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Abstract—We consider� far-field terminals with one source and
� � � interferences that transmit to a wireless sensor network
(WSN) with� uniformly distributed relaying nodes. Each relaying
node receives a signal mixture from the � transmitters in the first
phase, multiplies it with a properly selected beamforming weight
and retransmits the resultant signal to a single receiving terminal
in the second phase. The decentralized nature of the WSN dictates
every node to compute its beamforming weight based only on its
limited locally available information and without the knowledge
of the locations and the channels of any other node in the net-
work. Unfortunately, the optimal beamforming weights that maxi-
mize the signal-to-interference-plus-noise ratio (SINR) at the re-
ceiver cannot be computed locally. To circumvent this problem,
we derive accurate local approximates of the SINR-optimal beam-
forming weights. Our proposed beamforming technique uses the
so-obtained locally computable weights and, hence, can be imple-
mented in a distributed fashion. The performance of the proposed
distributed beamformer is analyzed both when the directions of
the interferences are perfectly known and when they are imper-
fectly estimated. The advantages of the proposed distributed beam-
former in comparison with a conventional distributed beamformer
are analytically proved and are further verified by various simula-
tion results.

Index Terms—Beamforming, cooperative communication, dis-
tributed algorithm, wireless sensor network (WSN).

I. INTRODUCTION

T HE potential of cooperative communication schemes to
increase the transmission coverage, the link reliability

and the capacity of wireless networks is now well understood
in the literature [1]–[5]. A generic cooperative network is
comprised of sets of transmitters, relays and receivers each
of which may contain single or multiple members. The set
of relays plays a central role in the signal transmission flow
by processing the received signals from the transmitters and
forwarding the results to the receivers. Different techniques
have been proposed to process the signals at the relays. Among
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them is the amplify-and-forward (AF) technique wherein the
relays’ signal processing reduces to the multiplication of their
received signals with properly selected relaying weights. The
simple AF relaying strategy has gained significant interest as
it avoids decoding or other complicated signal processing that
may be prohibitive to the often-primitive relaying terminals
[6]–[9]. How to select the relaying weights in AF schemes is an
active subject of research. A proper set of relaying weights not
only achieves the design objective while satisfying the design
constraints, but also complies with the restrictions dictated by
the network structure. For instance, when a cooperative com-
munication scheme is used in a distributed network that lacks a
master terminal (MT) with a global knowledge of all network
parameters, the relays are typically required to locally compute
their weights based only on their limited knowledge about the
network. This is also the case when the MT is available and can
compute the relaying weights but the overhead associated with
sending the weights to all relays is prohibitive.

Lending themselves to a distributed implementation, a va-
riety of so-called distributed AF cooperative schemes have
been proposed wherein every relay is responsible to compute
its own relaying weight. A sensible and relatively well-studied
approach to a distributed AF cooperation is the doubly coherent
matched filtering (DCMF) [10]–[15]. Depending only on the
relay’s backward and forward channel state information (CSI),
each relaying weight in the DCMF is a scaled multiplication
of the conjugate backward channel from the transmitter to the
relay and the conjugate forward channel from the relay to the
corresponding receiver. A network with transmitter-receiver
pairs and relays is considered in [10] where the transmitters
send their signals to the relays in the first time frame and the
relays forward the processed versions of the signals to every
receiver in subsequent time frames. In each of the latter

orthogonal transmissions, the relays perform the DCMF
for a new transmitter-receiver pair. The authors of [10] have
shown in [16] that the signal-to-interference-plus-noise ratio
(SINR)-optimal relaying weights do not depend only on the
corresponding relays’ backward and forward channels, rather
are functions of all channels in the network. Therefore, the
SINR-optimal weights have to be centrally computed in an
MT and sent back to the relays. A system with an -antenna
transmitter-receiver pair and relays is analyzed in [11]. The
relays are divided into clusters where each cluster performs
the DCMF on the data stream sent from a transmitter antenna
and forwards the result to the designated receiver antenna. As-
suming perfect CSI at the receiver, it is shown that as grows
large, the relaying protocol achieves the network capacity up to
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a fixed scalar term. A numerical example however showed that
this scalar term may be significant. The achievable rate of the
above relaying protocol is studied in [12] in the case that both

and grow large with the same rate. The DCMF technique
is also applied in [13] to a system with a single-antenna trans-
mitter-receiver pair and multiple relays. The outage behavior
of the cooperative scheme is then analyzed when the direct
link between the transmitter and the receiver is also present.
Other relevant works include [14] where the DCMF is used
in conjunction with a distributed space-time coding scheme
and [15] where the DCMF uses only the relays’ backward and
forward channel phase information.

As discussed in [16] and will be shown in this paper for a dif-
ferent problem, the distributed DCMF technique that uses only
the relay’s local CSI to form the corresponding relaying weight
may be highly suboptimal in some scenarios. When an MT is
available, it is sometimes possible to obtain the optimal relaying
weights in a distributed fashion. In such distributed MT-based
(DMTB) schemes, each relay derives its optimal weight based
on its local CSI along with a fixed set of key parameters that
are broadcast from the MT [8], [9], [17]. The to-be-broadcast
parameters usually depend on CSIs of all network links and,
hence, similar to the centralized cooperative schemes, the MT
requires the global network knowledge. However, the advan-
tage of the DMTB schemes over their centralized counterparts
is that the amount of feedback from the MT to the relays does
not grow with the number of relays. Two DMTB schemes are
proposed in [8] in a network with a pair of transceivers and mul-
tiple relays. In the first scheme, the set of relaying weights are
obtained that minimize the network total transmit power subject
to constraints on the transceivers’ signal-to-noise ratios (SNRs),
while in the second scheme the relaying weights maximize the
minimum SNR of the transceiver pair subject to a network total
transmit power constraint. A cooperative network with a trans-
mitter-receiver pair and several interfering terminals is consid-
ered in [9] and a DMTB-based scheme is proposed in which
every relay iteratively obtains its SINR-optimal relaying weight.
Other DMTB cooperative schemes include the technique pre-
sented in [17] to obtain the SNR-optimal relaying weights sub-
ject to relays’ both total and individual transmit powers in a co-
operative network with a single transmitter-receiver pair.

While being optimal, all above DMTB schemes require an
MT with a global network knowledge and, therefore, are in-
applicable to distributed networks that lack an MT. Note also
that when an MT is available, the incurred overhead due to ac-
quiring all network parameters may substantially increase the
overall overhead of the DMBT scheme and, consequently, re-
duce its advantage over a centralized counterpart. This justifies
the effort to develop a technique to locally, but accurately, ap-
proximate the optimal relaying weights without the need for an
MT with a global network knowledge. In this paper, we develop
such a technique in a dual-hop cooperative system. In the first
time slot, a far-field source along with far-field interfering
terminals send their signals to relaying nodes that are uni-
formly distributed in a wireless sensor network (WSN), while
in the second time slot every relaying node multiplies its re-
ceived signal with a locally computed weight and forwards it to
the receiving terminal. Every node knows its location and for-

ward channel to the receiver and is provided by a fixed set of
universally known parameters while being oblivious to the lo-
cations and the forward channels of all other nodes in the net-
work. We assume that no terminal has the global knowledge of
the nodes locations, that is, the WSN map is unknown. This
implies that the cooperative scheme is not burdened with the
overhead of sending all locations information to an MT. It is
noteworthy that such an overhead may be prohibitive specially
in a large network with a dynamic topology. The optimal re-
laying weights beamform the transmitters’ signals to the re-
ceiver such that the SINR at the receiver is maximized subject to
a constraint on the nodes’ total transmit power. It turns out that
every SINR-optimal relaying weight (hereafter, more specifi-
cally referred to as the beamforming weight) depends on the
forward channels and the locations of all nodes in the network
and, hence, cannot be locally computed at the corresponding
node. Interestingly, we prove that as grows large while the
nodes’ total transmit power remaining constant, a scaled ver-
sion of each SINR-optimal beamforming weight converges to a
locally computable limiting value. We use this property to de-
velop an efficient distributed beamforming technique at the re-
laying nodes. We derive the receive beam pattern of the pro-
posed technique and prove that the latter technique guarantees
that the average SINR (ASINR) at the receiver linearly increases
with . This is the same ASINR increase rate that is achieved
by the centralized SINR-optimal beamforming technique. As a
baseline for comparison with the proposed technique, we use
the distributed SNR-optimal beamformer that is shown to have
the DCMF structure. We derive the latter beamformer’s receive
beam pattern and show that its ASINR does not grow as in-
creases, in contrast to our solution. We also analyze the effects
of the WSN size on the performance of the proposed technique
and show that enlarging the radius of the disc that contains the
relaying nodes can increase the average-signal-to-average-inter-
ference-plus-noise ratio (ASAINR) at the receiver and improve
the robustness of the proposed technique against the estimation
errors in the interferences’ directions of arrivals (DoAs). We use
various numerical examples to verify the analytical results.

We have proposed a distributed transmit null-steering beam-
former in one of our earlier works [24]. While the approach used
here and in [24] are related in concept, the considered problems
appear in completely different contexts. In particular, the algo-
rithm in [24] is developed for a conventional communication
system while this manuscript considers a two-hop cooperative
communication system. The cooperative nature of the system
poses a significant challenge in developing the distributed ver-
sion of the optimal beamformer. Moreover, the performance
metrics in this manuscript and in [24] are different and, further,
the current manuscript deals with the estimation errors in the in-
terferences’ DoAs using an approach that is not inspired by our
findings in [24].

The rest of this paper is organized as follows. The system
model and the signal representation are given in Section II. The
conventional centralized SINR-optimal and distributed SNR-
optimal beamformers are overviewed in Section III. The pro-
posed distributed beamformer is presented in Section IV and its
performance in the absence and the presence of DoA estimation
errors is analyzed in Sections V and VI, respectively. Numerical
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TABLE I
LIST OF THE MAIN PARAMETERS

simulation results are discussed in Section VII and concluding
remarks are made in Section VIII.

Notation: Uppercase and lowercase bold letters denote ma-
trices and vectors, respectively. and are the th entry
of a matrix and th entry of a vector, respectively. is the identity
matrix and is a vector with one in the th position and zeros
elsewhere. , and denote the transpose, the Hermi-
tian transpose and the complex conjugate, respectively. and

are the 2-norm of a vector and the absolute value, respec-

tively. stands for the statistical expectation and

denotes (element-wise) convergence with probability one.
is the th order Bessel function of the first kind and

is the element-wise product. is a diagonal matrix and
is the span of the vectors in the argument.

1) Note: For the sake of the reader’s convenience, parameters
and variables used in this manuscript are listed in Tables I and II.

II. SYSTEM MODEL AND SIGNAL REPRESENTATION

This section presents the system model illustrated in Fig. 1
and the assumptions used in this paper. Some of these assump-
tions set out the locally available information at each node. As it
will be shown in Sections III and IV, the nodes’ limited locally
available information renders the SINR-optimal beamformer
impossible to implement. This section also presents the signal
models at the nodes and the receiver and derives the SNR and
SINR expressions.

Fig. 1 illustrates the system of our concern with active
nodes that are uniformly distributed [10], [18]–[22] in the disc

with center and radius , a receiver at and
far-field transmitters that include one source and inter-
ferences. The nodes in may constitute a cluster of a

TABLE II
DEFINITIONS OF THE USED PARAMETERS AND VARIABLES

Fig. 1. The system model.

larger WSN with uniformly distributed nodes. Let and
denote the polar coordinates of the th node and the th
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transmitter, respectively. As the transmitters are in the far-field,
we have for . Without any loss of gener-
ality, it is assumed that are the source’s coordinates and

. The following assumptions are also used throughout the
paper.

A1) The nodes’ forward channel gains to the receiver
are independently drawn from a

common complex random variable.
A2) The th transmitter’s signal is narrow-band with
power and noises at nodes and the receiver are with
variances and , respectively. All signals, noises and
the nodes’ forward channel gains are
zero-mean and mutually statistically independent.
A3) The th node is aware of the transmitting signals car-
rier wavelength and its coordinates , its forward
channel gain , its received power and the noise vari-
ance . In turn, each node is oblivious to the locations
and the forward channels of all other nodes in the network.
No other terminal in the system knows any

.
A4) Other than the nodes’ local knowledge described in
A3, the nodes know a fixed number of information bits
that are broadcast in a common channel. The number of
broadcast bits does not grow with and their information
content is required by all nodes. In this paper, the broadcast
information is the signals’ DoAs ,
where is the nodes’ maximum total transmit power,

, , and possibly one of two scalars or
that depend on the nodes forward channels and will be

defined later.
A5) The scattering and reflection in the signal impinging
from the far-field transmitters are negligible. Therefore,
multipath fading and shadowing effects can be ignored
when describing the channels from the transmitters to the
nodes.
A6) The nodes can be synchronized both in the carrier fre-
quency and in an initial phase.

A1 encompasses many frequently used channel models in-
cluding independent and identically distributed Rayleigh or Ri-
cian fading channels. The results of this paper can be readily
extended to the case that are statistically in-
dependent but not necessarily identically distributed. We have
additionally assumed in A1 that are drawn
from a common random variable, that is, are identically dis-
tributed, mainly for the ease of exposition. A3 is due to the
distributed and unsupervised characteristics of WSNs whose
nodes are autonomous transceiving units that are expected to
efficiently operate based on their local information and without
much coordination with or knowledge about other nodes. A4
guarantees that the distributed beamforming algorithm to be
proposed has a diminishing overhead-to-network size ratio and,
hence, is scalable as the number of active nodes grows large.
In A4, may be first estimated by a DoA es-
timation technique1 or directly broadcast by the corresponding
transmitters. The latter scenario is possible especially when the

interferences are not hostile but rather sources to other

1Such an estimation technique requires an antenna array or a collaboration
among the nodes and/or between the nodes and the destination.

clusters in the WSN. , , and (or ) may be
determined at the receiver and broadcast in the network. As
will be discussed in Section III-B, if the common distribution
of is known at the nodes, can be lo-
cally computed at every node and there is no need to broad-
cast or . A5 is due to the long distances between the trans-
mitters and the WSN. This assumption is common in the array
processing literature and is frequently adopted in the context of
collaborative beamforming in WSNs [10], [16], [18], [23], [24]
and multiantenna processing in wireless communication sys-
tems [25], [26]. Due to A5, the channel gain from the th trans-
mitter to the th node depends only on the large-scale fading
effects and is given by where is the distance
between the two terminals and denotes the path-loss exponent.
As , we have [18], [19].
Therefore, can be well approximated by

with and
[10], [18], [19], [23]. As such, the channel vector from the th
transmitter to the nodes in the WSN can be represented as

. A6 is a prerequisite for any dis-
tributed beamforming technique. Several efficient distributed
synchronization techniques have been proposed in the literature
[27]–[29].

The communication link between the source and the receiver
is established using the following dual-hop half-duplex coopera-
tive scheme: In the first time slot, the source along with the
interferences transmit their signals and the nodes receive faded
and noisy mixtures of the transmitted signals. In the second time
slot, each node multiplies its received signal with a properly se-
lected beamforming weight and relays the resultant signal to the
receiver. The received signal vector at nodes in the first
time slot is

(1)

where , ,
, and is the nodes’ noise vector. Note

that the first and the second terms in (1) are due to the source
and the interferences, respectively. The nodes transmitted
signal vector in the second time slot is given by

(2)

where is the beamforming vector with
denoting the th node beamforming weight. The nodes

total transmit power is

(3)
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where , is the
common received power at every node and the second, fourth,
and sixth equalities in (3) are due to (2), (1), and the fact that

, respectively. Let us also denote and
. It follows from (1) and (2)

that the received signal at is

(4)

where is noise at . The first, second and sum of the
third and fourth terms at the right-hand side (RHS) of the
last equation in (4) are the desired signal, interference and
aggregate noise components of the received signal at , re-
spectively. It follows from (4) that the SNR is

where . In turn, the SINR
expression is given by

(5)

III. CONVENTIONAL BEAMFORMING TECHNIQUES

This section presents both the SINR-optimal and the SNR-op-
timal beamformers. It is shown that the SINR-optimal beam-
former weights cannot be locally computed in the corresponding
nodes due to the nodes’ limited locally available information. In
turns, the SNR-optimal beamformer weights are locally com-
putable and, hence, this beamformer can be implemented in a
distributed fashion. It is discussed that the performance of the
SNR-optimal beamformer substantially degrades in the pres-
ence of strong interferences. This motives us to develop a dis-
tributedly implementable approximation of the SINR-optimal
beamformer in Section IV.

A. Centralized SINR-Optimal Beamformer

Let denote the SINR-optimal beamforming vector that
satisfies

(6)

To compute , note that at optimum, that is,
for . Otherwise, an can be

found such that increases the objective function without
violating the nodes’ total transmit power constraint in (6). As

such, at optimum and (6) can be equiva-
lently written as

(7)

where

(8)

The solution to (7) is

(9)

where

(10)

guarantees that for . To implement the
above SINR-optimal beamformer in a distributed fashion, the

th node should locally compute its own optimal beamforming
weight by conjugating

(11)

for . A straightforward inspection reveals that both
and are complicated func-

tions of all nodes’ locations and forward channels. Therefore,
due to A3, cannot be locally computed at the th node.

B. Distributed SNR-Optimal Beamformer

As discussed above, the entries of the SINR-optimal beam-
forming vector cannot be locally computed. However, it
turns out that if the interferences’ effect is ignored, then the
beamforming vector that maximizes the SNR may be readily
implemented in a distributed fashion. To see this, let denote
the SNR-optimal beamforming vector. We have

(12)

where with . Therefore

(13)

Recall that is the common received
power at every node and, therefore, can be locally computed at
each node. Note also from (8) that
and, hence, according to A3 and A4, is computable at the th
node. The same holds for

that, according to A3 and A4, depends
only on the locally available information at the latter node. Fi-
nally, and are commonly required information at every
node and can be determined at the receiver and broadcast in the
network. It should be mentioned that if the distribution of the
nodes’ forward channels is known at the nodes (the receiver),

can be approximated by at every

node (the receiver). It is noteworthy that as
are independent and identically distributed, the strong law of
large numbers guarantees that when .
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The above discussion shows that can be locally com-
puted at the th node and, hence, the SNR-optimal may be
implemented in a distributed fashion. It can be observed from
(13) that is a weighted version of which, itself, is
the multiplication of the th node’s backward channel to the
source and the forward channel to the receiver. As such,
can be viewed as a DCMF vector [10]–[15]. As (12) shows,
is merely a normalization factor that guarantees that the total
transmit power constraint holds with equality. If

is not known, then one may alternatively use a scaling factor
of by substituting in (12) with any arbitrary .
In such a case, the total transmit power constraint
holds with strict inequality at the cost of a SINR reduction. Note
from (5) that when can be ignored, the SINR is insensitive to
the norm of the applied beamforming vector and, hence, to the
choice of . In any case, the shortcoming of is its oblivious-
ness to the interfering signals that can cause a substantial SINR
degradation when the received power from the interferences is
not negligible. This motivates us to develop a distributed beam-
forming technique that explicitly takes into account the effect of
interfering signals and use the conventional distributed SNR-op-
timal beamformer merely as the comparison benchmark.

IV. PROPOSED DISTRIBUTED BEAMFORMER

It was shown in Section III-A that the SINR-optimal beam-
forming vector cannot be implemented in a distributed
fashion as are not locally computable. Our
approach to circumvent this problem is to substitute with
an approximating quantity that can be computed at the th node
for . To this end, let us first break the expression
of into the terms that are locally known and those that
should be approximated based on the local information. De-
noting , , ,

, and

(14)

and using the matrix inversion lemma, (11) and (10) can be
equivalently represented as

(15)

for and

(16)

respectively. As discussed in Section III-B, and
can be computed at the th node. As

for ,
depend only on , , as well as the

transmitters’ directions . Therefore, due to A3
and A4, can also be computed at the
latter node. However, it is straightforward to verify from (14)
and (16) that the knowledge to compute the vector
and the scaling factor is not locally available and the th node
should resort to approximating and . In what follows, we

propose an efficient approach to locally approximate the latter
two quantities. First, note that the SINR-optimal beamforming
vector in (9) guarantees that the nodes’ total transmit power
is irrespective to . In general, when a SINR-optimal
beamformer operates under a total transmit power constraint,
the SINR can increase linearly with the number of beamforming
antennas [27], [30]. This suggests the use of a large number of
beamforming nodes as a means to increase the SINR at . It
is noteworthy that, if necessary, the number of beamforming
nodes may be increased by activating available idle nodes
in or increasing to include additional nodes in

. Note also that when the nodes’ total transmit power
is fixed, every node’s transmit power is inversely proportional
to . Therefore, increasing the number of beamforming nodes
also facilitates decreasing active nodes’ transmit powers and,
further, a more equitable power dissipation from the whole
network [24]. This, in turn, can substantially increase the
lifetime of the beamforming nodes that are typically small
transceiving units with a limited nonrenewable power resource.
The above discussion motivates the use of a large in our
collaborative beamforming scheme. When is large enough,

and are accurate approximations of
and , respectively. However, to be able to substitute and in
(15) with and , it is required to show
that the latter two quantities depend only on the information
commonly known at every node. The following theorem proves
that it is indeed the case.

Theorem 1: Consider the matrix and
vector with

(17)

(18)

where . Then, as

(19)

(20)

Proof: See Appendix A.
It follows from (17) and (18) that and depend only on

the locally known and . Following our dis-
cussion in Section III-B, is locally known and (or ) can
either be locally computed or broadcast to every node through a
common channel. It follows from (19) and (20) along with the
above discussion that and converge with probability one to
values that solely depend on the commonly available informa-
tion at every node. Further, Theorem 1 together with (15) estab-
lishes the fact that

(21)
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for . As converges with probability
one to the expression at the RHS of (21) and, moreover, the latter
expression can be locally computed at the th node, we propose
to use

(22)

as the approximate of the SINR-optimal beamforming weight
for . Note that is locally computable

and, further, is an accurate approximate of when is
large enough. Stacking in

(23)

we obtain the proposed distributed version of the SINR-optimal
beamforming vector . The performance of the proposed
beamformer is analyzed in the next two sections.

V. PERFORMANCE ANALYSIS WITH PERFECTLY KNOWN DOAS

In this section, we analyze and compare the performances
of the proposed and the SNR-optimal distributed beamformers
when are exactly known. In Section VI, we use the
results of this section to analyze the case when the estimated
DoAs of the interferences are corrupted with some estimation
errors.

A. The Proposed Beamformer

To maintain the generality of our analysis, consider a terminal
located at an arbitrary point in the far-field that trans-
mits with the power . If is used at the beamforming nodes,
the received power at from the latter terminal is

(24)

where fully characterizes the transmitting
terminal, and with

. Note that is the channel
vector from the terminal to the beamforming nodes. It is also
noteworthy that fixing and and plotting versus

, we obtain the spatial distribution of the received power or,
as it is conventionally called [10], [18], the receive beam pattern
due to a transmitter at distance with power . The SINR
expression (5) depends on only at
and can be equivalently represented as

(25)

where

(26)

is the aggregate noise power. Equation (25) shows that , the
SINR performance of the proposed beamformer, is closely re-
lated to the behavior of at as well
as . Note from (23), (24), and (26) that both and

are extremely complicated functions of the random vari-
ables and for and, hence, random
quantities of their own. The above discussion suggests that it
maybe more practical to analyze the behavior of

and instead of directly studying
and where the expectations are taken with re-

spect to and .2 Moreover, it is proved
in the following that, as , and

at any arbitrary and for
any arbitrary set of and . The latter

result shows that, when is large enough, and

are reliable approximations of and , respectively.
This further justifies the practical importance of analyzing the
behavior of and . The following theorem derives
both and and obtains the limits of and

as grows large.
Theorem 2: Consider the vector with

(27)

and let ,

and . Then

(28)

and

(29)

Moreover, as , we have

(30)

and

(31)

at any arbitrary and for any arbitrary set of and
.

2We do not constrain our analysis to �� ���� �� � � � � �� ���� � as we require
�� ���� � for a general ��� in Section VI.
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Proof: See Appendix B.
Note that . It also follows from

(18) and (27) that . Using the latter two results in (28),
we obtain

(32)
Moreover, it is direct to show from (17) and (27) that

for (see also [24]) and, hence,

(33)

Equation (32) shows that the average received power from the
source’s direction linearly increases with . On the other hand,
(33) proves that the average received powers from the interfer-
ences’ directions remains fixed as grows large. Let

denote the ASAINR of the beamformer

. The above discussion along with the fact that the average ag-
gregate noise power in (29) is independent from , establishes
that

(34)

also linearly increases with . Following similar steps as in
[24, Section IV.C], it can be proved that
where only if , that
is, the source’s channel vector is a linear combination of the
interferences channel vectors. The latter event is highly unlikely
if the length of the channel vectors is considerably larger than
the number of the channel vectors . It is a direct observation
from (34) that is a decreasing function of and,
hence, it is desired to have . Using the fact that

(35)

it follows from (18) that if

(36)

then

(37)

for and, hence, . The above discus-
sion shows that, if possible, should be selected large enough
such that (36) holds. In this case, in (34) increases to a level
approximately equal to

(38)

Note that if is large enough such that ,

then , , and and, consequently

(39)

The RHS of (39) is times more than the SINR obtained when
the signals from all transmitters are directly received at in the
absence of the intermediate beamforming hop.

B. The SNR-Optimal Beamformer

In this section, we obtain and and compare
the performance of the SNR-optimal beamformer with that of
the proposed beamformer. For the sake of consistency with the
definition of in (23), we use in lieu of when computing

from (12). It follows from our discussion in III-B and may be
further verified by simulations that the difference in the perfor-
mances of the two versions of is minuscule. The following
theorem holds.

Theorem 3: We have

(40)
and

(41)

Moreover, as

(42)

and

(43)

at any arbitrary and for any arbitrary set of and
.

Proof: See Appendix C.
Equation (42) verifies the practical relevance of and

for a large . When the SNR-optimal beamformer is
used, (40) shows that the average received power from any ar-
bitrary direction linearly increases with . This is in contrast
with our proposed beamformer that maintains the average re-
ceived power in the directions of interferences to a
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fixed level as grows large. Therefore, unlike , does
not linearly increase with . In fact, it is direct to show from
(40) and (41) that

(44)

Equation (44) further verifies that, unlike our proposed beam-
former, the SNR-optimal beamformer is unable to sufficiently
suppress the interferences effect. In particular, when the angular
distance of, for instance, the th interference from the source

and/or are not large enough, (36) and the approxima-
tion in (37) do not hold and can be considerably larger
than zero. This, in turn, may result in a substantial degradation
of .

C. ASINR Performance Comparison

It was shown in Section V-A that when is used, the
ASAINR is a linearly increasing function of . In con-
trast, it was proved in Section V-B that when is used, the
ASAINR converges to a bounded limit of as grows
large. While the ASAINR is a meaningful performance mea-
sure (see, for instance, [31] and [32] for some applications),
a probably more practical performance measure is ASINR
that may be defined for a generic beamforming vector as

where the expectation is

taken with respect to and . As
and are mutually statistically

dependent and, further, each of which is a very compli-
cated function of and , deriving
a closed-form expression for appears to be extremely
difficult if not impossible. The same argument seems to be true
for . While the above facts hamper a rigorous analytical
study of and in general, some important properties
of and can be derived in the asymptotic regime when

. The following theorem holds.
Theorem 4: It holds that

(45)

(46)

Proof: See Appendix D.
The inequality in (45) establishes the fact that the increase

rate of the ASINR with is at least the same as that of
the ASAINR . Therefore, increases at least linearly
with . When operating under a total transmit power constraint,
the SINR of a centralized SINR-optimal beamformer is a lin-
early increasing function of in general [27], [30]. As our pro-
posed distributed beamformer approximates the centralized

SINR-optimal beamformer , it can be inferred that the in-
crease rate of with is confined to be linear and, hence, the
ASINR of our proposed distributed beamformer enjoys the same
increase rate with as its centralized SINR-optimal counter-
part. Equation (46) proves that as grows, has the same be-
havior as and, in particular, converges to the same bounded
limit of . Theorem 4 also shows that when is large enough,

is not smaller than . The fact that the latter
quantity is a linearly increasing function of further justifies
the advantage of the proposed distributed beamformer to the dis-
tributed SNR-optimal beamformer.

VI. PERFORMANCE ANALYSIS WITH ESTIMATION ERRORS IN

THE INTERFERENCES’ DOAS

To implement (23), every beamforming node requires
to know all interferences’ DoAs . If this
knowledge is acquired using a DoA estimation technique, the
estimated DoAs are usually corrupted with some errors that
may degrade the performance of the proposed beamformer. Let

used in and in (23) be the estimated DoAs
of the interferences and be the actual
DoAs of the interferences with denoting the error in . Then,
the average received power from the th interference is
obtained by using
in (28). It also follows from (28) and (33) that

(47)

for . We may view as a robustness measure
of the proposed beamformer against the estimation error in :
The smaller the , the more robust the proposed beam-
former against .

As discussed in Section V-A, if is large enough such that
(36) holds, then increases to a level approximately equal to

. It can be shown that increasing can also improve the
robustness of the proposed scheme against the estimation errors
in the interferences’ DoAs. To verify this claim, assume that the
following three conditions are satisfied:

C1 The normalized radius is selected large enough to
satisfy (36) and, consequently, (37).
C2 We have for . Therefore, it can
be inferred from (36) that

(48)

C3 The angular distance between every distinct pair of in-
terferences , , , is such that
the selected also satisfies

(49)
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Inequalities (48) and (49) respectively imply that

(50)

(51)

for with . It follows from (37) and
(51) that for while it can be de-

duced from (50) that for . Using the
above results in (47), it can be concluded that when is large
enough such that C1–C3 are satisfied, approaches zero
for . This suggests using a large as a simple
means to provide robustness against the estimation errors in the
interferences’ DoAs.

Note that the smaller the and/or , the larger the
has to be selected to guarantee C1-C3. However, in practice, it
is not possible to increase arbitrarily due to, for instance, the
limited topological boundaries of the WSN cluster. Therefore,
it is useful to develop alternative means to provide robustness
against the estimation errors in the interferences’ DoAs. This
requires a more in-depth analytical study of the effect of on

. Unfortunately, such an analysis is hampered by the
fact that is a complicated function of . However, if

is not large, the relation between and can be ac-
curately described by the first two non-zero terms of the Taylor
series of at . The so-obtained Taylor series approx-
imation may then be used to develop alternative techniques to
alleviate the effect of on without requiring to use an
excessively large . Below, we introduce such a technique for

. First, we need the following theorem.
Theorem 5: Let

(52)

at and the second order
Taylor series approximation of at . Then, for
we have

(53)

Proof: See Appendix E.

It is noteworthy that at and, there-
fore, the first-order term in the Taylor series of in
(53) is zero. This implies that the average power received at
from the interference is naturally robust against a slight estima-
tion error in the interference’s DoA. Further robustness against
estimation errors in the interference’s DoA may be achieved
when the second-order term in the Taylor series of is
also equal to zero. It follows from (53) that the latter equality

Fig. 2. The main plot shows �� ���� � ���� and �� ���� � ���� versus �
(deg) and the inner plot displays � ���� � and � ���� � versus � (deg) for
� � �	.

holds if or, equivalently,
. The latter equation can be numerically solved and

its first positive root is approximately equal to .
Therefore

(54)

results in diminishing the second term at the RHS of (53) to
zero and, hence, a more robustness against estimation error in

. Simulation results in Section VII show that when ,
is a damping oscillatory function of

with a minimum point around for an arbitrary but small .
A similar approach as above may be used to reduce the effect of

on for .

VII. SIMULATION RESULTS

Numerical experiments are performed to verify the analytical
results. In all simulations, ,
and the forward channel gains are ran-
domly drawn from a zero-mean unit-variance circular Gaussian
distribution. Empirical average quantities are obtained by
averaging over 1000 random realizations of .
When an average beam pattern is plotted versus , is
such that . Similarly, in all but Fig. 6, the

transmitters’ powers are selected such that
for . Unless otherwise stated, with

(deg) and .
The main plot in Fig. 2 shows and

versus (deg) for . As can be
observed from Fig. 2, in contrary to , has
local minima at the interferences’ DoAs , and . This
verifies that the proposed distributed beamforming vector
can effectively suppress the interfering signals at the receiver.
Note that is slightly smaller than , that is,
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Fig. 3. The main plot shows �� ���� � ���� and �� ���� � ���� versus �
(deg) and the inner plot displays � ���� � and � ���� � versus � (deg) for
� � �		.

the power received from the source’s direction when is
used is slightly less than the case when is applied. This is
the price that has to be paid for suppressing three interferences
located at directions with small angular distances from the
source. The inner plot in Fig. 2 shows , the empirical

average of , versus (deg) for both
and . As displayed in the latter plot, is less
than 0.1 in most examined directions. This implies that even for
the relatively small , the normalized average received
power is a quite reliable approximate of arbitrary

instances of the normalized received power associated

with random realizations of the set .
Fig. 3 shows the results of the same experiment as in Fig. 2

for . Again, it can be observed from the main plot
that has local minima at , , and . Moreover,
while is larger in Fig. 3 than in Fig. 2, ,

and are equal in both figures. This is in
agreement with the result in Section V-A that shows that if

is used, the average received power from the source is a
linearly increasing function of while the average received
power from the interferences is independent from . It can be
observed from the inner plot in Fig. 3 that both and

are much smaller than their counterparts in Fig. 2.
This is also an expected result since, as shown in (30) and (42),

for both and
and any arbitrary set of . Therefore, taking
into account that and are linear functions

of , it is expected that the instances of

and are in average smaller for a larger .
This, in turn, implies that, as increases, both and

are expected to decrease.
Fig. 4 displays ASAINRs and and their empirical

counterparts as well as the empirical ASINRs and
versus . The curves of the derived upper-bounds ,

Fig. 4. The analytical and the empirical ASAINRs as well as the empirical
ASINRs of � and � versus � .

and are also shown versus for comparison. Fig. 4 shows
that and match perfectly with their empirical counter-
parts. Moreover, as proved in Sections V-A and V-B, is a
linearly increasing function of (note that the curves are drawn
in a logarithmic scale) while approaches the bounded limit
of as increases. It can also be observed from Fig. 4 that

is upper-bounded by the empirical while and the
empirical are almost indistinguishable when is large.
These observations corroborate (45) and (46). As expected, the
curve of is displayed below the curves of and
in Fig. 4. Note that since is large enough, the curves of

and are very close to each other and, in this partic-
ular example, both happen to be almost indistinguishable from
the curve of the empirical . It is noteworthy that is no-
ticeably smaller than in Fig. 4. This is due to the fact that
the first interference has a very close angular distance of
(deg) from the source and, hence, (36) does not hold.

In Fig. 5, and are considered. Two inter-
ferences are assumed at (deg) and (deg) and
then various performance measures are displayed versus . As
can be observed from Fig. 5, the empirical and the analytical
ASAINRs perfectly match for both and .
In addition, over the whole range of , is significantly
larger than . Note that the difference between and
is more prominent when is very small, that is, the interfer-
ence is located in a very close angular distance from the source.
The curves of the empirical and are also shown in this
figure. Again, there is a large gap between the empirical
and the empirical especially for a small . This verifies
the advantage of using the proposed distributed beamforming
vector over its conventional counterpart , in particular
when there is an interference in a close angular distance from
the source. Fig. 5 also displays and versus . Inter-
estingly, as increases, (36) becomes a valid assumption and,
consequently, approaches .

In Fig. 6, and the interference-to-noise ratio at
the beamforming nodes due to each interference is
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Fig. 5. The analytical and the empirical ASAINRs as well as the empirical
ASINRs of � and � versus � for � � ���, � � �, � � � (deg) and
� � � (deg).

Fig. 6. The analytical and the empirical ASAINRs as well as the empirical

ASINRs of � and � versus for � � ��� and � �
� �� (dB),

� � �� �� �.

for . Fig. 6 shows various performance mea-
sures versus the SNR at the beamforming nodes . As can
be observed from this figure, and its empirical counterpart
are substantially larger than and its empirical version. A
similar observation can be made for the empirical and the
empirical . Note that as is relatively large, the curves of

and the empirical are very close. At the same time,
is upper-bounded by the empirical . The latter two observa-
tions are in an agreement with (45) and (46).

The main plot in Fig. 7 displays versus for
, and . In all cases, curves

have minima at the directions of the interfering terminals
(deg). As can be observed from the

main plot in Fig. 7, when or , is

Fig. 7. The main plot shows 	� 
��� � versus � for � � ��,� � �� and
� � ��. The inner plot shows 	 
� �, the analytical 	� 
� � minus its
empirical counterpart, versus � .

Fig. 8. 	� 
���� � versus �
 
�� � for � � � and � � � (deg).

larger than in the case when . This is due to the fact
that is large enough to satisfy (36) in the first two cases.
As explained in Section V-A, in such cases .
Consequently, in (32) increases to the maximum of

and approaches . It can
also be observed from the main plot in Fig. 7 that the larger
the , the smaller for any arbitrary but
small . This corroborates our result in Section VI
that increasing improves the robustness of the proposed
beamformer against the estimation errors in the interferences’
DoAs. The inner plot in Fig. 7 shows , the analytical

minus its empirical counterpart, versus . As can be
observed, is at most 0.3 (dB) for all three choices of

.
In Fig. 8, and (deg) are selected and

then is plotted versus
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for four different values of . The bold hori-

zonal line is and is shown as
a reference. Fig. 8 shows that when satisfies (54), that is,

, is very close to
regardless of . This further confirms our result in Section VI
that when , selecting as in (54) best improves the
robustness of the proposed beamformer against the estimation
errors in the interferences’ DoAs.

VIII. CONCLUSION

We considered a dual-hop cooperative system in which a far-
field source along with far-field interferences transmit
to a uniformly distributed WSN in the first phase and WSN
nodes multiply their received signals with proper beamforming
weights and forward the results to the receiver in the second
phase. Each node is only aware of its own location and forward
channel along with a fixed set of universally known system pa-
rameters while being oblivious to the locations and the chan-
nels of all other nodes in the WSN. The nodes’ limited knowl-
edge about the network makes it impossible to locally compute
the optimal beamforming weights that maximize the SINR at
the receiver. However, we proved that a scaled version of the
optimal beamforming weights converge to locally computable
limiting values as grows large while the nodes’ total transmit
power remaining fixed. Using this property, we developed an
efficient beamforming technique that can be implemented in a
distributed fashion. We analyzed the performance of the pro-
posed distributed beamforming technique both when the direc-
tions of the interferences are accurately known and when they
are imperfectly estimated. In the former case, it was shown that
the average SINR (ASINR) at the receiver linearly increases
with . This increase rate is equal to that of the ASINR of
the centralized SINR-optimal beamformer and underlines the
advantage of our proposed distributed beamforming technique
over its conventional counterpart whose ASINR does not in-
crease as grows large. The effects of the WSN size on the
performance of the proposed technique were also analyzed. It
was shown that enlarging the radius of the disc that contains
the beamforming nodes can increase the average-signal-to-av-
erage-interference-plus-noise ratio at the receiver and improve
the robustness of the proposed technique against estimation er-
rors in the interferences’ directions.

APPENDIX A
PROOF OF THEOREM 1

First, note from (14) that

(55)

As is an diagonal matrix with

for , we

have

(56)

Now, let us compute . From the definition
of we have

(57)

Note that , and are mutually statistically independent
and the summands at the RHS of (57) satisfy the Kolmogorov
condition (see, for instance, [33, Theorem 6.7]). Therefore, the
strong law of large numbers can be applied to the RHS of (57)
to establish

(58)

Further, due to A1 and the fact that the nodes are uniformly
distributed, each of the three sets of random variables ,

and are identically distributed across . As such, (58)
simplifies to

(59)

As and are all mutually statistically independent and the
nodes are uniformly distributed in , we have [24]

(60)

From (17), (59) and (60), we obtain

(61)

To compute , first note that

(62)
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Comparing (62) with (57), it immediately follows that
if

is used in . This, in turn, establishes that

(63)

where is given in (18). Using (56), (61), and (63) in (55),
(19) follows. Now, we turn our attention to prove (20). Let

. From (16) and (19), see (64) at the bottom of the page.
We have

(65)

where the last line is due the strong law of large numbers
and (60). It is also direct to show that

if is substituted in .
Therefore

(66)

Finally, we have
and, therefore

(67)

Using (19) and (65)–(67) in (64), (20) is obtained. This com-
pletes the proof.

APPENDIX B
PROOF OF THEOREM 2

Using (23) in (24), it follows that

(68)

where

(69)

(70)

(71)

Therefore

(72)

To compute , first note from (69) that

(73)

From (8), we have . Using the
latter equality in (73), taking the expectation operator from the
resulting expression and using (60), we obtain

(74)

Let us now compute . From (70), we have

(75)

where

(64)
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(76)

It follows from (60) and (76) that when

(77)

while when

(78)

Using (18) and (27), (77) and (78) can be unified into

(79)

From (75) and (79) we have that

(80)

Note that is real and, hence, . Now, let
us obtain . From (71) we have

(81)

where

(82)

and

(83)

From (17), (27) and (60), it can be readily shown that

(84)

(85)

Taking the expectation operator from both sides of (81) and
using (84) and (85), we obtain

(86)

Substituting (74), (80), and (86) into (72), (28) is obtained.
To prove (29), note from (23) and (26) that

(87)

where

(88)

(89)

(90)
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A straightforward manipulation shows that

(91)

and, therefore

(92)

if and

(93)

Equations (92) and (93) can be represented together as

(94)

Taking the expectation operator from both sides of (90) and
using (94), we obtain

(95)

Using similar steps as in (91) and (92), it follows that

(96)

From (89) and (96) it also follows that

(97)

Finally, it is direct to show that

(98)

Taking the expectation operator from both sides of (87) and
using (95), (97), and (98) in the resultant (29) is obtained. Con-
vergence in (30) can be proved as follows: First, note from (68)
that

(99)

Dividing both sides of (73) by and using the strong law of
large numbers as , we obtain

(100)

Substituting (76) into (75), dividing both sides of the resulting
expression by and using the strong law of large numbers, it
follows that

(101)

Using similar steps in (81)–(83), we also obtain

(102)

Convergence in (30) immediately follows from (99)–(102).
Convergence in (31) can be straightforwardly proved by using
the strong law of large numbers to obtain the limits of , ,
and and, consequently that of .

APPENDIX C
PROOF OF THEOREM 3

Using (23) in (24), it follows that

(103)

where is defined in (69). Taking the expectation operator
from both sides of (103) and using (74), (41) directly follows.
Using (23) in (26), we have

(104)

where is defined in (87). Taking the expectation operator
from both sides of (104) and using (98), (41) is obtained. Proofs
of (42) and (43) are similar to those of (30) and (31) and we skip
them.

APPENDIX D
PROOF OF THEOREM 4

To prove (45), see (105) at the top of the next page. In (105),
the second line is due to (30) and the inequality in the last line
is due to the Jensen’s inequality. To prove (46), we have (106)

(106)

where the second line is due to (42) and (43).
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(105)

APPENDIX E
PROOF OF THEOREM 5

When , (28) may be represented as

(107)

where

(108)

As , the second order Taylor series approx-
imation of at is

(109)

It can be shown that and, therefore

(110)

It directly follows from (110) that . To prove

(53), we require only at . As

at , it is direct from (110) that

(111)

Using (111) in (109), (53) is obtained.
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