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A new low-complexity angular spread estimator
in the presence of line-of-sight with angular
distribution selection
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Abstract

This article treats the problem of angular spread (AS) estimation at a base station of a macro-cellular system when
a line-of-sight (LOS) is potentially present. The new low-complexity AS estimator first estimates the LOS component
with a moment-based K-factor estimator. Then, it uses a look-up table (LUT) approach to estimate the mean angle
of arrival (AoA) and AS. Provided that the antenna geometry allows it, the new algorithm can also benefit from a
new procedure that selects the angular distribution of the received signal from a set of possible candidates. For
this purpose, a nonlinear antenna configuration is required. When the angular distribution is known, any antenna
structure could be used a priori; hence, we opt in this case for the simple uniform linear array (ULA). We also
compare the new estimator with other low-complexity estimators, first with Spread Root-MUSIC, after we extend its
applicability to nonlinear antenna array structures, then, with a recently proposed two-stage algorithm. The new AS
estimator is shown, via simulations, to exhibit lower estimation error for the mean AoA and AS estimation.

Keywords: angular spread, mean angle of arrival, angular distribution selection, look-up table, extended spread
root-MUSIC

I. Introduction
Smart antennas will play a major role in future wireless
communications. There exist several smart antenna
techniques such as beamforming, antenna diversity, and
spatial multiplexing. Future smart antennas will most
likely switch from one technique to another according
to the channel parameters [1]. One of the most impor-
tant parameters is the multipath angular spread (AS).
For instance, the beamforming technique is to be con-
sidered when the AS is relatively small, while antenna
diversity is more appropriate in other cases. Moreover,
mean angle of arrival (AoA) and AS estimates are
required to locate the mobile station [2].
In the last two decades, several algorithms have been

developed for the direction of arrival and AS estimation.
Based on the concept of generalization of the signal and
noise subspaces, 3 multiple signal classification (MUSIC)
is the most known mean AoA estimator. For AS estima-
tion, many derivatives have been proposed. DSPE [3]

and DISPARE [4] are two generalizations of the MUSIC
algorithm for distributed sources. They involve maxi-
mizing cost functions that depend on the noise eigen-
vectors. The mentioned estimators are computationally
heavy because of the required multi-dimensional sys-
tems resolution. A low-complexity subspace-based
method, Spread Root-MUSIC, is presented in [5] where
a rank-two model is fitted at each source, using the
standard point source direction of arrival algorithm
Root-MUSIC. This rank-two model depends indirectly
on the parameters that can be estimated using a simple
look-up table (LUT) procedure. In [6], a generalized
Weighted Subspace Fitting algorithm is proposed. The
latter, in contrast to DSPE and DISPARE, gives consis-
tent estimates for a general class of full-rank data mod-
els. In [7], a subspace-based algorithm has been
formulated that is applicable to the case of incoherently
distributed multiple sources. In this algorithm, the total
least squares (TLS) estimation of signal parameters via
rotational invariance techniques (TLS-ESPRIT) approach
is employed to estimate the source mean AoA. Then,
the AS is estimated using the LS covariance matrix
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fitting. However, the performance of this algorithm
shows unsatisfactory results under some practical condi-
tions [8]. In [9], a maximum likelihood (ML) algorithm
has been proposed for the localization of Gaussian dis-
tributed sources. The likelihood function is jointly maxi-
mized for all parameters of the Gaussian model. It
requires the resolution of a four-dimensional (4D) non-
linear optimization problem. In [9] and [10], LS algo-
rithms are considered to reduce the dimension of the
system. The simplified ML algorithm belongs to the
covariance matching estimation techniques (COMET)
[11]. In [12], a low-complexity algorithm based on the
concept of contrast of eigenvalues (COE) has been
developed to estimate AS and mean AoA. The authors
establish a bijective relationship between the COE of the
covariance matrix: the signal-to-noise ratio (SNR) value
and the value of the AS. Hence, for each SNR, a LUT is
built. The mean AoA is derived using the estimated AS
and the number of dominant eigenvalues of the source
covariance matrix.
Many of these estimators make assumptions on the

shape of the signal distribution, assume narrow spatial
spreads, and eigen-decompose the full-rank covariance
matrix into a pseudo-signal subspace and a pseudo-
noise subspace. Most often they result into a multi-
dimensional optimization problem, implying high com-
putational loads.
To overcome this limitation, a low-complexity estima-

tor [5] has been developed. Spread Root-MUSIC con-
sists in a 2D search using the Root-MUSIC algorithm.
Another mean AoA and AS estimator based on the
same approach as Spread Root-MUSIC was developed
in [13]. Indeed, thanks to Taylor series expansions, the
estimation of AoA and AS is transformed into a locali-
zation of two closely, equi-powered and uncorrelated
rays. However, like other estimators, Spread Root-
MUSIC considers scenarios without line-of-sight (LOS).
A new low-complexity estimator, based on a LUT
approach was therefore developed [14]. First, it esti-
mates the LOS component of the Rician correlation
coefficient and deduces the Non-LOS (NLOS) compo-
nent. Then, it extracts the desired parameters from
LUTs computed off-line. The new estimator, like most
estimators, assumes the a priori knowledge of the angu-
lar distribution of the received signal. In this article, we
enable this method to select the angular distribution
type from a set of possible candidates. For this purpose,
a nonlinear array structure is required. We also compare
the new technique to other low-complexity AS estima-
tors. The first one is derived by extending the Spread
Root-MUSIC algorithm [5] to the considered antenna
configuration. The second one is the two-stage approach
developed in [13].

The article is organized as follows. In Section 2, we
def ne the used notations and describe the data model.
In Section 3, we describe the new method for selecting
the angular distribution type. Section 4 details the two
low-complexity AS estimation methods that will be used
to benchmark our newly proposed approach, that is the
Spread Root-MUSIC algorithm [5], modified to handle a
nonlinear array structure, and the two-stage approach
presented in [13]. In Section 5, simulation 5 results are
presented and discussed.

II. Notations and data model
In this article, non-bold letters denote scalars. Lowercase
bold letters represent vectors. Uppercase bold letters
represent matrices. The row-column notation is used
for the subscripts of matrix elements. For example, R is
a matrix and Rik is the element of that matrix on the ith
row and the kth column. The sign

(∧
.

)
denotes an esti-

mate. Superscripts between parenthesis are used to dif-
ferentiate estimates at different stages of the estimation
process.
In this article, we consider the single input-multiple

output (SIMO) model for the uplink (mobile to base
station) transmission. The mobile has a single isotropic
antenna surrounded by scatterers. We also assume that
the base station is located high enough and far from the
mobile to ensure 2D AoAs and to avoid local scattering
shadowing. As one example, these conditions are
observed in the current GSM and 3G networks where
the base station is usually placed on the building roofs.
As in [14,5,15,7], we suppose that the base station
antenna-elements are isotropic and that the same mean
AoA and AS are seen at all antenna-elements of the
base station.
We consider the estimation of the AS and mean AoA

from estimates over time of the time-varying channel
coefficients associated with a single time-differentiable
path at the multiple elements of an antenna array. Our
model can therefore be associated with a narrowband
channel, or with a given time-differentiable path of a
wideband channel. Of course, in a wideband channel
scenario, the potential presence of a LOS would only be
considered for the first time-differentiable path, and
knowledge of a zero K-factor could be assumed for the
rest of the paths. We consider the following expression
for the Rician channel coefficient [16]:

x̄i(t) =

√
�

K + 1
ai(t) +

√
K�

K + 1
exp

(
j2πFd cos(γd)t + j2π

d0i

λ
sin(θ0i)

)
, (1)

where ai is associated to the channel coefficients of
the diffuse component (Rayleigh channel) for antenna-
element i, Ω is the power of the received signal, K is the
Rician factor, Fd and gd, are respectively, the Doppler
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frequency and Doppler angle. l is the wavelength and
d0i is the distance between the antenna reference and
the antenna-element i, and θ0i is the AoA of the LOS,
as shown in Figure 1a. Indeed, in our model, we con-
sider uniform clusters, so that the mean AoA corre-
sponds to the AoA of the LOS. Let xi be

xi = [xi(0) · · · xi(N − 1)], (2)

where xi(n) = x̄i(nTs), and Ts is the sampling interval.
In this study, we consider an arbitrary array geometry.
That is why the array model described for instance in
[3] and [11] is not adopted herea. Instead, we use the
correlation coefficient of the Rician channel coefficients
received at the antenna branch (i, k) given by

RTi,k =
E[xixH

k ]√
E[|xi|2]E[|xk|2]

, (3)

where (.)H is the transconjugate operator. Hence, the
Rician correlation matrix associated with the
coefficients,RTik, would be

RT =
1

K + 1
R︸︷︷︸

Diffuse component

+
K

K + 1
exp(j2πM)︸ ︷︷ ︸

LOS component

,
(4)

where M is a square matrix defined by

mik = doi
λ

sin(θ0i) − d0k
λ

sin(θ0k). The expression for the
correlation coefficient of the diffuse component (Ray-
leigh channel) is [17]

Ri,k =
∫ θik+π

θik−π

f (θ , θik, σθik) exp
(

−j2πdik
fc
c

sin θ

)
dθ , (5)

where

• θik is the mean AoA;
• σθik is the AS or the standard deviation of the
angular distribution;
• fc is the carrier frequency;
• c is the speed of light;
• dik is the distance between the antenna-element i
and the antenna-element k; and

(a) Two antenna elements of an antenna array at the base station.
(b) The V-array: an antenna array

with 3 antenna elements at the base station.

(c) An antenna array with 3 antenna elements
at the base station. (d) Butter y con guration.

Figure 1 Array structures considered by the new AS estimator. a Two antenna-elements of an antenna array at the base station. b The V-
array: an antenna array with three antenna-elements at the base station. c An antenna array with three antenna-element. d Butterfly
configuration.
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• the function f (θ , θik, σθik) is the power density
function with respect to the azimuth AoA θ.

In this article, we consider only the Gaussian and
Laplacian angular distributions, the most popular ones
in the literature. However, our approach is still valid
with other angular distributions.
If we consider the diffuse component and we assume

a small AS value (sθ < ssmall), then the correlation coef-
ficient Ri, k would be [14,18]

• Gaussian distribution:

Ri,k ≈ exp

(
−2π2σ 2

θik

d2
ik

λ2
cos2θik

)
exp

(
−j2π

dik

λ
sin θik

)
. (6)

• Laplacian distribution:

Ri,k ≈ 1

1 + 2π2σ 2
θik

d2
ik

λ2 cos2θik

exp
(

−j2π
dik

λ
sin θik

)
. (7)

In this study, we are interested in estimating the
mean AoA and the AS. In other terms, we determine
the mean and the standard deviation of the angular
ditribution of the received signal. The proposed algo-
rithm is valid for non linear antenna arrays. Hence,
each antenna branch represents different mean AoA
and AS estimation values. That is why the parameters
in question are function of the indexes i and k which
refer to the associated antenna pair (i, k), as shown in
Figure 2. As noticed, the two pairs (i, k) and (k, l)
represent different mean AoA and AS values, (θik, σθik)
and (θkl, σθkl ). Each couple is estimated using the cor-
relation coefficients, Ri, k and Rk, l, respectively. This
model formulation with global parameters can be
advantageous in a parameter estimation framework,
when evaluating the Cramér Rao bound (CRB), for
instance. In the following, we develop a new mean
AoA and an AS estimator based on the correlation
coefficient defined in (3).

III. New estimator with angular distribution
selection
The idea is to find a simple relationship between the
mean AoA and AS, and the Rician correlation coeffi-
cient. Since the expression of the Rician correlation
coefficient RTik is complex, our approach is to estimate
the LOS component first. Then, the diffused compo-
nent Rik is deduced, and the AS is extracted from
LUTs. For each angular distribution type, a LUT is
built off-line using the expression (5) for the NLOS
component of the correlation coefficient. Indeed, for
all possible values of the mean AoA and AS, the corre-
lation coefficient of the diffuse component is computed
using a numerical method (5). In our simulations, we
varied the mean AoA from 0 to 90 degrees with a step
of 0.1 degree. The AS is varied from 0 to 100 degrees
with a step of 0.025 for small ASs (sθ <6 degrees) and
a step of 0.1 degree for higher ones. One can argue
that the building of the LUT using the considered
steps requires a lot of time and an accurate resolution
of the integral in (5). However, the LUT is computed
once for all off-line and would not affect the real-
world execution time of the new algorithm. Besides
larger steps would affect the accuracy of the new esti-
mator. The LUT expresses the desired parameterb as a
function of the magnitude and phase of the diffuse
component Rik. As defined in (4), the LOS component
depends only on the Rician K-factor and the AoA of
the LOS. In this study, we consider uniform clusters.
Hence, the AoA of the LOS coincides with the mean
AoA. If we assume small AS values and consider the
diffuse component of the correlation coefficient (6)
associated to the Gaussian distribution, then the rela-
tionship in (4) becomes

RTi,k =
1

K + 1
exp

(
−2π2σ 2

θik

d2
ik

λ2
cos2(θik)

)
exp

(
−j2π

dik

λ
sin(θik)

)

+
K

K + 1
exp

(
j2π(

d0i

λ
sin(θ0i) − d0k

λ
sin(θ0k))

)
.

(8)

Considering only antenna-element pairs including the
antenna-element reference “0″, both terms of the

Figure 2 Scenario of mean AoA and AS estimation for non linear array.
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correlation coefficient RT0,k admit the same argument:

RT0,k =

(
1

K + 1
exp

(
−2π2σ 2

θ0k

d2
0k

λ2
cos2(θ0k)

)
+

K
K + 1

)
exp

(
−j2π

d0k

λ
sin(θ0k)

)
. (9)

Hence, the mean AoA is estimated by using the phase
of the correlation coefficient associated to the antenna
pairs (0, k). By analogy, the same expression is obtained
for the Laplacian distribution:

θ̂0k = arcsin

(
−� R̂T0,k

2π d0k
λ

)
, (10)

where ∠ symbolizes the phase operator and the sub-
script “0″ refers to the antenna-element reference and
the distance separating the antenna-element pair (0, k)
is such that d0k ≈ λ

2. As one can notice, we use only
the antenna-elements pair (0, k) to estimate the AoA
LOS. Otherwise, the correlation coefficient of the dif-
fuse component, Ri, k, and the correlation coefficient of
the LOS component would admit different arguments
(see (8)). The final mean AoA estimate, θ̂m, is the
mean of θ̂0k over all antenna-elements pairs {(0, k)}
spaced by λ

2. Indeed, the antenna pairs spaced by d0k
≫ l give high estimation error since the correlation
coefficient does not contain enough information, i.e.,
� RT0,k is close to zero. It is understood that (10) is valid
for antenna configurations having at least two
antenna-element spaced by λ

2. In most references,

ULAs spaced by λ
2 are considered. Hence, our condi-

tion enlarges the set of possible antenna arrays that
can be used. One can argue that 10 this solution does
not take into account the left-right ambiguity. Indeed
for linear arrays (antenna-element pairs in our case), it
is not obvious to determine whether the incident signal
is coming from the left side or the right one of the
array [19,20]. To avoid this ambiguity, we divide the
cell into three or more sectors and the mean AoA esti-
mation is achieved in each sector. In the remainder of
this article, (10) is used for antenna-element pairs for
which the left-right ambiguity does not arise. In other
words, we imply that the arrays are constructed in a
way that prevents this ambiguity by considering the
cell division approach or other methods as in [19].
Indeed, this condition limits the subset of antenna
structures that can be used for the mean AoA estima-
tion, but still allows some flexibility in the design of
antenna arrays. Without loss of generality, we consider
the antenna configurations illustrated in Figure 1. All
structures are supposed to be constructed in a way
that prevents the left-right ambiguity. For these sym-
metrical structures, after a simple mathematical manip-
ulationc, it is observed that (10) is also true for

correlation coefficients R̂Ti,k
associated with antenna-

element pairs (i, k) spaced by dik ≈ λ
2, i.e., the antenna

pairs (0,1) and (1,2) of all structures presented in Fig-
ure 1. The angles must have the same reference which
in this case the normal to the antenna structure, and
the clockwise sense is the positive one. The AS estima-
tion is not affected by the choice of the angles mea-
surement reference. Indeed, it measures the angular
distribution spreading around the mean AoA. One can
argue that relation (10) is only valid for small AS
values assumption. However, we empirically find that
the mean AoA estimate using (10) is still accurate for
high AS values.
For the Rician factor, many K-factor estimators have

been developed. In [21], the Kolmogorov-Smirnov statis-
tic is used first to test the envelope of the fading signal
for Rician statistics and then to estimate the K-factor. In
[22], the K-factor estimator is based on statistics of the
instantaneous frequency (IF) of the received signal at
the mobile station. In [23], ML estimators that only use
samples of both the fading envelope and the fading
phase are derived. In [24] and [25], a general class of
moment-based estimators which uses the signal envel-
ope is proposed. A K-factor estimator that relies on the
in-phase and quadrature phase components of the
received signal is also introduced in [24].
We choose to consider the closed-form estimator pre-

sented in [24], which is easily implemented and quite
accurate. This estimator uses the second-order and
fourth-order moments (μ2 and μ4) of the received signal
to estimate the K-factor (shown here for the estimate on
the ith antenna):

Ki =
−2μ2

i;2 + μi;4 − μi;2

√
2μ2

i;2 − μi;4

μ2
i;2 − μi;4

. (11)

The final K-factor estimate is the mean of K̂i over all
antenna-elements i.
In [26], the expressions for the second-order and

fourth-order moments at antenna-element i are:

μi;2 = � + N0 and μi;4 = ki;a� + 4�N0 + ki;ωN2
0, (12)

where Ω and N0 are, respectively, the signal and the
noise powers; and ki ;a and ki;ω are, respectively, the
Rician and noise kurtosis. In our article, we consider an
additive white Gaussian noise (AWGN), i.e., ki;ω = 2,
[26]. As in [14], we consider an estimated SN̂R to
reduce the noise bias. The expressions of the second-
order and fourth-order moments become

μ̂i;2 =
1
N

N−1∑
n=0

|xi(n)|2
(

SN̂R

SN̂R + 1

)
and μ̂i;4 =

1
N

N−1∑
n=0

|xi(n)|4 k̂i;aSN̂R2

k̂i;aSN̂R2 + 4SN̂R + 2
.(13)
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In the literature, the value of ki;a is computed by using
the Rician K-factor which is unknown at this stage [27].
In our procedure, the Rician kurtosis k̂i;a is obtained by

analyzing the term
∑N−1

n=0 |xi(n)|4
(
∑N−1

n=0 |xi(n)|2)
2 and is computed as fol-

lows:

k̂i;a =

(SN̂R + 1)
2

∑N−1
n=0 |xi(n)|4

(
∑N−1

n=0 |xi(n)|2)
2 − 4SN̂R − 2

SN̂R2
.

(14)

Several SNR estimators can be considered, such as in
[28,29] or [30]. In this article, we do not consider a spe-
cific SNR estimator, to avoid restricting our algorithm
to a particular SNR estimator results. Instead, we con-
sider an estimated SNR expressed in dB, (SN̂RdB). The
latter is characterized by an estimation error modeled as
a zero-mean normally distributed random variable with
variance σ 2

ε , i.e., SN̂RdB = SNRdB + ε, where
ε ∼ N (0, σ 2

ε ). As shown in [28], the studied estimators
offer low estimation errors, especially for long observa-
tion windows. For the SNR range considered in our
simulations, the variance of the estimation error is
around 10-1. Hence, we choose extreme cases where
σ 2

ε = 0 or 1 (i.e., optimistic and pessimistic bounds).
With AWGN bias reduction, the expression for the

estimated Rician correlation coefficient (for i ≠ k) is

R̂Ti,k =

∑N−1
n=0 xi(n)xH

k (n)√∑N−1
n=0 |xi(n)|2 ∑N−1

n=0 |xk(n)|2
(

SN̂R
SN̂R+1

) . (15)

Once the AoA of the LOS and the Rician K-factor are
estimated, the estimated NLOS component R̂ik is then
deduced:

R̂i,k = (K̂ + 1)

(
R̂Ti,k − K̂

K̂ + 1
exp(j2πm̂ik)

)
, (16)

where m̂ik = d0i
λ

sin(θ̂0i) − d0k
λ

sin(θ̂0k). When the

antenna-elements separation d0k > λ
2, we take θ̂ok = θ̂m.

Note that all angle measurements must have a common
reference. The AS is extracted from the LUT associated
to the considered angular distribution type. Using linear
interpolation, we determine which AS value corresponds
to the magnitude and phase of the estimated correlation
coefficient R̂i,k. In this article, we treat the case when
the a priori knowledge of the angular distribution is
assumed. In this case, arbitrary arrays can be used
including ULAs. We also propose a new method to
determine the angular distribution of the received signal
when it is unknown. In this case, a nonlinear array is
required. In fact, we select the angular distribution type
that fits the array geometry from a set of possible

candidates. Different mean AoAs and ASs are obtained
for the different antenna branches which is not the case
for linear structures. Then, the selected angular distribu-
tion is the one associated with the minimum of the esti-
mates’ standard deviations. The level of accuracy for
small AS values is taken into account as well. Indeed,
(6) and (7) are computed assuming small AS values. As
a result, we must first rank the AS. Then, if the latter is
low, we can apply (6) or (7). In fact, the LUT approach
shows low accuracy for small ASs. That is why we pre-
sent here four variants of the new AS estimator depend-
ing on the knowledge of the angular distribution and
the desired accuracy of the AS estimation.

A. Known angular distribution type and low AS
estimation accuracy for small AS values
Let us first study a simple case. Consider a pair of
antenna-elements (0, 1) spaced by d01 ≈ λ

2. We first esti-
mate the LOS component, i.e., the K-factor and the
mean AoA (using (10)). Owing to the estimated NLOS
component R̂0,1, we obtain the AS estimate, σ̃

(c)
01 from

the LUT associated with the considered distribution
type, g. The procedure is summarized as follows:

K̂ =
−2μ̂2

2+μ̂4−μ̂2

√
2μ2

2−μ4

μ̂2
2−μ̂4

,

θ̂m = arcsin

(
−� R̂T0,1

2π
d0,1
λ

)
,

R̂0,1 = (K̂ + 1)
[
R̂T0,1 − K̂

K̂+1
ej2πm̂01

]
,

σ̃
(c)
01 = LUTγ

(
|R̂0,1|, � R̂0,1

)
.

(17)

where μ̂2;i and μ̂4;i are the estimated second-order
and fourth-order moments, respectively. When the
antenna array is composed of more than two elements,
the procedure is applied to each pair. The final AS

estimate σ̂R is the mean of all σ̃
(c)
ik

divided by (K+1).

The division by (K+1) is employed to recover the
NLOS AS from the one associated to the Rician chan-
nel. When a uniform linear array (ULA) is used, the
estimation error can be reduced even more by aver-
aging the correlation coefficients over all antenna pairs
spaced by the same distance, before using the LUT,
instead of averaging the individual AS estimates over
all antenna pairs.

B. Unknown angular distribution type and low AS
estimation accuracy for small AS values
In real scenarios, the distribution type might not be pre-
dictable. To the best of our knowledge, there is no exist-
ing procedure that finds out the angular distribution type
of the received signal. We present here a new method to
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select the distribution type from a set of possible candi-
dates. The idea is to seek the distribution type that best
fits the geometry of the array. A nonlinear array structure
such as the one illustrated in Figure 1b, where the closest
antenna-elements are spaced by ≈ λ

2 or less, has to be
considered. The angle � value is not static and can be
modified to fit the base station construction constraints.
As in the previous case, we estimate the LOS component.
Then, for each antenna pair (spaced by d ≈ λ

2) and each

distribution type g, the mean AoA θ̂ik(γ ) and AS σ̃
(c)
ik (γ )

are extracted from LUTg. In this case, the estimated
mean AoA is actually the sum of the received signal
mean AoA, θik, and the angle of nonlinearity ± �. Hence,
to recover the desired mean AoA, we substract the
angle ± � (see the algorithm below). The selected distri-
bution type (γ̂ ) is the one associated to the minimum of
the sum of the standard deviations(
σaoa(γ ) = std {θ̂01(γ ), θ̂12(γ )} and σas(γ ) = std {σ̃ (c)

01 (γ ), σ̃ (c)
12 (γ )}

)
of the

estimated parameters:

σaoa(γ ) = std
({

θ̂ik(γ ); (i, k) such that dik ≈ λ

2

})
, (18)

σas(γ ) = std
({

σ̃
(c)
ik (γ ); (i, k) such that dik ≈ λ

2

})
, (19)

γ̂ = min
γ

{σas(γ ) + σaoa(γ )}. (20)

The chosen criterion is motivated by the nonlinearity
of the array. For instance, using the configuration illu-
strated in Figure 2, the mean AoA impinging at the pair
(i, k), θik - �, must be close to the one associated to the
branch (k, l), θkl + �. Indeed, we assumed the same
parameter values at the different array elements. How-
ever, by considering the wrong distribution type, the
obtained mean AoAs would be different and as a result
show high standard deviation. The same reasoning is
adopted for the ASs estimates (19). One can argue that
the mean of the AS estimates could be used instead of
the standard deviation in (19). Actually, the mean of the
obtained estimates would not give us any information
about the angular distribution of the received signal. For
instance, for the array structure illustrated in Figure 2b,
we obtain two AS estimates associated to the Gaussian
and Laplacian distributions. In this case, we cannot
select the right angular distribution. This is why we con-
sider the standard deviation of the AS estimates.
For the mean AoA estimation, we no longer require

antenna pairs including the antenna reference “0”, but
instead each pair (i, k) separated by l/2. Indeed, once
the LOS component is determined and the diffuse com-
ponent is deduced, we use (6) or (7) to estimate the
mean AoA. The considered expressions are not

restricted to antenna pairs (0, i) but to all antenna-ele-
ments (i, k).
Note that the procedure above estimates the mean

AoA twice. In (10), the resulted mean AoA is used to
compute the LOS component. Mean AoAs are then
extracted from a LUT using the diffuse component of the
Rician correlation coefficient. These estimates are
employed to select the angular distribution by comparing
their standard deviations (18). One can argue that the
standard deviations of the AS could be used instead of
estimating the mean AoA twice. However, when the AS
is small, the angular distribution is close to an impulse
function for both distribution types. In fact, the mean
AoA standard deviations bear more information concern-
ing the distribution type. In this case, the distribution
type selection using the criterion (20) is no longer due to
its high error rate. To overcome this limitation, we look
for weights that express the importance of one parameter
compared to the other, i.e., weights that ensure better
selection. After running exhaustive simulations, results
show that when the AS is small (s < sthreshold), only the
standard deviation of the mean AoA estimates (18) must
be considered. Even when the AS is high, the two stan-
dard deviations, saoa and sas, should not be considered
with the same importance. Indeed, a larger weight should
be affected to the information provided by the standard
deviation of the mean AoA estimates. Hence, the optimal
weights were empirically set equal to

ωas = χ[maxγ (σ̃ (c)(γ ))>σthreshold], (21)

ωaoa = χ[maxγ (σ̃ (c)(γ ))≤σthreshold] +
3
2

χ[maxγ (σ̃ (c)(γ ))>σthreshold],(22)

where σ̃ (c)(γ ) is the mean of the estimated AS asso-
ciated with the gth angular distribution and c is the
function defined by

χ[A] =

{
1 if the event A is true,

0 otherwise.
(23)

sthreshold was set empirically to 6°. In fact, this value
depends also on the distribution type. In other words,
σ

γ1
threshold �= σ

γ2
threshold. In this study, we consider the same

sthreshold for both considered distribution types, to sim-
plify implementation. Still, for more accuracy, one could
use different values for each distribution type. The
selected angular distribution type is then the one asso-
ciated with the minimum of the weighted sum, so that,
instead of (20), the following is used:

γ̂ = min
γ

{ωas(γ )σas(γ ) + ωaoa(γ )σaoa(γ )}. (24)

The final estimates for the mean AoA and AS is the
mean of the obtained estimates associated with the
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selected angular distribution. The overall procedure is as
follows:

K̂ = mean
{

−2μ̂2
i;2+μ̂i;4−μ̂i;2

√
2μ̂2

i;2−μ̂i;4

μ̂2
i;2−μ̂i,4

}

θ̂ik = arcsin

(
−� R̂ij

2π dik
k

)
for dik ≈ λ

2

θ̂m = mean
{
θ̂01 + ϕ; θ̂12 − ϕ

}
R̂ = (K̂ + 1)

[
R̂T − K̂

K̂+1
ej2πM

]
R̂(c)

i,k = R̂i,kχ[dik ≈ λ
2 ]

� = number of considered angular distributions

For γ = 1 to �[
σ̃

(c)
ik (γ ), θ̂ik(γ )

]
= LUTγ (|R̂(c)

i,k |, θR̂(c)
i,k

)

σaoa(γ ) = std({θ̂ik(γ )/dik ≈ λ
2 })

σas(γ ) = std ({σ̃ (c)
ik (γ )/dik ≈ λ

2 })
σ̃ (c)(γ ) = mean ({σ̃ (c)

ik (γ )})
θ̂m(γ ) = mean ({θ̂ik(γ )})
End

(25)

ωas = χ[maxγ (σ̃ (c)(γ ))≥σthreshold]

ωaoa = χ[maxγ (σ̃ (c)(γ ))<σthreshold] + . . .

3
2χ[maxγ (σ̃ (c)(γ ))≥σthreshold]

γ̂ = min
γ

(ωasσaoa(γ ) + ωaoaσaoa(γ ))

θ̂m = θ̂m(γ̂ )

σ̂θ = σ̃ (c)(γ̂ )

σ̂R = σ̂θ

K+1

(26)

C. Known angular distribution type and high AS
estimation accuracy for small AS values
With small AS values, closed forms can be deduced
from (6) and (7):

• Gaussian distribution:

θik = arcsin

(
−� Ri,k

2π dik
λ

)
where dik ≈ λ

2
, (27)

σik =

√−2 ln |Ri,k|
2π dik

λ
cos(θik)

. (28)

• Laplacian distribution: The mean AoA has the
same expression as in (27), and

σik =

√
2

|Ri,k| − 2

2π dik
2 cos(θik)

. (29)

The analysis of (28) and (29) shows that, when the
correlation coefficient amplitude is close to one or zero,
the AS estimation error is higher. Indeed, in this case,
the estimation error of the correlation coefficient has an
important impact on the AS estimation. The solution to
their problem is to consider distant antenna-elements
spaced by d ≫ l. Indeed, in this case, the correlation
coefficient amplitude is reduced. To avoid correlation
coefficients with a magnitude too close to zero, we set
empirically (i.e., by running several simulations) a lower
limit of 0.05 to decrease the estimation error. In other
terms, we exploit only distant antenna-element pairs for
which the correlation coefficient magnitude is higher
than 0.05.
To illustrate the overall AS estimation process, we

consider the array configuration illustrated in Figure 1c.
In this section, we consider the a priori knowledge of
the angular distribution type. The procedure is then as
follows. After estimating the LOS component and dedu-
cing the diffuse one, we consider first the closest pair of
antenna-elements (Ant.0-Ant.1). From the 2-D LUT, we

estimate the AS σ̃
(c)
01 . If the obtained preliminary AS is

larger than ssmall, (28) and (29) are not to be consid-
ered, and the procedure is terminated. Otherwise, we
use the distant elements (Ant.1-Ant.2) and the closed-
forms provided by (28) and (29) to estimate the AS σ̃

(d)
12 .

The overall AS estimation procedure is as follows:

K̂ = mean
{

−2μ̂2
i;2+μ̂i;4−μ̂i;2

√
2μ̂2

i;2−μ̂i;4

μ̂2
i;2−μ̂i;4

}
R̂ = (K̂ + 1)

[
R̂T − K̂

K̂+1
ej2πM

]
If σ̃ (c)(k̂) < σsmall and |R̂1,2| > 0.05

σ̂θ = g(θ̂m, |R̂1,2|)
The function g refers to (28) or (29)

Else

σ̂θ = σ̃
(c)
01

End

σ̂R = σ̂θ

K̂+1

(30)

D. Unknown angular distribution type and high AS
estimation accuracy for small AS, values
This case is a mix between the two previous cases, when
an accurate estimation is needed for small AS and the
angular distribution type is unknown. As one can con-
clude, the array structure has to have two main proper-
ties: the nonlinearity for the distribution type selection

Bousnina et al. EURASIP Journal on Advances in Signal Processing 2011, 2011:88
http://asp.eurasipjournals.com/content/2011/1/88

Page 8 of 16



and the existence of distant antenna-elements for a high
estimation accuracy in the case of small AS. The butter-
fly configuration presented in Figure 1d is then consid-
ered as an example. Other structures satisfying the
conditions mentioned above could be used.
Once the LOS component is estimated and the diffuse

one is deduced, as in the previous cases, we consider first
the closest antenna-elements (spaced by ~λ

2). For each
angular distribution g and antenna pair (i, k) spaced by
about λ

2, we extract the associated mean AoA θ̂ik(γ ) and

AS σ̃
(c)
ik (γ ) from LUTg. Then, we compute the associated

standard deviations, saoa(g) and sas(g). The selected distri-
bution type γ̂ is the one associated to the minimum of the
weighted sum [see (24)]. If the preliminary AS

σ̃ (c)(γ̂ ) = mean (σ̃ (c)
ik (γ̂ )) is larger than ssmall, then closed

forms of (28) and (29) are not to be considered, and the
procedure is terminated. Otherwise, for accurate AS esti-
mation, we consider the distant antenna-elements (d ≫ l)
with a correlation coefficient amplitude higher than 0.05.
The latter is chosen empirically after several simulations.
A correlation coefficient with a lower module would not
have enough information to allow the AS estimation.
Then, for each considered pair and each distribution type,

we estimate the AS σ̃
(d)
ik (γ ) using (28) and (29). During

simulations, we noticed that the standard deviations of the
AS estimates obtained using distant antenna-elements
offer lower error probability of distribution type selection.
A second angular distribution selection is therefore con-

sidered, for which at least two AS estimates (σ̃ (d)
ik (γ )) are

needed. If the number of correlation coefficients with a
module higher than 0.05 is inferior to 2, then we cannot
compute the standard deviation of one AS estimate. In
this case, the procedure is terminated, and the final AS is
the preliminary AS associated with the selected distribu-
tion type γ̂. Otherwise, we compute the standard devia-
tions of the estimated AS obtained using the distant

antenna-elements (σ̃ (d)
ik (γ )):

σas(γ ) = std
({

σ̃
(d)
ik (γ ); (i, k) such that dik 	 λ and|R̂ik| > 0.05

})
. (31)

The selected angular distribution, γ̂f , is the one asso-
ciated with the minimum of the sum (24) (using the
standard deviations of the AS estimates of distant ele-
ments). The final mean AoA estimate, θ̂m, is then the
mean AoA associated with the selected distribution
type, γ̂f . The final AS estimate is the mean of the AS
estimates over distant antenna pairs associated with γ̂f , i.
e., the estimated AS is

σ̂θ = mean
(
σ̃

(d)
ik (γ̂f )

)
. (32)

The overall AS estimation procedure is summarized as
follows:

K̂ = mean
{

−2μ̂2
i;2+μ̂i;4−μ̂i;2

√
2μ̂2

i;2−μ̂i;4

μ̂2
i;2−μ̂i;4

}

θ̂ik = arcsin

(
−� r̂ik

2π dik
λ

)
for dik ≈ λ

2

θ̂m = mean
{
θ̂01 + ϕ; θ̂12 − ϕ

}
R̂ = (K̂ + 1)

[
R̂T − K̂

K̂+1
ej2πM

]
R̂(c)

i,k = R̂i,kχ[
dik≈ λ

2

]
R̂(d)

i,k = R̂i,kχ[dik	λ]

� = number of considered angular distributions

For γ = 1 to �[
σ̃

(c)
ik (γ ), θ̂ik(γ )

]
= LUTγ (|R̂(c)

ik |, θR̂(c)
i,k

)

σaoa(γ ) = std ({θ̂ik(γ )/dik ≈ λ
2 })

σ 2
as(γ ) = std ({σ̃ (c)

ik (γ )/dik ≈ λ
2 })

σ̃ (c)(γ ) = mean ({σ̃ (c)
ik (γ )})

θ̂m(γ ) = mean ({θ̂ik(γ )})
End

ωas = χ[maxγ (σ̃ (c)(γ ))≥σthreshold]

ωaoa = χ[maxγ (σ̃ (c)(γ ))<σthreshold] + . . .

3
2χ[maxγ (σ̃ (c)(γ ))≥σthreshold]

γ̂ = min γ (ωasσaoa(γ ) + ωaoaσaoa(γ ))

cardE = cardinal {(i, k)/|R̂(d)
i,k | > 0.05}

If σ̃ (c)(γ̂ ) > σsmall

σ̂θ = σ̃ (c)(γ̂ )

θ̂m = θ̂m(γ̂ )

Else

If cardE < 2

σ̂θ = σ̃ (c)(γ̂ )

θ̂m = θ̂m(γ̂ )

Else

For γ = 1 to �

σ̃
(d)
ik (γ ) = g(θ̂(γ ), |R̂(d)

i,k | > 0.05)

The function g refers to (28) or (29)

σas(γ ) = std({σ̃ (d)
ik (γ )}/dik 	 λ)

End

γ̂f = minγ (ωasσaoa(γ ) + ωaoaσaoa(γ ))

θm = θ̂m(γ̂f )

σ̂θ = mean({σ̃ (d)
ij (γ̂f )})

End

End

σ̂R = σ̂θ

K̂+1

(33)
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IV. Other as estimation methods selected for
performance comparison
In this article, we compare the new AS estimator to other
low-complexity algorithms. As mentioned before, there
exist more robust estimators [2] and [10], but our pur-
pose is to evaluate low complexity estimators. Spread
Root-MUSIC is therefore the appropriate candidate for
performance evaluation and comparisons. We also com-
pare the new AS estimator with the two-stage approach
[13] which is based on the Spread Root-MUSIC principle.

A. Extended spread Root-MUSIC to 2-D arbitrary arrays
The principle is to localize two rays symmetrically posi-
tioned around the nominal AoA. Then, the AS is esti-
mated by using a LUT symbolized by the function
Λ(sω) computed by considering a mean AoA θm = 0.
In [14], Spread Root-MUSIC for a ULA with inter-ele-

ment spacing d = λ
2, in the presence of a LOS, is pre-

sented as follows:

{ν̂1, ν̂2} = Root − MUSIC(R̂c, nb.sources = 2), (34)

ω̂ =
ν̂1 + ν̂2

2
, (35)

θ̂m = arcsin

(
ω̂

2π d
λ

)
, (36)

σ̂R =
�−1

K

(
|ν̂1−ν̂2|

2

)
2π d

λ
cos θ̂m

, (37)

where R̂ci,k = 1
N

∑N−1
n=0 xi(n)xH

k (n) is the estimated cov-

ariance matrix, and ν̂i = 2π d
λ

sin(θ̂i) is the spatial fre-
quency, θm is the mean AoA, σ̂R is the AS of the Rician
fading channel, and ΛK(sω) is the function defined by

{�K(σω), −�K(σω)} = Root − MUSIC(Rc(θm = 0, K), 2). (38)

where σω = |ν1−ν2|
2 . Note that the function ΛK(sω)

depends on the Rician K-factor. To reduce the poten-
tially large number of LUTs, we propose to consider the
estimation and the extraction of the LOS component for
Spread Root-MUSIC, as does our new estimator. In
other words, we consider only the NLOS component
instead of considering the total estimated covariance
matrix R̂c. In this case, one function Λ(sω), with K = 0,
is considered. The relationship in (37) becomes

σ̂R =
�−1

(
|ν̂1−ν̂2|

2

)
2π d

λ
(K + 1) cos θ̂m

. (39)

As presented in [5], Spread Root-MUSIC estimates the
AS and mean AoA for ULAs. In this article, we adapt
Spread Root-MUSIC to the butterfly configuration to be
able to evaluate the performance of the new method. In
[31], those authors propose an extension of Root-
MUSIC to 2-D arbitrary arrays. Since Root-MUSIC
exploits the Vandermonde structure of the steering vec-
tor of ULAs, the idea is to rewrite the steering vector a
of nonlinear arrays as the product of a Vandermonde
structured vector d and a matrix G characterizing the
antenna configuration (manifold separation) [31]:

a(θ) ≈ Gd(θ). (40)

The matrix G can be determined using the least
square (LS) method as follows:

G = ADH(DDH)−1. (41)

Once the characteristic matrix is built, the MUSIC-
spectrum is then rewritten as a function of the new
steering vector:

SMUSIC(θ) = (dH(θ)GHEnEH
n Gd(θ))−1. (42)

where En is the matrix containing the eigenvectors
associated to the noise subspace. As is noticed, the new
noise subspace is no longer defined by the eigenvectors
of the covariance matrix associated to the smallest
eigenvalues, but by the product of the characteristic
matrix and the eigenvectors En. The estimated AoAs are
then the arguments of the complex roots of the
obtained pseudospectrum. One drawback of the
extended Root-MUSIC algorithm is the heavy computa-
tions of the pseudo-spectrum. For instance, in our case,
to ensure the required accuracy, the dimension of the
characteristic matrix is set to (360 × 151), thereby
increasing the algorithm’s complexity significantly.
The modified Root-MUSIC still fulfills the properties

of a consistent estimator. Hence, we can apply the
Spread F algorithm described in [5]. Our new extended
spread Root-MUSIC (ESRM) algorithm can be applied
as follows:{

θ̂1, θ̂2

}
= Root − MUSIC − Butterfly (R̂c, nb.sources = 2), (43)

θ̂m =
θ̂1 + θ̂2

2
, (44)

σ̂R =
�−1

(
|θ̂1−θ̂2|

2

)
(K + 1) cos θ̂m

. (45)

As noticed, the extended method does not differ from
the original Spread F algorithm. The major difference is
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observed in the Root-MUSIC approach. The extended
version of Spread Root-MUSIC computes directly the
physical angles θ̂i, i = 1, 2 instead of the spatial
frequenciesv̂i, i = 1, 2, (34). The mean AoA θ̂m is then
the mean of the estimated AoAs.
In Figure 3, we compare the functions Λ(sω) obtained

for both ULA and butterfly configurations (see Figure
1d). Since our nonlinear structure presents distant
antenna-elements spaced by 3l, we consider a ULA
with seven elements spaced by λ

2. Note that while a ULA
configuration can estimate AS values higher than 10°,
the functions Λ(sω) of the butterfly and (0-1-3) struc-
tures show lower limits.

B. Angular distribution selection using ESRM
As mentioned before, the new AS estimator selects the
angular distribution according to the standard deviations
of the mean AoA and AS estimates. In this article, we
adopt the same approach for the ESRM. As in our
method, we need two symmetric structures with at least
a 3D correlation matrix. Indeed, ESRM will require two
dimensions for the signal subspace and another one for
the noise subspace. In this case, one can consider the
following antenna-elements combinations (see Figure
1d: (Ant.0-1-3) and (Ant.2-1-4). To build the function
Λ(sω), Root-MUSIC requires symmetric structures. In
our case, the considered array structures give the follow-
ing results:

{�1(σ ), �2(σ )} = Root − MUSIC(Rc(θm = 0, K = 0), 2), (46)

where Rc is the covariance matrix. We then consider
the function Λ(sω) define by

�(σω) =
|�1(σω)| + |�2((σω))|

2
. (47)

The resulting function keeps the same properties as
for symmetric arrays.
Once we build the function Λ(sω), we apply the

Spread F algorithm [5] to estimate the AS. At this step,
for each angular distribution type (g), two AS estimates
are obtained. The firs one, s013(g), is associated to the
structure Ant.(0-1-3) and the second, s214(g), is asso-
ciated to the structure Ant.(2-1-4), see Figure 1d. The
selected angular distribution type (γ̂ ) is the one asso-
ciated with the minimum of the standard deviations of
the AS estimates:

γ̂ = min
γ

(std(σ013(γ ), σ214(γ ))). (48)

Simulations show that the angular distribution selec-
tion using ESRM is irrelevant. Whether the distribution
type is Gaussian or Laplacian, the same mean AoA is
observed. Indeed, (43) does not require the knowledge
of the angular distribution type. That is why the stan-
dard deviation of the mean AoA estimates is not used
in (48). Moreover, as shown in Figure 3, ESRM cannot
estimate an AS higher than 4° using the structures (0-1-
3) and (2-1-4). Using the same AS value in both struc-
tures, the angular distribution selection cannot be
achieved considering the standard deviation of AS esti-
mates. These cases are marked “x” in Table 1. This is
why the a priori knowledge of the angular distribution
type is required for ESRM.

C. The two-stage approach
In [13], a new two-stage approach similar to Spread
Root-MUSIC was presented. The estimation of the
mean AoA and the AS of the scattered source is trans-
formed there into the localization of two closely spaced
point sources. The new approach approximates the
function Λ(sω) by a linear function. Indeed for a ULA
with M antenna-elements spaced by d = λ

2, Λ(sω) ≈ sω.
As noticed, the function Λ(sω) no longer depends on
the angular distribution type. In other terms, the selec-
tion of the distribution type is not required for the two-
stage approach. The algorithm is as follows:

d̂m =
1

M − m

∑M−m

l=1
R̂cl+m,l

ω̂(1) = � (d̂1)

θ̂ = arcsin

(
ω̂(1)

2πd

)

ω̂(M−1) =
� (d̂M−1)
M − 1

δ̂(M−1)
ω =

1
M − 1

arccos
[
R

(
d̂M−1

d̂0
e−j(M−1)ω̂(M−1)

)]

σ̂θ =
δ̂

(M−1)
ω

2πd cos(θ̂)

(49)
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Figure 3 Λ(sω) functions for different antenna structures for a
normally distributed AS.
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where ∠ (.) and R(.) represent operators that extract,
respectively, the angle and the real parts. As other esti-
mators, the approach described in [13] considers only
LOS-free scenarios. In this article, we consider, as for
ESRM and the new estimator, the NLOS component of
the covariance matrix. The method exploits the Toeplitz
structure of the covariance matrix by averaging the coef-
ficient of the mth subdiagonals of R̂c. It was shown in
[13] that the covariance coefficients on the first subdia-
gonals give better mean AoA estimates. Simulations in
[13] showed also that antenna- elements spaced by 2.5l
offer better AS estimation. For the butterfly configura-
tion, the algorithm described above can be applied by
considering antenna pairs. In other terms, the antenna-
elements spaced by d = λ

2 are utilized to estimate the
mean AoA and the distant ones are considered for the
AS estimates. In this article, we select the antenna pairs
spaced by 3l, the closest distance to the one used in
[13]. Indeed, the pairs (ant.1-ant.3) and (ant.1-ant.4) can
be modeled by a ULA composed by six antenna-ele-
ments. In this case, the algorithm of the two-stage
approach is applied with m = 5.

V. Simulation results
We illustrate the performance of the new AS estimator
by means of Monte-Carlo simulations. We assume here
that the channel coefficients are obtained through an
appropriate channel estimation algorithm, and that the
resulting time-varying channel coefficient estimates can
be adequately modeled by the sum of the true time-
varying channel coefficients with an AWGN component.
The accuracy of the channel estimation procedure is
then controlled by the variance of the AWGN compo-
nent. In our simulations, for the diffuse component, we
used a non-selective frequency (f at) Rayleigh channel.
We considered the Rayleigh channel simulator described
in [32]. The azimuth AS distribution for the incoming
multipath signals are of Gaussian or Laplacian type. The
carrier frequency was set to 1.9 GHz, which results in a

wavelength l of 15.79 cm. The mobile speed was set to
80 Km/h (22.2 m/s), which results in a Doppler fre-
quency FD of 140.74 Hz. The sampling interval was set
to Ts = 1

1500ms. The SNR of the estimated channel coef-
ficients is 15 dB.
First, we study the new estimator performance when

the angular distribution is known. In this case, we con-
sider a ULA with five antenna-elements spaced by a half
wavelength. We compare the algorithm described in III.
C. with the weighted least square (WLS) method and
the stochastic CRB developed in [10]. In this article, we
consider the unknown parameter vector defined as
η = [Sσ 2

n σθθm], where S and σ 2
n are the transmitted signal

and noise powers. In [10], the variance σ 2
θ is considered

instead of sθ. Thereby, we recompute the CRB using
(13) of [10]. The normalized mean square error
(NRMSE) is used to evaluate both estimators:

NRMSE(σθ) =

√
1
N

∑N
n=1 (σ̂θ − σθ )2

σθ

. (50)

As shown in Figure 4, for mean AoA estimation the
new estimator presents lower NRMSE and is the closest
one to the CRB. For the AS estimation, the new estima-
tor and the WLS method present close NRMSE (see
Figure 5), for different computational complexities. For
instance, the Gauss-Newton method used in the WLS
technique converges in around 600 iterations, which
increases significantly its computational complexity. One
can also notice that the SNR estimation error does not
affect the mean AoA and AS estimation. Indeed,
whether the SNR is assumed known or with a Gaussian
estimation error with variance σ 2

ω = 1, both estimators
show the same results.
Second, we study the angular distribution selection

and its impact on the new estimator. To this purpose,
we consider the butterfly configuration with j = 10°,
d01 = d12 = λ

2, and d13 = d14 = 3l. Since it does not

Table 1 Error probability of angular distribution selection

Scenarios

ESRM New estimator

True distribution type K = 0 K = 1 K = 3 K = 5 True K Known SNR Est. SNR (σ 2
ε = 1) Unknown SNR

Gaussian (sθ = 1) 0 0 0 0 0.22 0.25 0.26 0.29

Laplacian (sθ = 1) 1 1 1 1 0.31 0.30 0.30 0.27

Gaussian (sθ = 2) 0 0 0 0 0 0 0 0

Laplacian (sθ = 2) 1 1 1 1 0 0.02 0.02 0.02

Gaussian (sθ = 3) x x x x 0 0 0 0

Laplacian (sθ = 3) 1 1 1 1 0 0.03 0.03 0.03

Gaussian (sθ = 5) x x x x 0 0.06 0.06 0.47

Laplacian (sθ = 5) x x x x 0.02 0.09 0.11 0.17

“x": ESRM unable to select the angular distribution
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allow the proper selection of the angular distribution
type, the a priori knowledge of the angular distribution
type is assumed for ESRM. To study the effect of the K-
factor estimation error and the variance of the estimated
σ 2

ε , σ 2
ε , on AS estimation, we consider several scenarios.

In the first one, we assume the a priori knowledge of
the K-factor, i.e., we use the true value of the K-factor
to estimate the diffuse component. In the second case,
we consider the true value of the SNR. In the last two
cases, an estimated SN̂R with variance σ 2

ε = 1 is used.
As shown in Figure 6, the new estimator shows lower

NRMSE for the mean AoA estimation. In Figure 7, the
AS estimation with the variation of the K-factor value is
studied. As noticed, the new estimator presents high
NRMSE when the SNR is assumed unknown. As

mentioned before, this is due to the important estima-
tion error exhibited by the K-factor estimator (11).
Indeed, If we consider the true value of the K-factor, the
new estimator achieves more accurate results. The
ESRM and the two-stage approach also show lower
NRMSE when the true K-factor is assumed, especially
when its value is high.
One can argue that the new estimator fails in the case

of unknown SNR. Note that while ESRM requires the
eigen-decomposition of the covariance matrix and find-
ing the roots of a polynomial, our method uses only
LUTs, simple closed forms, and some logical operations.
Indeed, the Spread Root-MUSIC shows high complexity
around M3log(M) + M2(Na + T) + N2

a N floating point
operations, whereas the new estimator and the two-
stage approach admit almost the same complexity of
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Figure 5 NRMSE in mean AS using a ULA with 5 elements
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floating point operations. Moreover, owing to the defi-
nition of the function Λ(sω), ESRM cannot estimate an
AS greater than a certain limit. Therefore, for a large
AS, ESRM exhibits high NRMSE.
The two-stage approach, similar to Spread Root-

MUSIC, with a linear function Λ(sω), is then consid-
ered. For the AS estimation (see Figures 8, 9), the new
estimator shows lower NRMSE than ESRM and the
two-stage approach, as expected. In fact, for a high AS,
the function Λ(sω) (see Figure 3) is not quite linear.
Hence, the accuracy of AS estimation is affected. In
contrast, the new estimator shows lower NRMSE for
large AS values since unlike the ESRM or the two-stage
approach.
As shown in Figure 10, for different values of the AS,

the new estimator achieves better results then the

ESRM and the two-stage approach. However, for low
SNR values, the new estimator shows higher NRMSE
then the ESRM, when an estimate of the SNR is consid-
ered. When the SNR is assumed known, the new esti-
mator shows the best results (see Figure 11).

VI. Conclusion
In this article, we described a new low-complexity AS
estimator for Rician fading channels. The new estimator
first estimates the LOS component of the correlation
coefficient. Then, the desired parameters are extracted
from LUTs computed off-line. The estimate of the LOS
component of the correlation coefficient requires the
use of a K-factor estimator. The second- and fourth-
order moments K-factor estimator is considered for its
simplicity and relatively good accuracy. To reduce the
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impact of the K-factor estimation error on AS estima-
tion, the noise-induced biases in both the correlation
coefficient and the moments of the received signal are
reduced using an estimated SNR. The new estimator
also includes a new method to select the angular distri-
bution type of the received signal, which requires the
use of a nonlinear array structure. The performance of
the new method was compared with Spread Root-
MUSIC extended to a nonlinear antenna array config-
uration and with the two-stage approach presented in
[13]. Simulations showed that the new technique gives
lower NRMSE.

VII. Competing interests
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VIII. End notes
aThe conventional array model described in [3] and
[11] can be extended to a nonlinear structure by
rewriting the associated steering vector. In this case,
our problem can be reformulated using a matrix repre-
sentation. However, this would only complicate the
new algorithm by adding a new step for the determina-
tion of the steering vector. That is why we consider
the correlation coefficient of each antenna branch
instead of the array formulation. b For each angular
distribution type, there are two LUTs. The first is for
the mean AoA, and the second is for the AS. c We
rewrite the correlation coefficient for the different
antenna pairs as in (8).
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