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Abstract—In this paper, we derive for the first time analytical
expressions for the exact Cramér—Rao lower bounds (CRLB) for
symbol timing recovery of binary phase shift keying (BPSK), min-
imum shift keying (MSK), and square QAM-modulated signals. It
is assumed that the transmitted data are completely unknown at
the receiver and that the shaping pulse verifies the first Nyquist
criterion. Moreover the carrier phase and frequency are consid-
ered as unknown nuisance parameters. The time delay remains
constant over the observation interval and the received signal is
corrupted by additive white Gaussian noise (AWGN). Our new ex-
pressions prove that the achievable performance holds irrespective
of the true time delay value. Moreover, they corroborate previous
attempts to empirically compute the considered bounds thereby
enabling their immediate evaluation.

Index Terms—Non-data-aided (NDA) estimation, QAM signals,
stochastic Cramér—Rao lower bound (CRLB), symbol timing re-
covery.

I. INTRODUCTION

N modern communication systems, the received signal is

usually sampled once per-symbol interval to recover the
transmitted information. But the unknown time delay, intro-
duced by the channel, must be estimated a priori in order to
sample the signal at the accurate sampling times. In this context,
many time delay estimators have been developed to meet this re-
quirement. These estimators can be mainly categorized into two
major categories: data-aided (DA) and non-data-aided (NDA)
estimators. In DA estimation, a priori known symbols are trans-
mitted to assist the estimation process, although the transmis-
sion of a known sequence has the drawback of limiting the
whole throughput of the system. Whereas, in the NDA mode,
the required parameter is blindly estimated assuming the trans-
mitted symbols to be completely unknown. In both cases, the
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performance of an estimator affects the performance of the en-
tire system. In the case of an unbiased estimation, the variance
of the timing error is usually used to evaluate the estimation
accuracy. The CRLB is a lower bound on the variance of any
unbiased estimator and is often used as a benchmark for the
performance evaluation of actual estimators [1], [2]. The com-
putation of this bound has been previously tackled by many au-
thors, under different simplifying assumptions. For instance, as-
suming the transmitted data to be perfectly known and one can
derive the DA CRLB. The modified CRLB (MCRLB), which
is also easy to derive, has been introduced in [3] and [4], but
unfortunately it departs dramatically from the exact (stochastic)
CRLB, especially at low signal-to-noise ratios (SNR).

Actually, the time delay stochastic CRLBs of higher-order
modulations were empirically computed in previous works.
Their analytical expressions were tackled only for specific
SNR regions, i.e., very low or very high-SNR values and
the derived bounds are referred to as ACRLBs (asymptotic
CRLBsS). In fact, in [5], the stochastic CRLB was tackled under
the low-SNR assumption and an analytical expression of the
considered bound (ACRLB) was derived for arbitrary PSK,
QAM, and PAM constellations. In this SNR region, the authors
of [5] approximated the likelihood function by a truncated
Taylor series expansion to obtain a relatively simple ACRLB
expression. An analytical expression was also introduced in
[6] under the high-SNR assumption. This high-SNR ACRLB
coincides with the stochastic CRLB in this SNR region but
unfortunately it cannot be used even for moderate (practical)
SNR values. Another approach was later proposed in [7] and
[8] to compute the NDA deterministic (or conditional) CRLBs,
in which the symbols are considered as deterministic unknown
parameters. Then the conditional CRLB is derived from the
compressed likelihood function f(y;@,%) in which y stands
for the observed vector, @ is the parameter vector of interest
(including the unknown time delay) and # is the maximum
likelihood estimate of the transmitted symbols .

However, it is widely known that the conditional CRLB does
not provide the actual performance limit (unconditional or sto-
chastic CRLBs). In an other work, the stochastic CRLB was
empirically computed [9] assuming perfect phase and frequency
synchronization and a time-limited shaping pulse. Later in [10],
its computation was tackled in the presence of unknown car-
rier phase and frequency and pulses that are unlimited in time.
Both [9] and [10] simplified the expression of the bounds but
ultimately resorted to empirical methods to evaluate the exact
CRLB, without providing any closed-form expressions.
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Motivated by these facts, in this work, we derive for the first
time analytical expressions for the stochastic CRLBs of symbol
timing recovery from BPSK, MSK and square QAM-modulated
signals. We consider the general scenario as in [10] in which
the carrier phase and frequency offsets are completely unknown
at the receiver, and we show that this assumption does not ac-
tually affect the performance of a time delay estimator from
perfectly frequency- and phase-synchronized received samples.
The derivations assume an AWGN-corrupted received signal
and a shaping pulse that verifies the first Nyquist criterion. The
last assumption is verified in practice for most of the shaping
pulses.

This paper is organized as follows. In Section II, we introduce
the system model that will be used throughout this article. In
Section III, we derive the analytical expression of the stochastic
CRLB for any square QAM modulation. Then, in Section IV,
we outline the derivation steps of the CRLB in the cases of
BPSK and MSK transmissions. Some graphical representations
are presented in Section V and, finally, some concluding re-
marks are drawn out in Section VI.

II. SYSTEM MODEL

Consider a traditional communication system where the
channel delays the transmitted signal and a zero-mean proper!
AWGN, with an overall power o2, corrupts the received signal.
In the case of imperfect frequency and phase synchronization,
the received signal is expressed as

y(t) = VEsa(t — 1)l G () (M
where 7 is the time delay, 6 is the channel distortion phase,
f- is the carrier frequency offset and j is the complex number
verifying j2 = —1. The parameters 7,6 and f. are assumed
to be deterministic but unknown. They can be gathered in the
following unknown parameter vector:

v=I[r0,f]" )
In (1), w(t) is a proper complex Gaussian white noise with in-

dependent real and imaginary parts, each of variance o2 /2, and
x(t) is the transmitted signal given by

K
w(t) = ash(t —il),

=1

(€))

with {a;}X | being the sequence of K transmitted symbols
drawn from a BPSK, an MSK or any square-QAM constella-
tion and 7T is the symbol duration. The transmitted symbols
are assumed to be statistically independent and equally likely,
with normalized energy, i.e., E{|a;|?} = 1. Finally, h(#) is a
square-root Nyquist shaping pulse function with unit-energy
which will be seen in Sections III and IV, as would be expected,
to have an important impact on the CRLB and therefore on the

1A proper complex random process v (¢) satisfies E{v(#)?} = 0.
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system’s performance. The Nyquist pulse g(t) obtained from
h(t) is defined as

toc
g(t) = / h(z)h(t + z)dz 4)

and satisfies the first Nyquist criterion
g(nT) =0, forany integer n # 0. %)

Suppose that we are able to produce unbiased estimates, , of
the vector v from the received signal. Then the CRLB, which
verifies E{(# — v)?} > CRLB (v), is defined as [1], [2]

CRLB (v) =T '(v) (6)
where I{v) is the Fisher information matrix (FIM) whose entries
are defined as

)y = B { A2 s @

7

with L(») being the log-likelihood function of the parameters
to be estimated and {v;}?_, are the elements of the unknown
parameter vector v.

To begin with, we show in Appendix A that the problem of
time delay estimation is disjoint from the problem of carrier
phase and frequency estimation. Indeed, we show that the FIM
is block-diagonal structured as follows:

CRLB™!
w=(" ey) w
where 0 = [0,0]7, CRLB(7) = [I(V)]f% is the CRLB of the

time delay parameter and I5(, f.) is the (2 x 2) FIM pertaining
to the joint estimation of f. and . Hence, we prove analyti-
cally that we deal with two separable estimation problems; on
one hand, time delay estimation and, on the other hand, carrier
phase and frequency estimation. Actually, this conclusion has
been already made in [10] but the authors resorted to empirical
evaluations to find that the elements [I(#)];.2 and [I(¥)]1,3 of
the FIM are almost equal to zero. Now, since the parameters are
decoupled, we only need to derive the first element of the global
FIM, [I(v)]1,1 in order to find the CRLB for time delay esti-
mation under imperfect frequency and phase synchronization.
Therefore, in the following, we consider the virtually derotated
received signal §(#) given by

§(t) = y(e IO = VBt - 7) +i(t)

where @(t) = w(t)e ?7f1+8) is also a proper AWGN with
an overall power o2 since the nuisance parameters are assumed
to be deterministic.

We mention that | - |, R{-}, &{-} and {-}* return the mag-
nitude, real, imaginary and conjugate of any complex number
and E{-} is the statistical expectation. We also define the SNR
of the system as p = F,/o?.

(€))
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III. TIME DELAY CRLB FOR SQUARE
QAM-MODULATED SIGNALS

In this section, we introduce the main contribution embodied
by this paper which consists in deriving closed-form expres-
sions for the stochastic CRLBs of time delay estimation when
the transmitted data are unknown and drawn from any M -ary
square QAM-constellation (i.e., M = 22P),

Before further development, it is important to emphasize that
an exact representation of (¢) requires an infinite-dimensional
vector representation g. But let us consider the /V-dimensional
truncated vectors %, £x and wx, representing the projection,
over an orthonormal basis of N dimensions, of §(¢), () and
w(t), respectively. Then, the pdf of § 5, conditioned on the trans-
mitted symbols a and parameterized by 7 is given by [4]

|gk’ - (l?'k-,|2
o2 ’

To derive the likelihood function which incorporates all the in-
formation contained in §(¢), we should make N tend to in-
finity to get P(y|a; 7). However, convergence problems ap-
pear. To overcome these problems, P(yx |a;7) is divided by

1/(mo2)N exp{1/02 31—, |ix|2} to obtain

(10)

AT
) 1
P@ylar) =[] = —5ex p{

i=1

N N
) 2/E; R,
A(yla;T):eXp{ 7 > Rl -5 ) I$k:|2}7
k=1 k=1

an
and as NV tends to infinity, we obtain the conditional likelihood
function

2WE,

.
/ R{G(0)a(t)* e}
BT eofar}. (12)

a —oc

A(gla;7) = exp {

To begin with, we note that since the transmitted symbols
{a; }E | are equally likely, then the desired likelihood function
of the derotated observation vector ¢ can be written as

:E{HFw@w%

where the expectation is performed with respect to the vector of
transmitted symbols and

(13)

o
Flas, j(4)) = exp { 22 | ®tawan

Es
X h(t —iT — 7)df — —'2|a,i2} . (14)
a
It can be shown that (13) reduces simply to
| K
A7) = 3 [ Hil7) (15)

i=1
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where

H{,(T):

E,
5 p{ al?

cp €C

2\/ oo

5R{1/ Yepth(t —iT — T)dt} (16)

in which C is the constellation alphabet. Actually, the main dif-
ficulty in deriving an analytical expression for the stochastic
CRLB stems from the complexity of the log-likelihood func-
tion. Therefore, we will manipulate the summation involved in
(16). In fact, considering only square QAM-modulated signals,
we are able, by exploiting the full symmetry of the constellation,
to factorize H;(7) which in turn linearizes the global log-likeli-
hood function and ultimately linearizes all the derivations.
Indeed, denoting by C' the subset of the alphabet points with
positive real and imaginary parts (i.e., C = {(2¢ — 1)d, +
J(2k —1)dp}; =12, 2r—1), the constellation alphabet C' is de-
composed as follows:
C=CuC*U

(~C)u(=C"). (17)
Note that dj, is the inter-symbol distance derived under the as-
sumption of a normalized-energy square QAM constellation as
follows:

2rt

. (18)
"2k — 1)2

s

Using (17), we rewrite (16) as

+oc
RIGE)(—E) h(t—iT—T)dt}

J —o0

2\/E_S oo
(7'2 J 00

{ R{G) (— )} h(tiTT)dt}
{2\§2E_S /*"C R{g(t)ep} h(t—iT_T)dt}
{

+ exp
Xp

2\/2_ +Ocsn{y (e} h(t—iT— )d}).

(19)

+ exp .

Now using the hyperbolic cosine function defined by
2cosh(z) = e* + ¢ 7%, (19) reduces simply to

E, .
T) = ZZ exp{g2 |ck|2}

f[fsh( L
+cosh( vE, +Ooa%{J ()&} h(tiTT)dtﬂ.

(20)
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Moreover, using the fact that cosh(a) + cosh(b) =
2 cosh(%+2) cosh(%52) and noting that ¢, + ¢ = 2R{¢;} and
¢k — ¢ = 273¥{¢}, we obtain

Es
T) =2 Z exp {—;|Ck|2}
s i o0
><cosh<2 QES éR{f:k}/ R{g(t)} h(t—z‘T—T)dt)
+o0o
xcoqh( g(‘{ k}/ S{g()} h(t—iT— ’T)(lt).
@n
Recall that C' = {(20 —1)d, +j(2m —1)d, }; m—1.2... 201 and
hence the previous expression of H;(7) is rewritten as
Hi(r)
op—1 9p—1 Es((2l _ 1)2 + (277’1, _ 1)2)(]1]2)
=4 Z Z €xXpy — o2
=1 m=1
oo
x cosh ( VE: (2{ - 1)d, / ®{y(t)}
x h(t —iT — T)dﬁ)
2/ Ey e
X cosh ( \;2 =(2m — 1)d, /7 \ S{g(t)}
x h(t —iT — T)dﬁ) . (22)

Then, splitting the two sums in (22), H;(7) is factorized as fol-
lows2:

H;(7) = 4F(Uy(7))F(Vi(7)) (23)

where

/ {g(E) th(t — T — 7)dt (24)

/ S{y(t) th(t —iT — 7)dt (25)
and

Z exp { 22k —1) d[z)}

k=

x cosh <2gs (2k — 1)dpa7) . (26)

Now, injecting the expression of H;(7) in the likelihood func-
tion of the received signal (15), we obtain

- (%)f‘ﬁm .

2Note that similar factorization was recently used to derive an analytical ex-
pression for the NDA SNR estimation [11], [12].

Ay FVi(r)). @D
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Finally, the log-likelihood function of the received signal ex-
pands to

(28)

T ))—I—ZIII(F Vi(r

Note from (28) that due to the factorization of H;(7) in (19),
the global log-likelihood function of interest in (28) involves
the sum of two analogous terms. This reduces considerably the
complexity of the stochastic CRLB derivation. In fact, the first
derivative of (28) with respect to 7 is obtained as follows:

& F(U(7) 'Um E(Vi(r)) 0Vi(r)
NGO R o
where F'(z) = ag(m) is given by
2r—1

Zexp{ p(2k — 1)2d2} ‘fqu)d
x sinh (%(2]@

Then, the first diagonal element of the FIM matrix is expressed
as

- l)deL‘> . (30)

B E P FU()
=F {; 2 F(U(m) Fmy V00
K& FUi(r)) F(Vi(r .
ranf3°3 SOOI i |
KK Fvir)) F(Vi(r
n{$ IO i) e

where U;(7) and V() are the derivatives of U;(7) and V;(7)
with respect to 7.

Starting from (31), the derivation of [I(#)]1,1 involves the
evaluation of three expectations. However, it is easy to verify
that the first and the last expectations in the right-hand side of
(31) are performed with respect to two random processes having
the same statistical properties and they are therefore identically
equal. Moreover, as shown in Appendix B, the second expecta-
tion is equal to zero. Therefore, (31) reduces simply to

Ui(r)) F(UI(T) 7\ r
)1 —212;2;57{ o )F(LTI(T))Li(T)Ul(T)}'
(32)
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First, we consider the case where ¢« = /, and we show in  Using (39) and (40), it follows that
Appendix C that U;(7) and U;(7) are statistically independent.
This results in

P(U (7)) F(U(7)) .
. 2 E{ F(U(r)) F(U (7)) Ui (T)U ()| Uy(7), U,(T)}
F(Ui(T)) 2 (7T, .
L -2
. N .
_ F(U(7)) : 9 F(Ui(r)) (Il — .
= ) (m) E{Ui(m)"}F (33) X F(UI(T))UL( VWi(m)g((i = DT)((L - T)  (41)

and we obtain

F(Ui(r) FU(T) -,
" { F(Ui(r)) F(U(7)) Ui(r) l(T)}

These two expectations involved in the right-hand side of (33)
are easily evaluated as follows:

- G (R [Ewy ° .
T VaotV M [oo F(Ui(r)) . T
U2(r) where the last equality follows from the statistical independence
X CXp {— }dU( ) (34) of U;(7) and U;(7) and
: oy Es < 2 _ i (U (1 o o2
BlOMP} =52 G =B - 550 69 {_igg:ETi;Ui(T)} - ‘/w%./,m wgp(e)e T da. (43)

where ¢( - ) and g( - ) are the first and second derivative of g( - ),
respectively. We simplify (34) by changing /2U;(7)/c by z
and we obtain the following result:

(B -

Finally, gathering all these results, we obtain the analytical ex-
pression of the stochastic CRLB for symbol timing estimation.
From square QAM-modulated signals in the presence of carrier
phase and frequency offsets as follows:

CRLB(7)
(36) K K
where <2p2 Z Z 92((m - n)T) — 2Kp§(0)>
m=1n=1
or—t
- Z exp {—p(2k — 1)%d2} V2(2k — 1)d,, ,/ /+°C 9,(v) ,*TdL
— (z)

2

X @mh(\/_(Qk - 1D)d,z) (37) L
gr—1 ij </—Oo xg,(z)e = d,L)
G,(x) = Z exp {—p(2k — 1)*d>}

k=1

K K
x cosh(y/2p(2k — 1)dpz). (38) X Z Z P ((m —n)T)

m=1n=1

-1

(44)

We now considér the ca.se.where i # 1. The intersymbol inter-  Note that for large values of K, one can use the following ac-
ference results in a statistical dependence between U, (7) and curate approximation [10]:

the first derivatives Ui(1) and Uy () (likewise for U;(7) and the
first derivatives U;(7) and U;{7)). Thus, using a standard probo-
bility approach to derive the expectations involved in (32), we Z Z g ((m —n)T) ~ Z "LT (45)
first average by conditioning on U;(7) and U;(7), then average m=ln=1 m=—00

the resulting expression with respect to these two random vari-
ables. To that end, consider the expectation of U;(7) and U;(r)
conditioned on U;(7) and U;(7):

It is worth mentioning that the new analytical expression in
(44) allows the immediate evaluation of time delay stochastic
CRLBs, contrarily to the empirical approaches presented in [9]
. and [10], and this is made possible for any square QAM modula-
E{U() | Ui(7), Ui(m)} = Ui(7)g((i — 1)T) (39)  tion order. Second, the shaping pulse is involved only via §(0)
E{U (7)) |U;(r), Uy(m)} = U(r)g((l —)T).  (40) and ¢*((m — n)T), and is separate from the factors resulting

—
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from the modulation order. Moreover, to the best of our knowl-
edge, we show here for the first time, through our new analytical
expression, that the true value of the time delay parameter does
not affect the actual achievable performance as intuitively ex-
pected, i.e., the variance of the estimation error holds irrespec-
tive of the time delay value to be estimated.

IV. CRLB FOR BPSK AND MSK MODULATED SIGNALS

In this section, we consider the BPSK and MSK modula-
tions. In BPSK transmissions, the data symbols take values in
{—1,+1} with equal probabilities. In MSK transmissions, the
symbols are defined as ax41 = japcp where ¢y, is a sequence of
BPSK symbols and « is the original value drawn from the set
{=1,—4,+1,44}. For these two transmission schemes, the key
derivation steps of the NDA CRLB will be briefly outlined in the
following. All derivation details can be found in Appendix D.

First, the likelihood function of interest based on the received
signal is:

toc .- ] Es 9
X R{bFy(8) Yt — T — 7)dt + — |bi (46)
o

—oC

where b; is equal to 1 and 4 Tag for BPSK and MSK, respec-
tively. Therefore, we show that the useful log-likelihood func-
tion of g is given by

1(r) = j_‘) (cos

00
2T, [ i

x h(t —iT — T)dt)) . @7

Note that () is defined in (9). After some algebraic manipu-
lations, detailed in Appendix D, it turns out that the analytical
expression of the stochastic CRLB for time delay estimation is
the same for BPSK and MSK modulations, and it is given by:

oo

e

m=1n

CRLB = ”ﬁ(p))

=

g((m —n)T)
1

- X
,5 )pzlz:l( (m —mn) (48)
where 3( - ) is defined as
oo s
3(p) = ————dx. 49
an= [ T (49)

V. GRAPHICAL REPRESENTATIONS

In this section, we provide graphical representations of the
time delay CRLBs and the CRLB/MCRLB ratio for different
modulation orders. First, we mention that the even integrand
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, 2g,(z)e” T and % involved in
(44) and (49) respectively, decrease rapidly as |¢| increases.
Therefore, the integrals over [—o0, +0¢] can be accurately ap-
proximated by a finite integral over an interval [— A, A] and the
Riemann integration method can be adequately used. In our sim-
ulations, we note that A = 100 and a summation step of 0.5
provided accurate values for the infinite integral.

First, we plot in Fig. 1 the CRLBs for different modulation
orders and compare them to the ones previously obtained em-
pirically in [10]. We see a good agreement between the two ap-
proaches thereby validating the developments above. Then, we
confirm through Fig. 2 that, at low SNR values, the MCRLB is
a looser bound compared to the exact CRLB. Indeed, this figure
depicts the CRLB/MCRLB ratio as a function of the SNR. This
ratio quantifies the performance degradation that arises from
randomizing the transmitted data and it approaches 1 at high
SNR values. Hence, in this SNR region, the MCRLB can be
used as a benchmark to evaluate the performance of unbiased
time delay estimators instead of the exact CRLB, since it is
easier to evaluate. However, the gap between the two bounds
becomes important as soon as the SNR drops below 7 dB, even
for QPSK-modulated signals, where the stochastic CRLB quan-
tifies the actual performance limit. Moreover, we consider in
this figure two values of the roll-off factor, 0.2 and 1, in order to
illustrate the effect of the roll-off factor on timing estimation.
Clearly, timing estimation is less accurate at a lower roll-off
factor (larger intersymbol interference). Moreover, we see from
Fig. 3 that the different CRLBs tend to ultimately coincide with
the MCRLB as long as the SNR gets increases. This actually,
in the high SNR region, the achievable performance of NDA
estimation of the signal time delay is equivalent to the one ob-
tained when the received symbols are perfectly known since in
this SNR range the MCRLB coincides with the DA CRLB. In
the specific case where A(%) is time limited to the symbol dura-
tion, the corresponding CRLB follows directly from the general
expression in (44) by taking ¢(mT) = 0 for all m € Z:

. +oo QT 2 -1
CRLB(T):[M@(O),/ﬁ/ g’;((‘w))erx] .

Note from (50) that the resulting CRLB becomes the product of
two separate terms; one depending on the shaping pulse func-
tion and the other on the signal modulation. This special bound
is plotted in Fig. 4. We see again a good agreement in this special
case between the CRLBs obtained from our analytical expres-
sion in (50) and their empirical counterparts plotted in Fig. 1 of
[9]. This particular expression still finds applications in many
conventional systems and in the emerging impulse radio tech-
nology [13], [14] where, precisely, synchronization stands today
as a very challenging issue.

functions (( )) e T

=
N| w

VI. CONCLUSION

In this paper, we derived, for the first time, analytical expres-
sions of the Cramér—Rao lower bound for symbol timing esti-
mation in the cases of BPSK, MSK and square-QAM modula-
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T
—A— QPSK
—3— 16-QAM
—#— 256-QAM
= = = MCRLB

@® Empirical QPSK
0"k @ Empirical 16-QAM
@® Empirical 256-QAM

L

CRLB

107 1 I I I I

SNR [dB]

Fig. 1. Compression between the empirical CRLB and the analytical expres-
sion in (44) for different modulation orders using ' = 100 and a raised-cosine
pulse with roll-off factor of 0.2.

T
= BPSK
—¥— QPSK
—*— 16-QAM
—%— 64-QAM

+— 256-QAM

rolloff = 0.2

CRLB/MCRLB

rolloff =1

-10 -5 0 5 10 15 20
SNR [dB]

Fig. 2. CRLB/MCRLB ratio versus SNR for different modulation orders using
J{ = 100 and a raised-cosine pulse with roll-off factor of 0.2 and 1.

tions. We considered the stochastic CRLB where the transmitted
data are unknown and randomly drawn. The carrier phase and
frequency offsets are also supposed to be unknown (nuisance
parameters). We showed that the knowledge of the phase and
frequency does not bring any additional information to the time
delay estimation problem and that the latter is decoupled from
the joint estimation of the carrier frequency and phase offsets.
Moreover, our analytical expressions for the CRLBs underline
the fact that these bounds do not depend on the time delay value,
which used to be stated only intuitively. We confirmed also that
the modified CRLB is a valid approximation of the exact CRLB
in the high SNR region and that it can be used as a benchmark
since it is easier to evaluate. Furthermore, the derived analytical
expressions corroborate previous works that empirically com-
puted the stochastic CRLBs via Monte Carlo simulations, and
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—8— 256-QAM

= = = MCRLB
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SNR [dB]

Fig. 3. CRLB versus SNR for different modulation orders using X = 100 and
a raised-cosine pulse with roll-off factor of 0.2.

== BPSK-MSK

QPSK
@ ®  16-QAM
O  64-QAM

—]024-QAM

CRLB/MCRLB
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Fig. 4. CRLB/MCRLB ratio versus SNR for different modulations and a time-
limited shaping pulse.

hence provide a useful tool for a quick and easy evaluation of
the CRLBs with BPSK, MSK and square-QAM modulations.

APPENDIX A
PROOF OF THE BLOCK-DIAGONAL STRUCTURE OF THE FIM

To show that 7 and w = [f.,0]7 are decoupled, we con-
sider the actual received signal y(#) instead of the virtually dero-
tated signal §(#). Then we follow the same derivation steps from
(13) to (28) to retrieve the log-likelihood function parameterized
by v as follows:

K K
Liv) = Zln(F(Ui(V))) + Zln(F(V}(u))). (51)
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The first derivatives of this function with respect to the /th ele-
ment of w, {u;}!=2, and 7 are, respectively, given by

K

OL(v) o F(Ui(v)) 0Ui(v) . F(Vi(v)) 0Vi(v)
Du —;F(Ui(u)) du T F(Viw) Ou
1=1,2 (52)

and

IL(w) _ Z E(Ui(v)) 8U;(v)

F(Vi(v)) 0Vi(v)
or P FU;(v)) or {

F(Vi(v)) o7

(53)

where F (-) is defined in (30). Then we average a%(:’) %{;1,((11/))

in (31) to obtain the following result:

In order to simplify the calculations, without loss of generality,
we consider [ = 1. To begin with, we first differentiate U, (v)
with respect to f. and we obtain

aTT + oo
dDm(V) _ 271_/ %{y(t)efj@ﬂ'fct-l—&)}

dfe —oo
X h(t — mT — 7)tdt
K +
= QW\/ESZ%{CL,”}/ h(t —nT — 1)
n=1 e

X h(t —mT — 7)tdt

oo
+ / S{w(t) Yh(t — mT — 7)tdt. (55)
BD;;”(V) is a function of the imaginary part of the transmitted

symBols and the derotated noise, which are mutually indepen-
dent from the real part of the transmitted symbols and the dero-

tated noise. As a result, 31‘5}(”) is independent from U;(v),

U, (v) and % This allows us to split the expectations in
(54):

E F(Ut(”)) F(Um(”)) oU;(v) OUp, (v)
F(U;(v)) F(Un(v)) ot duy
_ F(UL(V)) F(Um(”)) aU;(v) E{aU’m(V)}
FU;(v)) F(Un(v)) Or Ouy ’

(56)

Noting that the last expectation is equal to zero, it follows imme-
diately that [I(#)]1,2 is also equal to zero. Thus, we show analyt-
ically that the two parameters 7 and f. are decoupled. The same
manipulations are used to prove that 7 and § are also decoupled.
Therefore, the FIM is block-diagonal structured as given by (8).
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& UAPPEFNJ%/IX B .
PROOF OF F{ ol T i Us(r)Vi(7)} = 0
In the following, we briefly show that

E{ i w3 Ui(r)Vi(r)} = 0. By definition,
U;(7) depends on the real part of §(#), while Vi(7) involves
the imaginary part of §(), which are statistically independent.
It follows that U;(7) and V;(7) are independent. The same
arguments hold to show the statistical independence of U; ()

and V;(7). Then, it immediately follows that

F(Ui(r)) F(Vi(r)) (VW
E{F(Ui(T)) F(VI(T))Ul( W )}
L EWin) . FVi(T) ¢,
—E{F(Ui(f))Ul( )}E{F(W(T))Vl( )}' oD

And since U;(7) and U;(7) are statistically independent (see
Appendix C), each with mean zero, we obtain

F(U(r) F(V(1) .\~ R
E{F(Ui(T)) F(VZ(T))U7(’)VI( )} =0. (58)

APPENDIX C

A. PDFS OF U;(7) AND V;(7)

In this Appendix, we establish the joint pdf of U,(7)
and V;(7) defined, respectively, in (24) and (25). To
that end, we define the proper complex random variable
Zi(1) = [j;o g(t)h{t — T — 7)dt. It can be easily seen that
Zi(1) = Us(m)+4Vi(r)and that P(Z,;(7)) = P(U;(7), Vi(7)).
Using the same algebraic manipulations from (16) through (23),
we establish the pdf of Z;(7) as follows:

PZir) = 5~ exp {_@} ()

x F(U(T)F(V(7))

= P(U(n)P(Vi(r) (59)

where
P(U(r)) = \/% %exp {U"?U(T) } FUI(T)  (60)
P(Vi(r)) = J% = exp {—V"’g(;) } F(Vi(r)).  (61)

Note that the factorization of the joint pdf P(U;(7), Vi(7)) of
U;(7) and V;(7) to their elementary pdfs confirms that these are
two independent random variables.

B. PROOF OF STATISTICAL INDEPENDENCE OF
U;(7) AND U;(7)

First, note that, U;(7) can be written as

Ui(r) = VER{a:} + 5 (62)
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where
oo
G = / R{G()h(t — iT — 7). 63)
Therefore, U;(7) is given by
K
™) = \/E Z R{an }g((i —m)T)
m=1
oo
- / R{G(O) Vit — iT — 1)t
Tk .
=VE, Y Rlan}g((i —m)T) = B (64)

m=1

In addition, R{a;} and [31 are independent since the noise
and the transmitted symbols are independent. Recall also
that ¢(0) = 0 (the maximum of g(z) is located at 0). Then,
Zﬁ 1 R{am}g((i — m)T) and R{a;} are also independent.
Moreover, 3; and 8 are obtained by a linear transformation of
the Gaussian process ®{w(t)}. Hence, they are also Gaussian
processes. Then, since the cross-correlation of [; and 5; is
equal to zero, as shown below:

B0} = {//W

w(t:)e 7(2ﬂﬁ¢1+0)}

x R {w(tz)eﬂ(?”fctz"'g)} h(ty —iT — 1)
X h(fg —1 — T)dfldfg}
(72 « oo
= ? // é(tl —fz)h(fl) (fg)(lfldfz
2
= 4(0)
=0, (65)

then, ; and UL(T) are actually two uncorrelated Gaussian
random processes and therefore they are independent. Thus,
U;(7) and U,(7) are independent.

APPENDIX D
DERIVATION OF THE ANALYTICAL EXPRESSIONS FOR THE
CRLBS IN CASE OF BPSK AND MSK MODULATIONS

Starting from the expression of the log-likelihood function
given in (47), we will consider the two cases of BPSK and
MSK separately. Starting with BPSK-modulated signals, we
show that the log-likelihood function in (47) reduces to

K
= ; In (cosh (20—@1147))) (66)
where
oo
Ui(r) = / RGO — T — P)dt. (67)
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Then, the first derivative of the log-likelihood function with re-
spect to the time delay parameter, 7, is given by

oL(T) 2VE, K sinh(Q‘({f_”U,;(T))
or o’ i—1 cosh (2\(52_51]2‘(7'))

Ui(r) (68)

where U;(7) denotes the first derivative of U;(7) with respect
to 7. It is easy to see that

=VE, Y ang((i—m)T)

m=1

+oo .
- / R (1) Yh(t — iT — 7)dt.

)

() ) D)) |

(69)

Now injecting (68) in (7), we obtain

()14 _4—§:ZE{tanh(

i=11=1

2WVE
X tanh (

-G

Note that (70) is similar to (32) (obtained in the case of square
QAM modulations). Thus, for the same reasons, it is more con-
venient to separate the cases when « = [ and ¢ # {. Moreover, it
can be shown that the pdf of U;(7) is given by

1 . UZ(r)+E,
x4 a N TS
w02 P o2
2/ FE,

x cosh —
ag

Thus, it can be shown that, after some manipulations, the expec-
tations involved in (70) reduce to

E {tanh2 (2‘55—“0*[.(7)) }

e
~+oc sinh? (2V f U

X/—oo cosh(2 ,

VEs

(70)

Ui(T)> . (7))

=1- %ﬁ(ﬂ) (72)
E{(er))?}
2
=E, Z Zq m —n)T) — —§(0) (73)

m=1n=1

E;
U Bl 2/ F,
— (- DT) (\;’_2 / U sinh ( ;U)
T J a
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Finally, we obtain the closed-form expression for the stochastic
CRLB of BPSK-modulated signals as follows:

1 e’
CRLB = — 1- —3
BPSK Py < \/ﬂ/ (P))

K K K
x| p D2 Y a*(lm—m)T) — (0)

m=1n=1

K K
=0y > illm—n)T)

m=1n=1

-1

(75)

where (3(p) is defined in (49). Now, consider a MSK-modulated
signal. In order to find the derivative of (47) with respect to the
time delay 7, we need to separate the cases where b; is real or
imaginary. To do so, we assume, without loss of generality, that
K is an even number (i.e., K = 2P) and a¢g = 1. Using these
assumptions, the log-likelihood function can be written as

L) = éln (wsh (ﬁ? Ug,;l(T)))
ln (cosh (2‘/?‘1/21-(7))) (76)

o
where
Ui(r) = /m RGOV — T — )dt (77)
- and
Vi(r) = /+OO S{G(t) At — T — 7)dt. (78)

Then, the first derivative of (76) with respect to 7 is given by

6181(:) _ 20\/—?122 <tanh (20—\/2E—SU2¢1(T)> Usi1(7)

+ tanh (20—\/?‘/2,:(7'0 VQ:(T)) , (79

with Us; 1 (r) and Vzi(r) being the derivatives of Us; 1 () and
Va:(7) with respect to 7, respectively. Then, the first diagonal
element of the FIM matrix is expressed as

Il
&
TN

Q

S=

S

S’
(3]

+2 i i E {tanh (@Uzi—lﬁo
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X tanh (Zngl(T)) X UQiI(T)VZI(T)}
+ é é E {tanh (2‘({?‘*@@))
% tan (2§%1<7)) vzimvz,m} } (30)

Note that (80) is equivalent to (31). Then for the same reasons,
[I(¥)]1.1 reduces simply to

[T()ia = SUE;" ZPZEPDE {tanh (%U“)

i=1[=1

2 0 . .
= tanh (g—\/z_U2l1) Uzq',10211} (81)

which is similar to (70) in the case of BPSK modulation. Thus,
we obtain the same expression for the stochastic CRLB in case
of MSK and BPSK transmissions as given by (75).
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