)

In particular, it is seen from (26) that the cross terms in the FIM
corresponding to gains at different antennas are zero, meaning
that the parameters and are uncoupled for . It will be
seen, in the next section, that this is not the case in NDA esti-
mation. Now, as detailed in Appendix B, taking the diagonal
element of , we show that the DA SNR CRLB on the
antenna element is given by:2

(27)

First, note that (27) generalizes the result earlier introduced in
[4, (64)], from SISO to SIMO configurations, for the case of
one sample per symbol (i.e., where is used in
[4] to refer to the number of samples per-symbol). Moreover,
as mentioned previously, it can be verified from (17) and (27)
that, for each antenna element, the asymptotic variance of our
unbiased DA estimator coincides with its CRLB.

Furthermore, (27) leads to the discussion of the two following
scenarios:

• Scenario (a): CRLB for antennas with samples per
antenna for which the bound is given by (27) and referred
to as ;

• Scenario (b): CRLB on the antenna element in a SISO
configuration (single antenna) but with samples; for
which the bound is obtained by first setting in (27)
then replacing by to obtain

(28)

The total number of samples in both scenarios is the same
. At high SNR, the ratio of both bounds goes to 1. How-

ever, as the SNR decreases, it turns out that the bound of scenario
(b) is always below the one of scenario (a) and the advantage be-
comes larger as increases, i.e.

(29)

2 Note here that the effect of having multiple antennas is to reduce the asymp-
totic floor that is attained by the normalized CRLB when �����.

First, (29) can be intuitively explained by the fact that in sce-
nario (a) we have more unknown parameters to be estimated (i.e.,

and ), than in scenario (b) (i.e., and ),
from the same number of received samples in both scenarios (i.e.,

) and, hence, the CRLB of scenario (b) should be always
smaller than the one of scenario (a). Hence, (29) may initially
lead to the conclusion that it is preferable to have more samples
with one antenna than more antennas. However, one should keep
in mind that, in practice, the observation window size cannot be
increased arbitrarily for the following two main reasons:

• First, in scenario (b), the observation interval size is
larger (i.e., ) over which the channel may not remain
constant contrarily to a SIMO configuration with only

simultaneously received samples over each receiving
antenna element (the observation window size is over
each antenna channel).

• Second, we are most often interested in instantaneous SNR
estimation for real-time applications, which requires per-
forming SNR estimation over short observation windows
[ in scenario (a) instead of in scenario (b)]. In this
case, SIMO configurations will always provide sufficiently
accurate SNR estimates by exploiting spatial diversity, to
have samples, over shorter observation windows than
in traditional SISO configurations.

IV. NDA ML SNR ESTIMATORS AND CRLBS

In this section, we will derive the NDA ML SNR estima-
tors and the corresponding CRLB. In fact, when the transmitted
symbols are assumed to be unknown, the probability function of
the received vector , parameterized by , can be obtained by
averaging its DA pdf with respect to the data symbols as follows:

(30)

where is the constellation and
is the vector of unknown parameters.

Furthermore, it is easy to see that

(31)

A. Expectation Maximization (EM) Algorithm for Per-Antenna
NDA ML SNR Estimation

Unfortunately, unlike the DA case, we were not able to derive
a closed-form solution for the ML SNR estimator in the NDA
case. This is basically due to the complexity of the likelihood
function. However, it is well known from the open literature that
the NDA ML estimates can be efficiently computed using the ex-
pectation-maximization (EM) algorithm [10]. Therefore, in the
following, the NDA ML SNR estimator based on the EM algo-
rithm is developed with a significantly lower computational load
than other numerical NDA ML approaches. In fact, conditioned
on an observation interval of independent samples and

an estimate of the parameter vector (computed in the
step of the iterative procedure), the EM algorithm tries to

find a more refined estimate as detailed in the sequel.
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Indeed, can take one of different values and, when they
are assumed iid, we have . From (31), we
can write

(32)

The expectation step (E-step) of the suggested EM algorithm is
established as follows:

(33)
where denotes expectation with respect to . More-
over, from (32), the log-likelihood function is given by

(34)

Therefore, the E-step reduces simply to

(35)

where is the second moment3 of the received signal on the
antenna element, i.e., , and and

are defined as follows:

(36)

(37)

with

(38)

where, using (30) and (32), is given by

(39)

3Note that, in practice, the second moment � is estimated using simple
sample mean, i.e., � � ��� �� ���� .

In words, the maximization step (M-step) of the EM algorithm
is used to update the estimates. Therefore, maximizing (35) with
respect to and , the estimates of the elements of the

parameter vector at the iteration, , are given by

(40)

(41)

Actually, starting with and assuming a symmetric

constellation, it can be easily verified that the value of
makes the EM approach fail. To circumvent this problem, we cal-

culate and in the initialization step dif-
ferently from the ones calculated in the iteration steps. That is we
take the absolute value of so that will not ap-
proach zero. Using these initializations, we have observed con-
vergence of the parameter estimates in all cases tested.

In the next subsection, to assess the performance of the
proposed iterative algorithm against the the fundamental limit,
we introduce an algorithm which numerically finds the SNR
CRLBs in the NDA scenario.

B. Derivation of NDA SNR CRLBs Over SIMO Channels

In this section, we derive the CRLB for NDA SNR estimates
in SIMO systems. Contrarily to the DA case, a closed-form so-
lution seems to be prohibitive due to the complexity of the log-
likelihood function. A simplified numerical evaluation is, there-
fore, derived and an efficient algorithm is presented for applica-
tion to any linearly modulated signal in the presence of AWGN.

The CRLB on the antenna element, similarly to (19), is
given by

(42)

where is the Fisher information matrix (FIM) that is
obtained when the transmitted symbols are completely unknown
to the receiver. Its entries are defined as:

(43)

Since the transmitted symbols are iid and the noise components
are temporally white, the FIM is written as

(44)

where the time index was intentionally dropped and could
be any of , and the probability distribution of

in the NDA case that is given by

(45)
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Since symbolizes the expectation with respect to the
transmitted data and the additive noise, the expectation opera-
tion in (44) is given by

(46)

where stands for the partial derivative of (45)
with respect to (the element of ) and is the -dimen-
sional vector of the real and imaginary zero-mean noise samples
defined as

(47)

where and . Then, plugging
and

in the expression of these partial derivatives, we obtain the fol-
lowing results:

(48)

(49)

where

(50)

Observe here that and, therefore,
the noise power cancels out in the inverse of and
the CRLB emerges only as a function of and
the used modulation scheme. Moreover, the probability density
function of the noise components, , over which (46) must be
averaged is given by

(51)

Then, denoting the integrand function in (46) by
, one can write

(52)

Fig. 1. NMSE and NCRLB of the DA SNR estimates for different numbers of
antennas � � ���.

As aforementioned, it seems that no closed-form solution is
available for this problem and a numerical approach may be en-
visaged. It is well known from the open literature that Gauss-
Hermite quadrature rules [14] are designed to approximate these
types of integral over the infinite interval . To com-
pute the NDA SNR CRLBs, these integrals were, therefore, nu-
merically evaluated following the approach introduced in [14].

V. SIMULATION RESULTS

In this section, we will assess the performance of our SIMO
DA and NDA maximum-likelihood per-antenna SNR estima-
tors. We will begin by the DA mode. First, we mention that,
since the bias of the biased DA estimator is sufficiently negli-
gible, then the biased and unbiased versions of the DA ML es-
timator exhibit the same performance in terms of their NMSEs.

In Fig. 1, the theoretical4 NMSE of the unbiased DA es-
timator is compared to its normalized CRLB (NCRLB), i.e.,

. We see from this figure
that the use of a receiving antenna array improves the achievable
performance of the ML SNR estimator over the practical SNR
range of 0 to 30 dB. At high SNR values, the NCRLB asymp-
totically saturates at and hence decreases linearly with
an increasing number of antennas. We also see that the perfor-
mance of the estimator reaches its CRLB over a wide SNR range
of 20 to 30 dB, and that it slightly deviates from it only for ex-
tremely low SNR values below 20 dB. Hence, the derived DA
ML estimator is efficient over a wide SNR range.

We now consider the NDA mode. Unfortunately, unlike the
DA ML estimator, we were not able to derive closed-form ex-
pressions for the bias and the variance of the EM-based NDA
ML estimator. Therefore, Monte Carlo simulations were run

4We have been able to verify that the NMSE curves obtained both in closed
form (i.e., theoretical) and by simulations coincide perfectly. Here in the DA
case, we only plot the theoretical curves to avoid encumbering figures unneces-
sarily.
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Fig. 2. NMSE of the NDA SNR estimates versus the observation window
length � for different modulations and numbers of antennas ��� � � ��.

over 5000 realizations to empirically compute its NMSE. In the
following, the EM-based NDA ML estimator will be evaluated
for two constellations, QPSK and 16-QAM, to serve as repre-
sentative examples of constant- and nonconstant-modulus con-
stellations, respectively. Note also that in Figs. 2to 6, we con-
sidered a scenario where the modulated received signal compo-
nents are of equal instantaneous power at all antenna elements
over the estimation interval. Therefore, the antenna branches are
assumed to exhibit the same SNR.

In Fig. 2, we focus on the impact of varying the observation
window length on the performance of the proposed SIMO
NDA maximum-likelihood SNR estimator. It can be seen that
this estimator provides sufficiently accurate SNR estimates even
with a few samples received at low SNR values (e.g., 2 dB).
Despite the fact that increasing translates into a linear in-
crease in the estimation accuracy,5 the relative performance im-
provement with respect to for the different considered an-
tenna-array sizes and modulation orders is the same. Conse-
quently, from now on, any conclusion on the relative perfor-
mance of the estimator will be assumed to hold regardless of
the observation interval length (this was validated empirically
from multiple simulations).

Fig. 3 depicts the NMSE of the proposed SIMO NDA ML
estimator for 16-QAM constellation. For , note that our
SIMO per-antenna estimator reduces simply to a SISO NDA
ML estimator. It should be noted that the SISO NDA ML so-
lution recently developed in [6] is based on an approximation
which is valid only for sufficiently high SNR values. In con-
trast, our SIMO NDA ML estimator was derived without any
restrictive assumption. Thus, as expected, even with a single re-
ceiving antenna (i.e., ), it outperforms the one intro-
duced in [6] in the low SNR region, as shown in Fig. 3. Using
more receiving antennas further improves the achievable per-
formance of the ML SNR estimator over the entire SNR range.

5In the DA case, this property was proved theoretically in (27).

Fig. 3. NMSE of the NDA SNR estimates for different numbers of antennas,
� � �	�, 16-QAM.

Fig. 4. NMSE of both the DA and NDA SNR estimators for different numbers
of antennas, � � �	�, 16-QAM.

This is due to the optimal exploitation of the statistical depen-
dence provided by SIMO channels.

In Fig. 4, we compare the performance behavior of the pro-
posed DA and NDA ML estimators for different antenna-array
sizes (i.e., , 2, 4, 8). At relatively high SNR values, it
can be seen that both estimators perform nearly the same. This
means that in this SNR region, the NDA ML estimator exhibits
accuracy levels equivalent to those that can be achieved if the
transmitted data were perfectly known at the receiver. This ad-
vantage can be even preserved at low SNR values by increasing
the receiving antenna-array size. Indeed, the two estimators tend
to exhibit the same performance in the low SNR region as the
number of receiving antenna elements increases. This is due to
the optimal exploitation of the increasing mutual information
across the antenna branches that renders the advantage of the
DA version over its NDA counterpart relatively negligible.
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Fig. 5. NMSE of the NDA ML and the � SNR estimates for different num-
bers of antennas, � � ���, QPSK.

Fig. 5 depicts the NMSE of both the NDA ML estimator and
the recently derived moment-based NDA SIMO SNR es-
timator, for a QPSK constellation and different antenna-array
sizes (i.e., ,4,8). The estimator was shown in [11] to
outperform current state-of-the-art techniques. For a given ,
however, the EM-based ML estimator outperforms the es-
timator over the entire SNR range. Actually its performance is
approximately equivalent to the one that can be achieved by the

estimator but with receiving antenna branches. There-
fore, our I/Q-based ML estimator lends itself to integration into
more compact antenna-array configurations. This is hardly sur-
prising, since ML-based approaches yield in general better per-
formance than moment-based approaches because the former
do not discard any information about the received signal phase.
Hence, relatively less mutual spatial information from smaller
antenna arrays is required in order to achieve the same perfor-
mance.

In Fig. 6, we compare the NMSE of the NDA ML estimator
with the achievable fundamental limits, i.e., the NCRLBs in
both the NDA and the DA cases over SIMO channels. First
we notice that the NDA ML estimator also turns out to reach
the corresponding CRLB over the entire practical SNR region.
Moreover, we can easily see that the NDA CRLB approaches
the DA CRLB at higher SNR, more so as the modulation order
decreases. On the other hand, the DA CRLB is lower than the
NDA CRLB in the low SNR region from the perfect a priori
knowledge of the transmitted symbols. On the other hand, at
high SNR values, following equivalent derivation lines as done
in [9], it can be shown that the two CRLBs attain the same value
asymptotically as the SNR goes to infinity.

We now consider the more general case in which the modu-
lated signal components are of unequal average power over the
different antenna elements and hence do not exhibit the same
SNR. The SIMO channel is, however, still assumed time-in-
variant over the observation interval. Considering only two re-
ceiving antenna branches, our next scenario supposes that the

Fig. 6. NMSE and NCRLB of the NDA SNR estimates for different numbers
of antennas, � � ���, QPSK, 16-QAM.

Fig. 7. NMSE of the NDA SNR estimates when the antenna elements experi-
ence different SNRs, � � �, QPSK, 16-QAM.

second antenna element has 15 dB lower SNR than the SNR
experienced on the first one. Fig. 7 illustrates the NCRLB and
the estimated NMSE of the NDA ML estimator on the antenna
element that experiences high SNR. It shows that the NDA es-
timator reaches its CRLB over the entire SNR range. Contrarily
to the DA case, where the SNR accuracy on a given antenna
branch holds irrespective of the SNR level on the other antenna
elements [see (16), (17), and (27) where both the DA NMSE and
DA NCRLB over a given antenna depend only on the SNR level
at that branch], the performance of the NDA SNR estimator on
a given antenna element depends on the SNR level experienced
on the other antenna branches. This is due to the contribution
of the estimate, in the E-step, of the transmitted symbols, asso-
ciated with the low SNR antenna element which are inaccurate
compared to those estimated from the high SNR antenna branch.

Fig. 8 depicts a 2-D plot of the NDA CRLBs in a SIMO
system with two receiving antenna branches as function of the
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Fig. 8. CRLB in 2-D plot as function of � and � for a two-antenna SIMO
system.

SNRs. It is seen that the CRLB sharply increases as soon as
the two SNRs become different. This means that it is minimal
when the experienced SNR is the same across the two receiving
antenna elements. Actually, the fact that the unknown parame-
ters to be estimated are different or the same affects the achiev-
able performance only when these parameters are coupled as as-
sumed in our case. In fact, the different SNRs are coupled, in the
NDA case, since the off-diagonal elements of the NDA FIM are
not equal to zero, contrarily to the DA case. However, when the
parameters are decoupled, the FIM is diagonal and the estima-
tion problems associated with each one of them become disjoint.
The achievable performance holds, therefore, irrespectively of
the unknown parameters number, i.e., the a priori knowledge
of a given parameter does not bring any additional information
about the others.

Note also that even if the SNR goes to zero over a given
antenna element, this does not mean that this antenna element
is useless. This is because noise-only measurments are experi-
enced on this antenna branch and this brings information about
the unknown noise variance assumed the same accross the
two antenna elements. This affects in turn the achievable per-
formance on SNR estimation over the active antenna element
(higher-SNR antenna branch).

Finally, we focus on the complexity of our EM-based NDA
ML estimator that depends in large part on its speed of conver-
gence, i.e., the number of iterations required by the EM algo-
rithm to converge. In fact, we decide that the EM algorithm has
reached its steady state (or converged to the ML solution) when
the absolute value of the difference between the SNR estimate in
the iteration and its estimate in the iteration is infe-
rior to a sufficiently small value. In other words, the algorithms
converges to the ML solution when

. In this context, Fig. 9 plots the average number of iter-
ations required by the EM algorithm to reach convergence (i.e.,
convergence time) for different antenna-array sizes when is

6It was verified by simulations that � � ���� �� provides best tradeoff
between accuracy and complexity (i.e., for smaller �, the required iterations
number increases without any noticeable improvement in performance, and
larger � degrades seriously the performance of the NDA estimator).

Fig. 9. Convergence time (in average iterations number) of the NDA SNR es-
timator for different numbers of antennas � � ���.

set6 to 0.01 dB. We see clearly the advantage of SIMO configu-
rations in reducing convergence time to obtain the ML solution
by increasing the number of receiving antenna elements.

VI. CONCLUSION

In this paper, we derived new DA ML and EM-based NDA
ML SNR estimators over SIMO channels from any linear mod-
ulation. The ML DA solution was derived in closed form and
the NDA ML estimate was iteratively computed. It was shown
that these new SIMO SNR estimators achieve near-optimal ac-
curacy over a wide SNR range. Both our EM iterative algorithm
and ML DA solution assume that the noise components on all
the antenna elements can be adequately modelled by complex
Gaussian variables temporally and spatially white. The bias and
the variance of the DA estimator were analytically derived in
closed form, thereby showing that increasing the number of re-
ceiving antenna branches or window length can improve the per-
formance of the DA estimator. The CRLBs for per-antenna SNR
estimates from linearly modulated signals, in SIMO configura-
tions, were also derived in closed form in the DA case and nu-
merically computed in the NDA mode. The proposed DA and
NDA SIMO SNR estimators were shown to reach their CRLBs
and to exhibit remarkable performance improvements over the
SISO ML SNR estimator recently derived in [6]. For relatively
high SNR values, our new NDA ML SNR estimator exhibits per-
formances equivalent to those achieved if the transmitted data
were perfectly known. Furthermore, the use of I/Q-based ML
estimators can lead to remarkable improvements over moment-
based estimators and allows reduction of the required number
of antenna elements by half. Moreover, the use of SIMO con-
figurations can contribute to decreasing the required number of
iterations in the EM algorithm and therefore to reducing its com-
plexity. To the best of our knowledge, we are the first to derive
ML per-antenna SNR estimators as well as their CRLBs both in
the NDA and the DA cases over SIMO channels.
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APPENDIX A
DERIVATION OF THE EXACT BIAS AND VARIANCE OF THE DA

ML SNR ESTIMATOR

In order to analytically determine the statistical properties of
, its pdf must be found. Consider first the pdf of for which,

using (2) and (9) and recalling that
since the constellation is of normalized energy, we find

(53)

Since is Gaussian with

(54)

the pdf of is central chi-square [12] with

one degree of freedom. Therefore has a noncentral
chi-square distribution with one degree of freedom and
noncentrality parameter . It will be denoted by .

Now consider the distribution of . We have

(55)

where stands for the imaginary part of any complex
number. It is easy to verify that
and . Hence, the
PDFs of both and

are chi-square distribu-
tions with degrees of freedom. From the reproductive
property of the chi-square distribution [13], we deduce that
the PDF of is a central chi-square with

degrees of freedom denoted by .

Consequently, is a scaled noncentral -distributed variable
[12] with

(56)

is a noncentral -distribution with and degrees of
freedom and as a noncentrality parameter. Its mean and
variance are given by [12]

(57)

(58)

Using (56)–(58) and substituting and , it follows:

(59)

(60)

APPENDIX B
PROOF OF (27)

To derive a closed-form expression for the DA CRLB, we
establish the inverse, , of as follows: [see (61)
at the bottom of the page]. Hence, according to (19), the DA
SNR CRLB on the antenna element is derived as

CRLB (62)

. . .
...

...
. . .

. . .
...

(61)
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The required partial derivatives of (25) involved in the expres-
sions of , , and are given by

(63)

(64)

(65)

where . Then, we show that the
expected values of the partial derivatives are given by

(66)

(67)

(68)

Finally, injecting (66)–(68) in (62) yields the closed-form CRLB
for the DA SNR estimates as follows:

(69)
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