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Abstract—The main contribution of our work consists in devel-
oping for the first time a method of estimating the direction of ar-
rival (DOA) parameters assuming noncircular and temporally and
spatially correlated signals. This new approach, based on a signif-
icant enhancement of the two-sided instrumental variable signal
subspace fitting (IV-SSF) method, outperforms its classical ver-
sion in terms of lower bias and error variance. Moreover, it will
be shown that our new method is statistically more efficient than
the MODE method especially in the case of partly and fully co-
herent signals where only the extended and the classical two-sided
IV-SSF methods are applicable. We also derive an explicit expres-
sion for the stochastic Cramér–Rao bound (CRB) of the DOA esti-
mates from temporally and spatially correlated signals generated
from noncircular sources. The new CRB is compared to those of
circular temporally correlated and noncircular independent and
identically distributed signals to show that the CRB obtained as-
suming both noncircular sources and temporally correlated signals
is lower than the CRBs derived considering only one of these two
assumptions. This illustrates the potential gain that both noncircu-
larity and temporal correlation provide when considered together.
It will also be proven that the difference between the three CRBs
increases with the number of snapshots. However, as the signal-to-
noise ratio (SNR) increases, the CRBsmerge together and decrease
linearly. Moreover, at low SNR values it will be shown that tem-
poral correlation is more informative about the unknownDOA pa-
rameters than noncircularity. Finally, the CRB derived assuming
noncircular and temporally correlated signals depends on the non-
circularity rate, the circularity phase separation, and the DOA sep-
aration.

Index Terms—DOA estimation, noncircularity of the signals,
spatial correlation, stochastic Cramér–Rao lower bound (CRLB),
temporal correlation.

I. INTRODUCTION

D IRECTION of arrival (DOA) estimation for multiple
plane waves impinging on an arbitrary array of sensors

has received a significant amount of attention over the last
several decades. It has typically played an important role in
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array signal processing areas such as modern wireless com-
munication systems, radar, sonar, audio/speech processing
systems and radio astronomy. In this context, many DOA esti-
mators have been extensively studied assuming different data
models. Indeed, a number of high resolution DOA estimation
algorithms have been developed assuming the signals to be
independent and identically distributed (iid) and generated from
circular sources. The well-known estimators derived in this
case are the deterministic (or conditional) and the unconditional
maximum-likelihood (ML) estimators [1]. However, the ML
estimator is computationally quite expensive due to the required
multivariate nonlinear maximization. Therefore, the researchers
have derived the so-called eigenstructure or signal subspace
methods such as the MUltiple SIgnal Classification (MUSIC)
estimator [2], [3] and the Estimation of Signal parameters via
Rotational Invariance Technique (ESPRIT) estimator [4] which
represent more computationally attractive methods for DOA
estimation. Despite their relatively reduced computational cost,
these two techniques were proved to be statistically less accu-
rate than the ML estimator. The Method Of DOA Estimation
(MODE) technique, a new method that advocates a compro-
mise between the good performance of the ML method and the
computational simplicity of MUSIC was later proposed in [5].
However, this method was shown to be statistically inefficient
in the case of coherent sources. Furthermore, authors have
proposed in [6] some signal subspace fitting (SSF) methods.
In fact, the MD-MUSIC an alternative multidimensional array
processing technique based on subspace fitting was derived as
an extension of the one-dimensional MUSIC algorithm. This
estimator was proved to be performed by an optimal multi-
dimensional subspace fitting based technique referred as the
weighted subspace fitting (WSF) method. This technique was
shown to be asymptotically identical to the MODE estimator
when the sources are non coherent. However, for coherent
sources only WSF is efficient [7]. Yet, in the last few decades,
there has been interest in developing other algorithms to im-
prove DOA estimation capability. These algorithms consider
more realistic assumptions in the data models. In fact, the
decoupled maximum-likelihood (DEML) angle estimator [8]
assumes that the waveforms of the incident signals are known
but the amplitudes are unknown and also supposes the noise
to be unknown and arbitrarily spatially colored. Furthermore,
some other contributions [9]–[11] have addressed the problem
of DOA estimation in unknown noise environments based on
various assumptions regarding the noise.
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Despite their efficiency, all the aforementioned estimators
present some practical limitations. In fact, they are mainly
developed assuming the snapshots to be iid or uncorrelated
in time. This iid assumption presents a challenging limitation
on the applicability of the results in the real world and results
in some practical difficulties. Therefore, efforts have been
directed to considering more realistic models assuming the
signals to be temporally correlated. In this context, a novel
instrumental variable (IV) approach to the sensor array problem
is proposed in [12]. This IV technique that assumes the signals
to be temporally correlated and circular Gaussian distributed
does not require any knowledge of the noise covariance matrix
but its uncorrelatedness in time. Although the IV method was
proved to be computationally much less expensive than the
eigendecomposition or ML-based techniques, it was shown to
give inaccurate estimates in difficult scenarios involving highly
correlated and/or closely spaced signals. Therefore, authors
have proposed in [13] a new IV method that combines the
ideas of SSF and IV. This combination results in a more com-
putationally complex method than the one presented in [12].
However, the new method was proved to be statistically greatly
accurate as compared to the previous technique especially in
the case of highly and fully correlated signals.
Yet, noncircular complex signals, for example binary

phase shift keying (BPSK) and offset-quadrature-phase-shift-
keying (OQPSK) modulated signals, are frequently encoun-
tered in digital communications. Therefore, more recently, there
has been a considerable interest in deriving new algorithms
that exploit the unconjugated spatial covariance matrix for
noncircular signals [14], [15]. More recently, Haddadi, Nayebi,
and Aref proposed in [16] a new algorithm that presents an
improved version of the method developed in [13], but still for
circular signals. To the best of our knowledge, however, no
contributions have dealt yet with the problem of estimating the
DOA assuming the signals to be temporally and spatially cor-
related and also generated from noncircular sources. Therefore,
the aim of this work is to tackle DOA estimation in the case of
both temporal correlation and noncircularity of the signals.
In this paper, we propose an algorithm that extends the re-

cent method developed in [16] assuming circular signals in the
case of noncircular signals. We also conduct a complete study
of the statistical properties of the new algorithm. Furthermore,
we derive for the first time an explicit expression for the CRB of
the DOA estimates from temporally and possibly spatially cor-
related signals generated from noncircular sources.
This paper is organized as follows. In Section II, we introduce

the system model that will be used throughout the article and
we define the problem in terms of notation and assumptions. In
Section III, we formulate the proposed algorithm and discuss
its statistical properties. In Section IV, an explicit expression
for the DOA CRB assuming temporally and spatially correlated
signals generated from noncircular sources will be derived. In
Section V, the proposed method is compared to that in [15] and
to the corresponding CRB through computer simulations.
Throughout this paper, matrices and vectors are represented

by bold upper case and bold lower case characters, respectively.
Vectors are, by default, in column orientation. Moreover, we
consider the following notations.

Notations:

Conjugate.

Transpose.

Conjugate transpose.

Trace.

Frobenius norm.

Real part operator.

Imaginary part operator.

Expectation operator.

Eigenvalues of a matrix.

Kronecker operator.

Hadamard–Schur product operator.

identity matrix.

null matrix.

; steering matrix.

Array steering vector parameterized by .

.

.

; orthogonal
projection onto the null space of .

th block of block matrix .

th block of block matrix .

Block matrix with blocks .

Block matrix with blocks .

is positive semi-definite matrix.

; block trace.

II. SYSTEM MODEL

Consider an array of sensors receiving the signals emitted
by narrowband sources with directions .
Then, the received data can be modeled as a complex signal as
follows:

(1)

where represents the total number of received samples in
the observation window. At time index , is the sources’
transmitted signals and is the sensors noise vector.
Stacking the received data over the whole observation

window in a matrix , (1) can be written in a matrix form as
follows:

(2)
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where represents the data sam-
ples, is the signal sequence and

is the noise sequence.
The transmitted signals are assumed to be generated

from noncircular sources. This means that
contrarily to circular signals. Otherwise, the transmitted signals

are supposed to be zero-mean complex non-
circular, temporally and possibly spatially correlated with con-
jugated and unconjugated covariance matrices and

, respectively, as follows:

(3)

(4)

The th block of the block matrix represents the first
space-time covariance matrix of the signals and is defined as

(5)

Moreover, the th block of the block matrix , , repre-
sents the second non-singular covariance matrix of the signals
and is defined as

(6)

The noise is assumed to be zero-mean Gaussian complex cir-
cular, possibly spatially correlated and temporally uncorrelated
with conjugated covariance matrix

(7)

where represents the noise covariance matrix defined as fol-
lows:

(8)

Consequently, the received signals are zero-mean complex non-
circular, temporally and possibly spatially correlated with con-
jugated and unconjugated covariance matrices and

, respectively, as follows:

(9)

(10)

where

(11)

In this paper, we consider the same assumptions A1), A2), and
A3) recently introduced in [13] as follows.
A1) It is assumed that and that for any set of

distinct DOA parameters , the vectors
are linearly independent. Further-

more, is assumed to be differentiable with respect
to and the true parameter vector is an inner point
of the set of parameter vectors of interest.

A2) The transmitted signals are as-
sumed to be independent from the noise components

.
A3) Define the first cross-covariance matrix of the trans-

mitted signals at time lag as follows:

(12)

and introduce the matrix of stacked first cross-covari-
ances as follows:

(13)

The signals are assumed to exhibit a ”sufficient” tem-
poral correlation so that no column of is identically
zero and so that the rank of , denoted , satisfies

.

III. EXTENSION OF THE IV-SSF METHOD TO

NONCIRCULAR SIGNALS

In the case of an unknown noise spatial covariance matrix,
the IV-SSF method for DOA estimation in the case of circular
sources has been first introduced in [13]. This method is based
on an instrumental variable vector containing only the pre-
vious data samples of the received signal as follows:

where is an integer, larger than 1 determining the degree
of complexity and hence the performance of the method. More
recently, the authors of [16] proposed a variation of this method
by defining a two-sided instrumental variable vector containing
data samples collected before and after the current sample
as follows:

(14)
where is an even integer larger than 2. This new version was
proved to outperform the previous one in terms of lower bias and
error variance. In this paper, we propose an enhanced version
of the classical instrumental variable method that generalizes
its new application to noncircular sources based on its recent
variation extended in [16] to time correlated sources.

A. Extended IV-SSF Method

Let us first consider the two-sided instrumental variables
vector defined in (14). Next, in order to take advantage of
the signal noncircularity, we define the extended two-sided
instrumental variables vector as follows:

(15)

Then, we introduce the first cross-covariancematrix of the trans-
mitted signals at time lag as defined in (12) and the second
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cross-covariance matrix of the transmitted signals at time lag
as follows:

(16)

The extended cross-covariance of the received data and the cor-
responding instrumental variable is

(17)

where is the extended received vector defined as

(18)

Then, we obtain the following cross-covariance matrix

(19)

where

(20)

(21)

Some algebraic manipulations yield the following expressions
for and :

(22)

(23)

where is defined in (13) and and are defined as fol-
lows:

(24)

(25)

with being defined in (16). Consequently, the ex-
tended cross-covariance matrix of the received data and the cor-
responding instrumental variable can be easily shown to be

(26)

where

We also define the extended instrumental variable covariance
matrix as follows:

(27)

where

(28)

(29)

To determine the sample estimates of and denoted as

and , respectively, we consider the two following conditions:

Then, we have

Consequently, the sample estimates and are defined as fol-
lows:

(30)

(31)

Consider here the Assumption A3). We denote the rank of
. Then, we have . Moreover, we consider the

assumption . The matrix has a full rank. Therefore, the
matrices and have full ranks. Consequently, we have

. The singular value decomposition
(SVD) of the matrix yields the following result:

(32)

where

(33)

Then, . From (26) and (32), we
show that the range space of is contained in the one of .
Consequently, there exists a full rank matrix such
that

(34)

In the same way, we consider the sample estimates and
already defined in (30) and (31), respectively. The SVD of the

matrix yields the following result:

(35)

where the matrix contains the largest singular values.
Then, we have, similarly to the result obtained in [13], the fol-
lowing separable least-squares problem:

(36)
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where

(37)

We minimize the term with respect

to and use some properties of the derivative of the trace. We
hence obtain the following expression for :

(38)

Inserting (38) in (36) and some algebraic manipulations yield
the following criterion function:

(39)

where

(40)

(41)

This criterion is statistically equivalent to the following one

(42)

where

(43)

represents an estimate of . Then, the es-
timates of the DOAs using our extended version of the IV-SSF
method are obtained in different steps. First, we choose an even

integer , and we compute the sample estimates and
defined in (30) and (31), respectively. Second, we perform the

SVD of the matrix , and we extract the corresponding

dominant right singular vectors in the matrix and the associ-

ated singular values in the matrix .We later extract as one

of the diagonal blocks of the block matrix

and as one of the diagonal blocks of the block matrix

and we obtain as follows:

(44)

Finally, the DOAs are estimated as the locations of the smallest
minima of the function

where

where is the steering matrix

Note here that comparing the extended two-sided IV-SSF al-
gorithm with the classical two-sided IV-SSF one developed in
[16], we see clearly that the extension of the circular method to
noncircular signals results in a more computationally complex
method.

B. Statistical Properties

Similarly to [13], the minimizer of (39) converges with prob-
ability one (w.p.1) to the true parameter vector .Moreover, we
denote the difference between the estimated param-
eter vector and the true parameter vector. Then, from standard
statistical theory, the asymptotic distribution of is Gaussian
with zero mean and covariance matrix

(45)

where

(46)

(47)

with and denoting the gradient with respect to of
previously defined in (40) and the Hessian matrix, respec-

tively. After some algebraic manipulations (see appendices A
and B), we obtain the following expressions for and :

(48)

(49)

Consequently, the asymptotic covariance matrix of is given by

(50)

We note here that in the case of circular sources, we have
and . Therefore, becomes

Consequently, (50) reduces to
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derived in [16] as a special case of our general method.
Now, we denote

Applying [1, Lemma A.4] to and , we obtain .
This inequality applies to the transpose of these matrices. Then,
we have . Moreover, we have . There-
fore, thanks to standard results of linear algebra (see [17, App.
A, result R.19]), we have . This inequality
is extended to the associated real symmetric matrices. Then, we
have . Therefore, by inver-
sion, we obtain .
Consequently, we obtain the following result:

(51)

IV. NEW CRB FOR NONCIRCULAR GAUSSIAN DISTRIBUTED
AND TEMPORALLY AND SPATIALLY CORRELATED SIGNALS

In this section, we assume that the transmitted signals
are zero-mean Gaussian distributed. Then, we

introduce the following extended vector :

(52)

Then, we have

(53)

where

(54)

where and are previously defined in (3) and (4), respec-
tively.
To derive the CRB of the considered model, we assume that

the noise is circular Gaussian distributed and the noise covari-
ance matrix is known (possibly up to a multiplicative scalar).
Then, we define the parameter vector as follows:

where , introduced in Section II, represents the directions of
the narrowband sources and is defined by

We also define the vector as

Moreover, we introduce the following extended vector :

Then, we have

where

with

and can be written as

where is defined as follows:

Therefore, is rewritten as

where

Similarly to [18], the th entry of the Fisher information matrix
(FIM) corresponding to is given by

Following the same steps of [19], we obtain the following ex-
pression of :

where

Some algebraic manipulations (see Appendix C) yield the fol-
lowing expression of for temporally correlated signals
generated from noncircular sources

(55)
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where is defined in (11). We note here that in the case of
circular sources, we have and .
Therefore, becomes

Consequently, (55) reduces to

(56)

derived in [13].
Now, we denote

Applying [1, Lemma A.4] to and , we obtain .
This inequality applies to the transpose of these matrices. Then,
we have . Moreover, we have . There-
fore, thanks to standard results of linear algebra (see [17, App.
A, result R.19]), we have . This inequality
is extended to the associated real symmetric matrices. Then, we
have . Therefore, by inver-
sion, we obtain .
Consequently, we obtain the following result:

(57)

V. GRAPHICAL REPRESENTATIONS

In this section, we will present some figures to illustrate
the application of the new extended version of the two-sided
IV-SSF method and compare it to the two-sided IV-SSF
method derived in [16] for circular sources (referred to as
circular method) and to the MODE method derived in [1].
Throughout this section, we consider a zero-mean, Gaussian
distributed and temporally white noise. We also consider a
uniform linear array of four sensors separated by a half-wave-
length. The number of instrumental variables is .
Moreover, 10 000 independent simulation runs have been
performed to obtain the estimated DOAs. The signal temporal
correlation is simulated via filtering the complex noncircular
Gaussian signals with an FIR filter with relative tap weights

(58)

which is then normalized to give a unit-energy filter. The DOAs
estimate are calculated using a coarse search with finely grid
size 0.001.

A. Case of Spatially Correlated Noise

In the first subsection, we consider the case of spatially cor-
related noise to compare our new extended two-sided IV-SSF
method to the classical two-sided IV-SSF one. The noise is then
assumed to have th element as follows:

Note here that the MODEmethod is not included in this subsec-
tion because it is applicable only for both temporally and spa-
tially uncorrelated noise. Therefore, the MODE algorithm will
be included in the next subsection where we will consider the
case of spatially uncorrelated noise.
We first consider two spatially uncorrelated equipowered

complex noncircular Gaussian signals with identical noncir-
cularity rate and noncircularity phase . The two
uncorrelated sources are located at and
radians with respect to the normal of the array broadside.
To compare the performance of our extended two-sided

IV-SSF method to the corresponding CRB, we should first
evaluate the bias of the estimates of of our new method. In
Fig. 1, the bias of the estimates of of our extended two-sided
IV-SSF method is presented versus the SNR for
snapshots at and compared to that of the circular version.
We see from Fig. 1 that the bias becomes negligible, especially
at high SNR values for both versions. Therefore, it is still
meaningful to compare the performance of the extended and
the circular methods to the square root of the and

, respectively. To represent these CRBs, we define the
first and the second (unconjugated) signal space-time covari-
ance matrices as follows:

where and are the covariance matrices of the two noncir-
cular complex Gaussian signals. Moreover, represents the
temporal correlation matrix computed using (58). In Fig. 2, the
standard deviation of the estimates of of our extended two-
sided IV-SSF method is presented versus the SNR for
snapshots at and compared to that of the circular ver-
sion and to the corresponding CRB. We see from this figure that
the extended two-sided IV-SSF outperforms the circular ver-
sion in terms of lower standard deviation. This confirms the in-
equality given in (51). Moreover, the improvement made by our
extended two-sided IV-SSF is more pronounced at low SNR
values. We also verify that

Otherwise, we confirm the inequality given in (57). Finally, we
see that
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Fig. 1. Bias of the extended and circular two-sided IV-SSF methods versus
SNR for and .

Fig. 2. Comparison of the standard deviation of the extended and circular two-
sided IV-SSF methods to the corresponding CRBs versus SNR for
and .

Now, Fig. 3 represents the ratio as a
function of the noncircularity rate . We notice from Fig. 3
that the improvement made by the extended two-sided IV-SSF
method increases as the noncircularity rate increases. More-
over, this improvement is more prominent at low SNR values.
Next, we assume that the two sources are strongly spatially
correlated with correlation coefficient . In Fig. 4,
the standard deviation and the CRB of the estimates of of
our extended two-sided IV-SSF method is presented versus the
SNR for snapshots at and compared to that of
the circular version. We see from this figure that the extended
two-sided IV-SSF outperforms slightly the circular version in
terms of standard deviation for spatially correlated sources.
Then, we conclude that the improvement made by the extended
two-sided IV-SSF method with regard to the circular method is
more prominent for the spatially uncorrelated sources case.

Fig. 3. as a function of the noncircularity rate ,
for and .

Fig. 4. Standard deviation of the extended and circular two-sided IV-SSF
methods and the corresponding CRBs versus SNR for strongly spatially
correlated signals, and .

B. Case of Spatially Uncorrelated Noise

To compare the extended and the circular two-sided IV-SSF
methods to the MODE method, we suppose that the noise is
spatially uncorrelated. As done in the first subsection, we first
consider the scenario of two uncorrelated sources located at

and radians with respect to the normal
of the array broadside. In Fig. 5, the standard deviation of the
estimates of of our extended two-sided IV-SSF method is
presented versus the SNR for snapshots at
and compared to that of the circular version and the MODE
method.We see from Fig. 5 that theMODEmethod outperforms
the classical two-sided IV-SSF method. However, the extended
two-sided IV-SSF method is statistically more efficient than the
MODE estimator for low SNR values. Next, in Fig. 6, we as-
sume that the signals are spatially correlated with correlation
coefficients 0.5. It can be seen from Fig. 6 that our extended
method also outperforms the MODE estimator for partly corre-
lated sources. Now, in Fig. 7, we assume that the two sources
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Fig. 5. Comparison of the standard deviation of the extended and circular two-
sided IV-SSF methods to that of the MODE method versus SNR for spatially
uncorrelated signals, and .

Fig. 6. Standard deviation of the extended and circular two-sided IV-SSF
methods versus SNR for partly correlated signals, and .

are fully correlated (fully coherent). It can be clearly seen from
Fig. 7 that for fully coherent sources the MODE method fails
completely to estimate the DOA while the extended and the cir-
cular two-sided IV-SSF methods are able to estimate the DOA
with almost equivalent performance. Finally, we consider in
Fig. 8 three partly coherent equipowered complex noncircular
Gaussian sources (the two first sources are spatially fully corre-
lated but spatially uncorrelated with the last source) with iden-
tical noncircularity rate and noncircularity phase . The
three sources are located at , , and
radians with respect to the normal of the array broadside. It
can be also seen from Fig. 8 that only the extended and the
circular two-sided IV-SSF methods accommodate the case of
partly coherent signals. We note here that although the extended
two-sided IV-SSF method is computationally more demanding
than the classical two-sided IV-SSF and the MODE methods, it
is statistically more efficient especially in the case of partly and
fully coherent signals.

Fig. 7. Standard deviation of the extended and circular two-sided IV-SSF
methods versus SNR for fully coherent signals, and .

Fig. 8. Standard deviation of the extended and circular two-sided IV-SSF
methods versus SNR for partly coherent signals, and .

Now, we will see that the CRB obtained assuming both non-
circular sources and temporally correlated signals is lower than
the CRBs derived considering only one of these two assump-
tions. We first consider two equipowered sources with identical
noncircularity rate and noncircularity phases and

. These sources, located at angles and
radians with respect to the normal of array broadside, impinge
on a uniform linear array of sensors separated by a half-wave-
length for which

where are the DOAs relative to the normal of the
array broadside. The number of the array sensors is 4 and the

dB. We suppose that the signals are spatially un-
correlated and we consider the first and the second covariance
matrices and the temporal correlation matrices as follows:
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Fig. 9. An example of the CRBs versus the number of snapshots in loga-
rithmic scale at and .

We also consider the noise covariance matrix as follows:

Fig. 9 shows , ,
and the deterministic CRB as a function of the
number of snapshots . From Fig. 9 we verify that

(59)

(60)

We also verify that the CRB obtained assuming both noncir-
cular sources and temporally correlated signals is lower than the
CRBs derived considering only one of these two assumptions.
This illustrates the potential gain that both the noncircularity and
the temporal correlation offer when considered together. More-
over, we see from Fig. 9 that the difference between these CRBs
increases with the number of snapshots . This is hardly sur-
prising since themore samples we receive, themore information
we can retrieve about the temporal correlation and the noncircu-
larity of the signals. In fact, by increasing the number of snap-
shots , there is more room for both the noncircularity of the
signals and the temporal correlation to improve the DOA esti-
mation performance. Now, we consider in the same figure three
equipowered sources with identical noncircularity rate
and noncircularity phases , , and . These
sources are located at angles , and
radians. We confirm the inequalities (59) and (60). Moreover,
we prove that the difference between and
increases with the number of sources while the difference
between and decreases as increases.
This can be explained by the fact that when increases, there
is more room for the noncircularity of the signals to improve the
DOA estimation performance than the temporal correlation.
In the following graphical representations, we reconsider the

case of two equipowered sources. In Fig. 10, the CRBs are de-
picted versus the SNR. It can be seen from Fig. 10 that as the
SNR increases, the CRBs merge together and decrease linearly.
In fact, at high SNR values, the useful signals are not too much

Fig. 10. An example of the CRBs versus the SNR in logarithmic scale for two
equipowered sources and number of snapshots .

Fig. 11. as a function of the noncircu-

larity rate for different values of DOA separation , for , ,
and .

corrupted by noise. Then, in this SNR region, the signals are
very informative about the DOA estimates. This scenario is
therefore equivalent to the deterministic case. This illustrates
the fact that at high SNR values, all the CRBs coincide. More-
over, at low SNR values, we notice that the temporal correlation
is more informative about the unknown DOA parameters than
the noncircularity. In fact, at low SNR values, the useful signals
are too much corrupted by noise. Therefore, they are not very
informative about the unknown DOA and more particularly, the
noncircularity rate does not bring much more information about
the DOA estimates.
In Figs. 11 and 12, we show the dependence of the

on the noncircularity rate , the circularity phase separation
and the DOA separation .

In fact, Fig. 11 represents the ratio
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Fig. 12. as a function of the noncircularity phase for different
values of DOA separation for , and .

as a function of the noncircularity rate for different values of
. It can be seen from this figure that decreases

as the noncircularity rate increases and this decrease is more
prominent at low DOA separations. Moreover, from Fig. 12,
we see that the is sensitive to the circularity phase
separation at low DOA separations.

VI. CONCLUSION

In this paper, we developed for the first time a method for es-
timating the DOA parameters assuming noncircular and tempo-
rally and spatially correlated signals. The new proposed method
extends the well-known two-sided IV-SSF approach to non-
circular and time-correlated signals. We proved that this new
method outperforms the classical two-sided IV-SSF technique
in terms of lower bias and error variance. Moreover, the new
method is statistically more efficient than theMODEmethod es-
pecially in the case of partly and fully correlated signals where
only the extended and the classical two-sided IV-SSF methods
are applicable. We also derived an explicit expression for the
stochastic Cramér–Rao bound (CRB) of the DOA estimates for
temporally and spatially correlated signals generated from non-
circular sources. This CRB was compared to those of circular
temporally correlated and noncircular independent and identi-
cally distributed signals. We showed the potential gain that both
noncircularity and temporal correlation provide when consid-
ered together. We also proved that the difference between the
three CRBs increases with the number of snapshots. On the
other hand, as the SNR increases, the CRBs merge together and
decrease linearly. Furthermore, at low SNR values we showed
that the temporal correlation is more informative about the un-
known DOA parameters than the noncircularity. Finally, we
proved that the CRB derived assuming noncircular and tempo-
rally-correlated signals decreases as the noncircularity rate in-
creases. Furthermore, this decrease is more prominent at low

DOA separations where the CRB is sensitive to the noncircu-
larity phase separation.

APPENDIX A
DERIVATION OF

We denote . Then, we have

We also introduce the following notations:

Starting from (47) and after tedious algebraic manipulations, we
obtain the following expression for the th entry of the limiting
Hessian matrix:

(61)
where

Otherwise, we have . Then, we obtain

. Consequently, (61)
can be written as

where

Moreover, we have

Therefore, can be written as

Consequently, we obtain the following expression of :
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We also have . Then, from (26) and

using the fact that , we obtain

Now, we consider that

where and are the columns of
and , respectively. Otherwise, we have

Therefore, we obtain the following expression of :

The last expression is equivalent to

Consequently, we obtain the expression of as given by (48).

APPENDIX B
DERIVATION OF

We denote by the derivative of with respect to .
Similarly to [11], has the following expression:

where

with

After some algebraic manipulations, can be obtained as

(62)

where and are the columns of the block matrices

and

respectively. We also introduce as the column of the ma-
trix . Then, (62) becomes

(63)

Moreover, we have for two arbitrary scalars and ,
. Applying this relation

to (63) yields

(64)

From [12], we have . In the
same way, we derive as follows:

Moreover, we obtain the expressions of and
, respectively, as

On the other hand, to derive , we con-
sider the fact that is scalar. Therefore, we have

(65)
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Since the noise is circularly symmetric, then we conclude
easily from (65) that

In the same way, we prove that

Therefore, we obtain, from (64), the following expression of
:

This expression is equivalent to

(66)

Now, we have

(67)

We also have

(68)

Consequently, from (47), (66)–(68), we conclude that

Using (22) and (23) and some algebraic manipulations yield the
expression of as given by (49).

APPENDIX C
PROOF OF (55)

We have

This expression is equivalent to

(69)

Observing that , we obtain

Therefore, can be written as

where represents the block on the diagonal of

the matrix . Consequently,

we obtain the following expression of :

We use the following identity:

where

where and are previously defined in (9) and (10), respec-
tively. Then, after some algebraic manipulations, we obtain the
expression of as given by (55).
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