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Distributed Collaborative Beamforming in the
Presence of Angular Scattering
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Abstract—In this paper, a collaborative beamformer (CB)
is considered to achieve a dual-hop communication from a
source to a receiver, through a wireless network comprised
of K independent terminals. Whereas previous works neglect
the scattering effect to assume a plane-wave single-ray propa-
gation channel termed here as monochromatic (with reference
to its angular distribution), a multi-ray channel termed as
polychromatic due to the presence of scattering is considered,
thereby broadening the range of applications in real-world
environments. Taking into account the scattering effects, the
weights of the so-called polychromatic CB (P-CB) are designed
so as to minimize the received noise power while maintaining
the desired power equal to unity. Unfortunately, their derivation
in closed-form is analytically intractable due to the complex
nature of polychromatic channels. However, when the angular
spread (AS) is relatively small to moderate, it is proven that a
polychromatic channel may be properly approximated by two
rays and hence considered as bichromatic. Exploiting this fact,
we introduce a new bichromatic CB (B-CB) whose weights can be
derived in closed-form and, further, accurately approximate the
P-CB’s weights. Yet these weights, which turn out to be locally
uncomputable at every terminal, are unsuitable for a distributed
implementation. In order to circumvent this shortcoming, we
exploit the asymptotic expression at large K of the B-CB whose
weights could be locally computed at every terminal and, further,
well-approximate their original counterparts. The performances
of the so-obtained bichromatic distributed CB (B-DCB) and its
advantages against the monochromatic DCB (M-DCB), which
is designed without accounting for scattering, are analytically
proved and further verified by simulations at practical values of
K.

Index Terms—Distributed collaborative beamforming, scat-
tering, angular distribution/spread, monochromatic/single-ray
and polychromatic/multi-ray channels, bichromatic/two-ray ap-
proach, device/machine-2-device/machine (D2D/M2M) communi-
cations, wireless sensor networks (WSN).

I. INTRODUCTION

COLLABORATIVE beamforming (CB) stands out today
to be a strong means to increase the transmission cover-

age, the link reliability, and the capacity of wireless networks
[1]-[12]. Using CB, a set of K independent terminals (sensor
nodes, mobile users, soldiers in battlefield, relays, etc.) play
a central role in the data transmission between a pair source-
receiver. These sensors, terminals, devices or machines, called
all terminals here for simplicity, multiply their received signals
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from the source with the complex conjugates of properly se-
lected beamforming weights, and forward the resulting signals
to the receiver. When the beamforming response in the desired
direction is fixed, it has been shown that the transmit power is
inversely proportional to K while the achieved signal-to-noise
ratio (SNR) increases with K [6], [9], [11]. Since the number
of terminals K is typically large in many practical cases,
using CB in wireless networks results in both a substantial
improvement in the signal reception quality and a considerable
increase in the terminals’ battery lifetime [11], [12].

Due to its practical potential, CB has garnered the attention
of the research community. Assuming that the terminals are
uniformly distributed, the CB concept was presented in [1] and
the characteristics of its resultant beampattern were analyzed.
Beampattern characteristics of the CB were also evaluated
in [2] when the terminals are Gaussian distributed. In [3],
a unified method to analyze the beampattern properties for
various terminal distributions was proposed. To achieve im-
proved beampattern properties, terminal selection algorithms
aiming to narrow down the mainbeam and minimize the effect
of sidelobes were, respectively, presented in [4] and [5]. In [6],
the applicability of CB in wireless networks was investigated
and several deployment solutions were explored in [7]. New
CB techniques that improve the network energy efficiency and
reduce the collaboration time were, respectively, presented in
[8] and [9]. A review of the different CB techniques wherein
properly selected weights achieve a given design’s objective
while satisfying its constraints was made in [10].

These selected weights must often comply with the restric-
tions dictated by the network structure. For instance, when
a CB technique is used in a wireless network that lacks a
master terminal (MT) with a global knowledge of all network
parameters, the terminals are typically required to locally
compute their weights based solely on their limited knowledge
about the network. This is also the case when the MT is
available to compute all weights but the overhead associated
with sending them to all terminals is prohibitive. This impedi-
ment motivates further investigation in this direction. Lending
themselves to a distributed implementation, a variety of so-
called distributed CB (DCB) techniques, wherein the selected
weights solely depend on the information commonly available
at every terminal and, hence, each is able to locally compute
its own weight, were proposed in [11] and [12].

In spite of their significant contributions, all the above
works neglect the scattering and reflection effects to assume
plane-wave or single-ray propagation channels termed here as
monochromatic (with reference to their angular distribution).
Although this assumption is useful for analytical purposes, it is
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often not valid in practice. Indeed, in real-world environments,
the very likely presence of scattering causes an angular spread
(AS) of the transmit or receive signal. Several rays or ”spatial
chromatics” (with reference to their angular distribution) are
then generated to form a multi-ray or polychromatic channel
[13]-[18].The scattering effect on CB was investigated in [14]
where the author analyzed, in the presence of scattering, the
performance of a monochromatic DCB (M-DCB) technique
whose design accounts for single-ray propagation channels.
It was shown that the performance of the M-DCB technique
deteriorates in areas where the AS is very small and becomes
unsatisfactory when the AS substantially increases [14]. The
aim of this work is to design a DCB technique which accounts
for the scattering effect, thereby pushing farther the frontier of
the DCB’s real-world applicability range to include scattered
environments with small to moderate angular spreads.

In this paper, we consider a CB technique to achieve a
dual-hop communication from a source to a receiver, through
a wireless network comprised of K independent terminals. In
the first time slot, the source sends its signal to the network
while, in the second time slot, each terminal multiplies its
received signal by a properly selected beamforming weight
and forwards the resulting signal to the receiver. These weights
aim to minimize the received noise power while maintaining
the desired power equal to unity. Due to the presence of scat-
tering, we assume a polychromatic channel when designing
the so-called polychromatic CB (P-CB) technique. Due to the
complex nature of such a channel, derivation of closed-form
expressions for the P-CB’s weights turns out to be analytically
intractable. However, when the AS is relatively small to mod-
erate, the polychromatic channel, owing to a Taylor series ex-
pansion of its correlation matrix, can be properly approximated
by two angular rays and hence considered as bichromatic.
Exploiting this fact, we introduce a new bichromatic CB
(B-CB) technique whose weights can be derived in closed-
form and, further, accurately approximate those of the P-CB
technique. Nevertheless, the distributed feature of our wireless
network dictates every terminal to compute its beamforming
weight based only on its limited locally-available information.
Unfortunately, the B-CB’s weights turn out to be locally
uncomputable at every terminal, and, hence, this beamformer
cannot be implemented in a distributed fashion. To circumvent
this problem, we exploit the asymptotic expression at large
K of the B-CB whose weights can be locally computed at
every terminal and, further, well-approximate their original
counterparts. The performances of the so-obtained B-DCB
(i.e., distributed B-CB) technique are analyzed and compared
to those of the M-DCB and B-CB techniques. We show that
the proposed B-DCB technique is able to achieve its maximum
achievable average SNR (ASNR) in scattered environments
with small to moderate angular spreads while the achieved
ASNR using the M-DCB technique, which is designed without
accounting for scattering, decreases when the latter is small
and becomes unsatisfactory at moderate values. We also show
that using the proposed B-DCB technique instead of the M-
DCB results in an ASNR gain that may reach as much as 3
dB, when K is large enough. Moreover, we prove that for
K typically in the range of 10, the achieved ASNR using
the B-DCB technique loses only a fraction of a dB against

Fig. 1. System model.

the B-CB technique, which is unsuitable for a distributed
implementation.

The rest of this paper is organized as follows. The system
model is described in Section II. Section III investigates the
CB in the presence of scattering. The novel DCB solution
that takes into account the scattering effect is proposed in
Section IV. Section V analyzes the performances of the
proposed technique while Section VI verifies by computer
simulations the theoretical results. Concluding remarks are
given in Section VII.

Notation: Uppercase and lowercase bold letters denote
matrices and column vectors, respectively. [·]il and [·]i are
the (i, l)-th entry of a matrix and i-th entry of a vector,
respectively. IN is the N -by-N identity matrix and en is a
vector with one in the n-th position and zeros elsewhere. (·)T
and (·)H denote the transpose and the Hermitian transpose,
respectively. ‖·‖ is the 2-norm of a vector and |·| is the absolute

value. E{·} stands for the statistical expectation and (
ep1−→)

p1−→ denotes (element-wise) convergence with probability one.
J1(·) is the first-order Bessel function of the first kind and �
is the element-wise product.

II. SYSTEM MODEL

As illustrated in Fig. 1, the system of interest consists of
a wireless network or subnetwork comprised of K terminals
equipped each with a single isotropic antenna and uniformly
and independently distributed on D(O,R), the disc with
center at O and radius R, a receiver Rx, and a source S
both located in the same plane containing D(O,R) [1]-[12],
[14]. We assume that there is no direct link from the source
to the receiver due to high pathloss attenuation. Moreover, let
(rk, ψk) denote the polar coordinates of the k-th terminal and
(As, φs) denote those of the source. Without loss of generality,
the latter is assumed to be at φs = 0 and to be located far
from the terminals, i.e., As � R. The following assumptions
are further considered:

A1) The source is scattered by a given number of scat-
terers located in the same plane containing D(O,R). The
latters generate from the transmit signal L rays or ”spatial
chromatics” (with reference to their angular distribution) that
form a polychromatic propagation channel [13]-[18]. The l-
th ray or chromatic is characterized by its angle deviation
θl from the source direction φs and its complex amplitude
αl = ρle

jϕl where the amplitudes ρl, l = 1, . . . , L and the
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phases ϕl, l = 1, . . . , L are independent and identically dis-
tributed (i.i.d.) random variables, and each phase is uniformly
distributed over [−π, π]. The θl, l = 1, . . . , L are i.i.d. zero-
mean random variables with a symmetric probability density
function (pdf) p(θ) and variance σ2

θ [14], [17], [18]. All θls,
ϕls, and ρls are mutually independent. All rays have equal
power 1/L (i.e., E

{|αl|2} = 1/L). Note that the standard
deviation σθ is commonly known as the angular spread (AS)
while p(θ) is called the scattering or angular distribution.

A2) The channel gain [f ]k from the k-th terminal to
the receiver is a zero-mean unit-variance circular Gaussian
random variable [9], [11].

A3) The source signal s is narrow-band1 with unit power
and noises at terminals and the receiver are zero-mean Gaus-
sian random variables with variances σ2

v and σ2
n, respectively.

The source signal, noises, and the terminals’ forward channel
gains are mutually independent [9], [11], [12], [19].

A4) All nodes’ local oscillator frequencies and phases are
assumed to be synchronized by any phase/frequency adjust-
ment techniques such as [20]-[22].

A5) The k-th terminal is aware of its own coordinates
(rk, ψk), its forward channel [f ]k, the direction of the source
φs, the number of terminals K , the normalized radius R/λ
where λ is the wavelength, and the AS σθ while being
oblivious to the locations and the forward channels of all other
terminals in the network [1]-[5], [11], [12].

A1 is frequently adopted in the context of scattering envi-
ronments [13]-[18] while A2-A4 are common assumptions in
the array processing literature [1]-[12]. A5 which guarantees
that the proposed CB technique is suitable for a distributed
implementation, is commonly considered in the topic of CB
[1]-[5]. Note that all parameters (position, channel, source di-
rection, angular spread) invoked in A5 may be easily estimated
using any of the existing parameters’ estimation techniques,
thereby inducing some estimation errors. The latters could be
implicitly included in the additive Gaussian noise considered
at the terminals making our scenario sufficiently realistic.

Due to A1 and the fact that As � R, it can be shown that
the channel gain from the source to the k-th terminal can be
represented as [13], [14], [18]

[g]k =

L∑
l=1

αle
−j 2π

λ rk cos(θl−ψk). (1)

Obviously, in the conventional scenario where the scattering
effect is neglected (i.e., σθ −→ 0) to assume a monochromatic
plane-wave propagation channel, we have θl = 0 and, hence,
[g]k can be reduced to [g1]k = e−j(2π/λ)rk cos(ψk), the well-
known steering vector in the array-processing literature [1]-
[5].

As can be observed from (1), the summation of L chromat-
ics causes a variation, with a particular channel realization,
of the received power at the k-th terminal. The channel is
then said to experience a form of fading. When L is large,
according to the Central Limit Theorem, the distribution of
the channel gain [g]k approaches a Gaussian. Since, according

1In this paper, we assume that the signal bandwith’s reciprocal is large
with respect to the time delays of all rays. For this reason, the time notion is
ignored when denoting the source signal [13].

to A1, E{αl} = 0 for l = 1, . . . , L, then [g]k is a zero-
mean Gaussian random variable and, hence, its magnitude
is Rayleigh distributed. Therefore, when L is large enough
(practically in the range of 10), the channel from the source
to the k-th terminal is nothing but a Rayleigh channel. It can
also be observed from (1) that we did not take into account any
line-of-sight (LOS) component in our channel model. If this
were the case, [g]k’s distribution would approach a non-zero
mean Gaussian distribution and the channel would become
Rician.

III. CB IN THE PRESENCE OF SCATTERING

A dual-hop communication is established from the source
S to the receiver Rx. In the first time slot, the source sends its
signal s to the wireless network. Let y denotes the received
signal vector at the terminals given by

y = gs+ v, (2)

where g � [[g]1 . . . [g]K ]T and v is the terminals’ noise
vector. In the second time slot, the k-th terminal multiplies
its received signal with the complex conjugate of the beam-
forming weight wk and forwards the resulting signal to the
receiver. It follows from (2) that the received signal at Rx is

r = fT (w∗ � y) + n = wH (f � y) + n

= wH (f � gs+ f � v) + n

= swHh+wH(f � v) + n, (3)

where w � [w1 . . . wK ] is the beamforming vector, h � f�g,
f � [[f ]1 . . . [f ]K ]T , and n is the receiver noise. Let Pw,s

and Pw,n denote the received power from the source, and the
aggregate noise power due to the thermal noise at the receiver
and the forwarded noises from the terminals, respectively. It
holds from (3) that

Pw,s = wHE
{
hhH

}
w (4)

Pw,n = σ2
vw

HΛw + σ2
n, (5)

where Λ � diag{|[f ]1|2 . . . |[f ]K |2} and the expectation is
taken with respect to the chromatics’ angles θls and their
complex amplitudes αls. Although several approaches can be
adopted to properly design the beamforming weights [19],
we are only concerned in this paper with minimizing the
aggregate noise power while maintaining the average received
power from the source equal to unity. In fact, this approach is
nothing else but the well-known minimum variance distortion-
less response (MVDR) beamformer [23], [24] with a relaxed
distortionless response constraint. The latter is imposed here
to the average received power from the source (i.e., Pw,s = 1)
instead of the instantaneous beamforming response on the
source direction (i.e., wHh = 1). Mathematically, we have
to solve the following optimization problem:

wP = argminPw,n s.t. Pw,s = 1, (6)

where wP denotes the beamforming vector associated with the
polychromatic CB2 (P-CB). We refer to it as polychromatic
since, in contrast with previous works, the channel, is assumed

2For brevity, in this paper, we use the term CB to refer to the collaborative
beamforming as well as to the collaborative beamformer.
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here to be polychromatic due to the presence of scattering. The
optimization problem in (6) can be rewritten as

wP = argminwHΛw s.t. wHE
{
hhH

}
w = 1 (7)

or, equivalently as

wP = argmax
wHE

{
hhH

}
w

wHΛw
s.t. wHE

{
hhH

}
w = 1.

(8)
It can be readily shown that wP is a scaled version of the
principal eigenvector of the matrix Λ−1E

{
hhH

}
so as to

satisfy the constraint in (8) [19]. To the best of our knowledge,
this eigenvector cannot be directly derived using the actual
form of the matrix E

{
hhH

}
, thereby making impossible the

derivation of wP in closed-form expression. Actually, wP

may be numerically evaluated, but this task is computationally
demanding, especially when high precision is required. There
is yet another problem in that it follows from (8) that this
numerical evaluation must be performed by a master terminal
(MT) with a global knowledge of all network parameters and,
unfortunately, according to A5, the considered network lacks
such a terminal. This motivates us to derive a closed-form
approximation of wP. To this end, a useful approximation
of the matrix E

{
hhH

}
may be developed which requires,

however, a more in-depth analytical study beforehand. Based
on assumption A1, one can deduce the following property:

E {α∗
l αm} =

{
0 l �= m
1
L l = m

. (9)

It follows from (9) that E
{
hhH

}
is given by

E
{
hhH

}
= E

{
L∑
l=1

αla (θl)

L∑
m=1

α∗
maH (θm)

}

=

L∑
l=1

E {αlα∗
l }E

{
a (θl)a (θl)

H
}

=

∫
Θ

p(θ)a(θ)aH (θ)dθ, (10)

where a(θ) � [[a(θ)]1 . . . [a(θ)]K ]
T with [a (θ)]k =

[f ]ke
−j(2π/λ)rk cos(θ−ψk) and Θ is the span of the pdf p(θ)

over which the integral is calculated3 Nevertheless, if the
AS σθ is relatively small4, small angular deviations of θls
occur and, hence, the relationship between a(θ) and θ can
be accurately described by the first three non-zero terms
of the Taylor series of a(θ) at 0. Therefore, the following
approximation holds

a(θ) � a+ a′θ + a′′
θ2

2
, (11)

where a = a(0), and a′ and a′′ are, respectively, the first and
the second derivatives of a(θ) at 0. Finally, using (11) in (10)

3In the Gaussian and Uniform distribution cases, Θ = [− inf,+ inf] and
Θ = [−√

3σθ,+
√
3σθ ], respectively.

4This condition is assumed for the sole sake of mathematical rigor, without
imposing any limitation on AS values in absolute terms. Simulations in
Section VI suggest that practical AS values as high as 20 degrees still keep
the following developments valid.

and performing some mathematical manipulations yields

E
{
hhH

}� aaH +
1

2

∫
Θ

p(θ)
(
aa′′H + a′′aH + 2a′a′H

)
θ2dθ

� aaH +
(
aa′′H + a′′aH + 2a′a′H

) σ2
θ

2

� 1

2

((
a+ a′σθ+ a′′

σ2
θ

2

)(
a+a′σθ + a′′

σ2
θ

2

)H
+

(
a− a′σθ + a′′

σ2
θ

2

)(
a− a′σθ + a′′

σ2
θ

2

)H )

� 1

2

(
a (σθ)a (σθ)

H
+ a (−σθ)a (−σθ)H

)
. (12)

It is noteworthy that the approximation in (12) is independent
of the scattering distribution p(θ). Rather, it explicitly depends
on the AS σθ . More importantly, it can be easily proven
that the result in (12) also holds in the case of bichromatic
channels (i.e., L = 2) with rays located at angles σθ and −σθ
where the channel gain from the source to the k-th terminal is
[g2]k = α1e

−j(2π/λ)rk cos(σθ−ψk) + α2e
−j(2π/λ)rk cos(σθ+ψk).

Consequently, when the AS is typically small to moderate,
g could be substituted with g2 and, hence, polychromatic
channels could be considered as bichromatic. This bichromatic
approach is notable since it can be exploited in AS and
direction of arrival estimation in scattering environments such
as in [13], [17] and [18]. Furthermore, it turns out to be
crucial for our new design of a CB technique that accounts
for scattering. Indeed, according to the approximation in
(12), when σθ is relatively small, we have wP � wB the
beamforming vector associated with the bichromatic CB (B-
CB) technique that satisfies

wB = argmax
wHΞw

wHΛw
s.t wHΞw = 2, (13)

where Ξ =
(
a(σθ)a(σθ)

H + a(−σθ)a(−σθ)H
)
. It can be

shown that the optimal solution of (13) is given by [19]

wB =
μ

K
ρmax

(
Λ−1Ξ

)
, (14)

where ρmax

(
Λ−1Ξ

)
is the principal eigenvector of the matrix

Λ−1Ξ and μ is a factor chosen such that the constraint in
(13) is satisfied. Now, we have to derive the expression of the
eigenvector ρmax

(
Λ−1Ξ

)
. Since Λ−1 is a full-rank matrix,

the rank of Λ−1Ξ is the same as the rank of Ξ that is inferior
or equal to two, which means that Λ−1Ξ has at most two
eigenvectors. In addition, it can be proven that

Λ−1ΞΛ−1(a (σθ)+a (−σθ)) = Λ−1a(σθ)K (1+ Z (σθ))+

Λ−1a(−σθ)K
(
1+Z (σθ)

H
)
,

(15)

and

Λ−1ΞΛ−1(a(σθ)−a(−σθ)) = Λ−1a(σθ)K (1− Z (σθ))−
Λ−1a(−σθ)K

(
1−Z (σθ)

H
)
,

(16)

where Z (σθ) =
(
a(σθ)

H
Λ−1a(−σθ)

)
/K . It can be

shown from the definition of a(θ) that for small σθ
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we have |Im {Z (σθ)} | ≤ sin (4πRσθ/λ) and, further,
Re {Z (σθ)} ≥ 0. If σθ is small enough4, the imaginary
part of Z (σθ) approaches 0 and, hence, the latter could be
considered as positive real. Therefore, from (15) and (16),
Λ−1 (a (σθ) + a (−σθ)) and Λ−1 (a (σθ)− a (−σθ)) are both
eigenvectors of Λ−1Ξ and, additionally, ρmax

(
Λ−1Ξ

) �
Λ−1 (a (σθ) + a (−σθ)), when σθ is relatively small. Conse-
quently, wB can be expressed as

wB =
μ

K
Λ−1 (a (σθ) + a (−σθ)) , (17)

where

μ �
√
2K∥∥∥Λ− 1

2 (a (σθ) + a (−σθ))
∥∥∥ (1 + Re {Z (σθ)})

1
2

� (1 + Re {Z (σθ)})−1
. (18)

As it can be observed from (17), wB is independent of the
scattering distribution p(θ). Rather, it explicitly depends on σθ
that can be estimated using an AS estimator such as in [17]
or [18].

Nevertheless, since the terminals are independent entities
and there is no MT with global knowledge of all network
parameters, the B-CB technique is implementable only if the
k-th terminal can locally compute its corresponding beam-
forming weight [wB]k that depends on μ and the k-th entry
of Λ−1 (a (σθ) + a (−σθ)) /K . According to A5, the latter
depends solely on the information locally available at the k-th
terminal while μ is function of all terminals’ locations and
forward channels and, hence, cannot be computed at every
terminal. Therefore, although the B-CB is an optimal solution
of (6) that takes into account the scattering effect for relatively
small σθ , it turns out to be unsuitable for a distributed
implementation in our considered network. In Section IV, a
bichromatic distributed CB (B-DCB) is proposed, that not only
can be implemented in a distributed fashion, but also well-
approximates its B-CB counterpart.

IV. PROPOSED B-DCB TECHNIQUE

In order to circumvent the aforementioned problem, we
resort to substituting μ with a quantity that can be computed at
every individual terminal and, in addition, well-approximates
its original counterpart. It has been shown in [6], [9] and [11]
that, when the received power is fixed as in the design of
the B-CB technique, the transmit power from each terminal is
inversely proportional to K while the SNR linearly increases
with K . This suggests the use of a large number of terminals
as a means to considerably increase the terminals’ battery
lifetime and substantially improve the signal reception quality.
Thus, when K is large enough, μ could be substituted with
μD = limK→∞ μ in (17). Although μD seems to be a good
approximation of the constraint factor μ, it must also solely
depend on the information commonly available at all the
terminals. This will be proved in the following lines.

It is direct to show from (18) that

μD =
(
1 + Re

{
lim
K→∞

Z (σθ)
})−1

. (19)

From the definition of a(φ), we have

Z (σθ) =

∑K
k=1 e

j 2π
λ rk(cos(ψk+σθ)−cos(ψk−σθ))

K
. (20)

Using the strong law of large numbers and the fact that rk, ψk
and [f ]k are all mutually statistically independent, we obtain
[25], [26]

lim
K→∞

Z (σθ)
p1−→ E

{
ej

2π
λ rk(cos(ψk+σθ)−cos(ψk−σθ))

}
= 2

J1 (γ (2σθ))

γ (2σθ)
(21)

where the equality in the second line is due to the fact that
the terminals are uniformly distributed on D(O,R) [1] and
γ(φ) � (4πR/λ) sin(φ/2). Therefore, it follows from (19)-
(21) that

μD
p1−→

(
1 + 2

J1(γ(2σθ))

γ(2σθ)

)−1

, (22)

when the number of terminals K is large enough. As can
be observed from (22), μD does not depend on the locations
and the forward channels of any terminal and, therefore, it is
locally computable at all terminals. Substituting μ with μD in
(17), we introduce a new B-DCB whose beamforming vector

wBD =
μD

K
Λ−1 (a (σθ) + a (−σθ)) (23)

not only can be implemented in a distributed fashion, but
also well-approximates its counterpart wB, when K is large
enough5. Moreover, it is valid for any given scattering distri-
bution p(θ). It is worth mentioning that in the conventional
scenario, where the scattering phenomenon is neglected (i.e.,
σθ → 0) to assume monochromatic plane-wave propagation
channels, (23) reduces to

wM =
1

K
Λ−1a, (24)

the beamforming vector associated with the monochromatic
DCB (M-DCB) also known as conventional DCB [1]- [10],
[14]. Note that the main shortcoming of wM is its oblivious-
ness to the presence of scattering that can cause a substantial
system performance degradation, as will be unambiguously
illustrated later both by analysis and simulations in Sections V
and VI, respectively.

V. PERFORMANCE ANALYSIS OF THE PROPOSED B-DCB
TECHNIQUE

In this section, we analyze the performance of the proposed
B-DCB technique and compare it with those of the M-
DCB and B-CB techniques. The comparison with the M-
DCB technique, which is designed without taking into account
the scattering effect, highlights the performance gain if this
phenomenon is considered in the design of DCB techniques. In
turn, the comparison with the B-CB technique, which cannot
be implemented in a distributed fashion, emphasizes the cost
of using practical values of K in the design of the proposed
B-DCB technique.

5We will actually see in Section VI that K in the range of 10 readily offers
an acceptable approximation.
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A. CB performance metrics and beampatterns

One way to prove the efficiency of the proposed B-DCB
technique is undoubtedly comparing its achieved SNR with the
SNR performed when either the M-DCB or B-CB technique is
implemented in the network. Let ξw denote the achieved SNR
using the beamforming vector w. It follows from (4) and (5)
that ξw can be expressed as

ξw =
Pw(φs)

Pw,n
. (25)

In (25), commonly known as the beampattern, Pw(φ�) =

p�

∣∣∣wH
∑L
l=1 αla(φ� + θl)

∣∣∣2 is the received power from a
transmitter at direction φ� with power p�. Note that ξw is
an excessively complex function of the random variables rk,
ψk and [f ]k for k = 1, . . . ,K and αl and θl for l = 1, . . . , L
and, hence, a random quantity of its own. Therefore, it is
practically more appealing to investigate the behavior and
the properties of the achieved average-signal-to-average-noise
ratio (ASANR) ξ̃w given by [11], [27], [28]

ξ̃w =
P̃w(φs)

P̃w,n

, (26)

where P̃w(φ�) = E {Pw(φ�)} is called the average beam-
pattern and P̃w,n = E {Pw,n} is the average noise power
where the expectations are taken with respect to rk, ψk and
[f ]k for k = 1, . . . ,K and αl and θl for l = 1, . . . , L. Note
that it is also interesting to study the behavior of a more
practical performance measure, the average SNR (ASNR)
ξ̄w = E {Pw(φs)/Pw,n} where the expectation is taken
with respect to the random variables rk, ψk and [f ]k for
k = 1, . . . ,K and αl and θl for l = 1, . . . , L. Since Pw(φs)
and Pw,n are very complicated functions of the latter random
variables, deriving a closed-form expression for ξ̄w appears,
however, to be extremely difficult if not impossible. This also
suggests that it is more practical to analyze the behavior of
the achieved ASANR. Yet in what follows, we will show that
the achieved ASANR and ASNR using w ∈ {wBD,wB,wM}
have the same asymptotic behaviors when K grows large6.

Let us start by deriving the expression of the achieved
ASANR ξ̃wBD when the proposed B-DCB technique is used
in the network. To this end, we first introduce the following
theorem that derives both P̃wBD,n and P̃wBD (φ�).

Theorem 1: We have

P̃wBD,n =
2σ2

v

K

(
1 + 2

J1(γ(2σθ))

γ(2σθ)

)−1

+ σ2
n (27)

and

P̃wBD(φ�)=
2p�

K
(
1+2J1(γ(2σθ))

γ(2σθ)

)
⎛
⎝1+ 2(K−1)Ω (φ�)(

1+2J1(γ(2σθ))
γ(2σθ)

)
⎞
⎠ ,

(28)
where

Ω(φ�)=

∫
Θ

p(θ)

(
J1(γ(φ�+θ+σθ))

γ(φ� + θ + σθ)
+
J1(γ(φ�+θ−σθ))
γ(φ� + θ − σθ)

)2

dθ,

(29)

6We will actually verify by simulations in Section VI that when K is in
the range of 10, the ASANR and ASNR curves almost coincide.

at any arbitrary φ� and p� and for any arbitrary sets of rk, ψk
and [f ]k, k = 1, . . . ,K and αl and θl, l = 1, . . . , L.

Proof: See Appendix A.
It is noteworthy that the integrals in (29) can be computed

numerically with any desired accuracy by using the most pop-
ular mathematical software packages such as Matlab or Math-
ematica, after properly choosing the scattering distribution
p(θ). In fact, several statistical distributions for θl have been
proposed so far such as the Laplace, Gaussian or Uniform dis-
tribution [13]-[18]. Moreover, it is straightforward to show that
Ω(φ) ≤ Ω(φs = 0) and, hence, P̃wBD (φ�) ≤ P̃wBD (φs = 0).
The average receive beampattern has then a peak at the source
direction. This proves that the proposed B-DCB promotes the
signal received from the desired direction by decreasing the
received signal power from the other directions. Furthermore,
it can be shown that J1(γ(2σθ))/γ(2σθ) → 1/2 if σθ → 0
[11], [12]. It follows then from (28) that the average received
power from the source P̃wBD (0) reaches its maximum value
1 when σθ → 0 (i.e., there is no scattering and, hence, the
channel is monochromatic). In Section VI, it will be verified
by simulations that for a relatively small to moderate σθ ,
P̃wBD (0) remains equal to unity when σθ increases. Therefore,
the proposed B-DCB is robust against the scattering effect in
terms of average received power from the desired direction,
when σθ is relatively small to moderate. On the other hand,
using (27) and (28), the achieved ASANR ξ̃wBD is given by

ξ̃wBD =
1 + 2(K − 1)Ω (0)

(
1 + 2J1(γ(2σθ))

γ(2σθ)

)−1

σ2
v + σ2

n
K
2

(
1 + 2J1(γ(2σθ))

γ(2σθ)

) . (30)

As can be observed from (30), the proposed B-DCB achieves
its maximum achievable ASANR

ξ̃max =
1

σ2
v

K + σ2
n

, (31)

when σθ → 0. Simulations in Section VI will also show that,
when σθ is relatively small to moderate, the proposed B-DCB
is able to achieve ξ̃max. This further proves the robustness
of the proposed beamformer against the scattering effect.
However, when σθ is relatively large, one can easily show that
J1 (γ (2σθ)) /γ (2σθ) � 0 [1], [12]. In such a case, it can then
be inferred from (30) that ξ̃wBD is an affine function of Ω (0)
with a positive slope. Since Ω (0) decreases if σθ increases, the
achieved ASANR ξ̃wBD turns out to be a decreasing function
of σθ when the latter is large. In the following, we will show
that even though in such highly-scattered environments the
ASANR achieved using the proposed B-DCB technique dete-
riorates, it remains much higher than that achieved using the
M-DCB technique. Now, let us focus on the latter technique.
When the M-DCB technique is implemented, the following
theorem holds.

Theorem 2: We have

P̃wM,n =
σ2
v

K
+ σ2

n (32)

and

P̃wM(φ�) =
p�
K

(1 + (K − 1)Γ (φ�)) , (33)
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where

Γ(φ�) =

∫
Θ

p(θ�)

(
2
J1(γ(φ� + θ))

γ(φ� + θ)

)2

dθ, (34)

at any arbitrary φ� and p� and for any arbitrary sets of rk, ψk
and [f ]k, k = 1, . . . ,K and αl and θl, l = 1, . . . , L.

Proof: See Appendix B.
Note that the discussion involving the integral in (29)

also holds for the integral in (34). Nevertheless, assuming
that the scattering distribution is Uniform over [−Δ,Δ] (i.e.,
p(θ) = 1/2Δ) such as in [13], an approximation of Γ(φs = 0)
expressed in terms of an infinite sum is proposed in [14] for
a relatively small σθ . Here, a much more simpler approxi-
mation is developed. Indeed, under these conditions, γ(θ) �
2π(R/λ)θ and, hence, after performing some mathematical
manipulations, we obtain [29]

Γ(0) � 1

2(πR)2Δ

∫ Δ

−Δ

(
J1
(
2πRλ θ

)
θ

)2

dθ

� 1

2Δ

∫ Δ

−Δ
2F3

(
2,

3

2
; 2, 2, 3,−4π2

(
R

λ

)2

θ2

)

� 1

2

∫ 1

0

2F3

(
2, 32 ; 2, 2, 3,−12π2

(
R
λ

)2
σ2
θθ
)

√
θ

dθ

� 3F4

(
1

2
, 2,

3

2
;
3

2
, 2, 2, 3,−12π2

(
R

λ

)2

σ2
θ

)
,(35)

where 3F4

(
1
2 , 2,

3
2 ;

3
2 , 2, 2, 3,−12π2(R/λ)2x2

)
is the hyper-

geometric function. Since the latter decreases with x, it
follows from (33) and (35) that when σθ is relatively small to
moderate, the average received power at the desired direction
P̃wM(0) decreases when σθ increases. This is in contrast with
our proposed B-DCB technique whose average received power
P̃wBD (0) remains constant even though σθ increases in such
lightly- to moderately-scattered environments. Therefore, the
proposed B-DCB is more robust against the scattering effect
than its M-DCB vis-a-vis, which is designed without taking
into account this phenomenon. In addition, from (32) and (33),
the achieved ASANR using the M-DCB technique is given by

ξ̃wM =
1 + (K − 1)Γ (0)

σ2
v +Kσ2

n

. (36)

Using (35) in (36), we readily show that when σθ is relatively
small to moderate, in contrast to ξ̃wBD , ξ̃wM is a decreasing
function of σθ . This further proves the advantage of using the
proposed B-DCB instead of the M-DCB, which is designed
without taking into account the scattering effect.

Concerning the achieved ASANR using the B-CB tech-
nique wB, it turns out that both the beampattern PwB(φ�)
and the received noise power PwB,n are ratios of the random
variables rk , ψk and [f ]k for k = 1, . . . ,K and αl and θl for
l = 1, . . . , L. Therefore, deriving a closed-form expression of
the average beampattern P̃wB(φ�) and the average noise power
P̃wB,n appears to be extremely difficult if not impossible.
While this fact hampers a rigorous analytical study of the
achieved ASANR ξ̃wB , some important properties of ξ̃wB are
derived in Section V-C and V-D, in the asymptotic regime
when K → ∞.

B. Asymptotic ASANR performance of B-DCB vs. M-DCB

In this section, we carry out an analytical comparison
between the achieved ASANR using the proposed B-DCB
technique and that achieved using the M-DCB technique.
Using the fact that J1(γ(2σθ))/γ(2σθ) → 1/2 if σθ → 0
[11], [12], it is straightforward to show from (30) and (36)
that ξ̃wBD = ξ̃wM = ξ̃max if σθ → 0. This is expected since
wBD boils down to wM in such a case where the channel
is monochromatic and, hence, the assumption made when
designing wM is valid. Moreover, it is direct to show from
(30) and (36) that

lim
K→∞

ξ̃wM

ξ̃wBD

=
Γ (0)

(
1 + 2J1(γ(2σθ))

γ(2σθ)

)2
4Ω (0)

. (37)

When the AS σθ is relatively small to moderate, the rela-
tionship between σθ and either J1(γ(θ + σθ))/γ(θ + σθ) or
J1 (γ (θ − σθ)) /γ (θ − σθ) can be accurately described by the
first two non-zero terms of the Taylor series of the latter
functions at θ as follows

J1 (γ (θ + σθ))

γ (θ + σθ)
=
J1 (γ (θ))

γ (θ)
+σθ

(
J1 (γ (x))

γ (x)

)′∣∣∣
x=θ

(38)

J1 (γ (θ − σθ))

γ (θ + σθ)
=
J1 (γ (θ))

γ (θ)
−σθ

(
J1 (γ (x))

γ (x)

)′∣∣∣
x=θ

,(39)

where (J1 (γ (x)) /γ (x))
′ is the first derivative of

J1 (γ (x)) /γ (x). If we substitute (38) and (39) in (29)
we obtain that Ω (0) = Γ (0) when the AS is relatively small
to moderate. Therefore, using the fact that sin (σθ) � σθ for
small σθ , it directly follows from (37) that

lim
K→∞

ξ̃wM

ξ̃wBD

� 1

4

(
1 +0 F1

(
; 2;−4π2

(
R

λ

)2

σ2
θ

))2

.

(40)
Since the hypergeometric function 0F1

(
; 2;−4π2x2

)
de-

creases inversely proportional to x when the latter is small,
the above approximation establishes that for large K , the
ASANR gain achieved using wBD instead of wM in lightly- to
moderately-scattered environments increases proportionally to
σθ and R/λ. This proves the advantage of taking into account
the scattering effect in the design of the DCB techniques.

Furthermore, when σθ is large in highly-scattered environ-
ments, assuming that the scattering distribution p(θ) is Uni-
form on [−Δ,Δ] and using the fact that J1(γ(2σθ))/γ(2σθ) �
0 for large σθ , we show that

Ω(0) � 1√
3σθ

∫ √
3σθ

0

(
J1(γ(θ − σθ))

γ(θ − σθ)

)2

dθ

� Γ(0)

2
− 1√

3σθ

(∫ −σθ

−√
3σθ

(
J1(γ(θ))

γ(θ)

)2

dθ︸ ︷︷ ︸
�0

+

∫ √
3σθ

(
√
3−1)σθ

(
J1(γ(θ))

γ(θ)

)2

dθ︸ ︷︷ ︸
�0

)
. (41)

Thus, using (41) in (37) yields

lim
K→∞

ξ̃wM

ξ̃wBD

� 1

2
. (42)
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Therefore, when σθ is large in highly-scattered environments,
the ASANR gain achieved using wBD instead of wM is
approximatively as much as 3 dB. This further proves the
advantage of using the proposed B-DCB technique instead of
the M-DCB, which is designed without taking into account
the scattering effect.

Recall that both the B-DCB and the M-DCB are designed
assuming perfect knowledge of the terminals’ parameters
(forward and backward channels, source direction, angular
spread, etc.) and, hence, the comparison made above does not
account for any parameter estimation error. Note that, in [30]
and [31], we have already analyzed the impact of these errors
on the performance of both the B-DCB and M-DCB. It has
been shown that in practical conditions (including feedback
quantization errors and Doppler effect), the proposed B-DCB
outperforms not only the M-DCB, but also the optimal CSI-
based CB for almost the entire range of practical angular
spread values.

C. Asymptotic ASANR performance of B-DCB vs. B-CB

Since the proposed B-DCB wBD approximates its B-CB
wB counterpart, it is expected that ξ̃wBD ≤ ξ̃wB and, hence,
an ASANR deterioration may occur due to the approach
developed in Section IV. However, when the number of
terminals K is large enough, the following theorem holds.

Theorem 3: Regardless of σθ , we have

lim
K→∞

ξ̃wBD = lim
K→∞

ξ̃wB , (43)

for any arbitrary sets of rk, ψk and [f ]k, k = 1, . . . ,K and αl
and θl, l = 1, . . . , L and for any scattering distribution p(θ).

Proof: See Appendix C.
It follows from Theorem 3 that the B-DCB and the B-CB

which cannot be implemented in a distributed fashion, achieve
the same ASANR for large K . Consequently, there is no
ASANR degradation due to the approach used in Section IV,
when the number of terminals K is large enough, actually
typically in the range of 10 as will be shown by simulations.

To summarize, thus far, we showed that using the proposed
B-DCB wBD instead of the M-DCB wM, which is designed
without taking into account the scattering effect, results in
an ASANR gain that may reach as much as 3 dB for
large σθ . We also showed that the proposed B-DCB wBD

which approximates the B-CB wB, unsuitable for a distributed
implementation, achieves the same ASANR as wB when K
is large enough. These results highlight the efficiency, in
terms of achieved ASANR, of the proposed beamformer that
takes into account the scattering effect and, further, could be
implemented in a distributed fashion.

D. Asymptotic equivalence between ASANR and ASNR met-
rics

Although the ASANR is a meaningful performance mea-
sure, the ASNR remains a more revealing metric that may
provide practical system information. This fact motivates us
to claim the following important theorem.

Theorem 4: Using any CB version w ∈ {wBD,wB,wM}
in the network, we have

lim
K→∞

ξ̃w = lim
K→∞

ξ̄w, (44)

for any arbitrary sets of rk , ψk and [f ]k , k = 1, . . . ,K and αl
and θl, l = 1, . . . , L and for any scattering distribution p(θ).

Proof: See Appendix D.
Theorem 4 establishes that the achieved ASANR ξ̃w and

ASNR ξ̄w using w ∈ {wBD,wB,wM} have the same be-
haviors when K is large enough, typically in the range of 10
as will be shown by simulations. Consequently, the proposed
B-DCB is also much more efficient in terms of achieved
ASNR than the M-DCB, which is designed without taking into
account the scattering effect, and able to perform as much as
3 dB of ASNR gain. Furthermore, the proposed beamformer
and the B-CB, which cannot be implemented in a distributed
fashion achieves the same ASNR, for large K . Simulations
results, in the next section, further verify and validate the
efficiency of the proposed B-DCB.

Note that we have only focused in this work on the receive
CB configuration, but all the derivations, solutions and results
provided herein easily extend to the transmit CB configuration
as well (where the source and the receiver switch positions)
[25], [26]. It is also noteworthy that we have been able in [32]
to extend the novel B-DCB designs to the case wherein the
propagation model not only accounts for scattering, but also
for the presence of interfering sources.

VI. SIMULATION RESULTS

Computer simulations are provided to support the theoret-
ical results. All the empirical average quantities are obtained
by averaging over 106 random realizations of rk , ψk, [f ]k for
k = 1, . . . ,K and αl, θl for l = 1, . . . , L. In all simulations,
we assume that the number of rays or chromatics is L = 6,
the noises’ powers σ2

n and σ2
v are 10 dB below the source

transmit power ps = 1. All curves are plotted for R/λ = 1
except those in Figs. 2(b) and 2(d).

Fig. 2 plots the average beampatterns P̃wBD(φ�) and
P̃wM(φ�) for K = 20 and different values of R/λ and σθ .
In this figure, two scattering distributions p(θ) are assumed:
Uniform and Gaussian. As can be observed from this fig-
ure, when the AS σθ is small, regardless of the scattering
distribution, P̃wM(0) decreases if σθ and or R/λ increases
while P̃wBD(0) remains equal to unity. Therefore, when the
AS is relatively small to moderate, the proposed B-DCB is
more robust than its M-DCB vis-a-vis against the scattering
effect, in terms of average received power from the desired
direction. This observation holds if the scattering distribution
is Uniform or Gaussian and can be easily verified for any other
distribution.

Fig. 3 displays the analytical and the empirical ASANRs of
wBD and wM as well as their empirical ASNRs versus the AS
σθ for K = 20. The empirical ASANR of wP is also shown
in this figure. The scattering distribution is assumed to be Uni-
form in Fig. 3(a) and Gaussian in Fig. 3(b). From these figures,
we confirm that analytical ξ̃wBD and ξ̃wM match perfectly their
empirical counterparts. Both figures show that the P-CB is
able to achieve the maximum achievable ASNR for any given
σθ even in highly-scattered environments. This is due to the
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Fig. 2. The average beampatterns of wBD and wM for σθ = 10, 17 (deg),
R/λ = 1, 3, and K = 20 when the scattering distribution is Uniform and
Gaussian.

optimality of the polychromatic solution. Furthermore, form
these figures, we observe that the proposed B-DCB technique
is able to obtain the maximum achievable ASANR ξ̃max even
in moderately-scattered environments where σθ is in the range
of 20 degrees, while the ASANR performed by its M-DCB
vis-a-vis decreases by 0.5 dB in lightly-scattered environments
where σθ is around 5 degrees and becomes soon unsatisfactory
in moderately- to highly-scattered environments. Furthermore,
in highly-scattered environments, the proposed technique is
able to achieve as much as 3 dB of ASANR gain. This
corroborates the analytical result in Section V-B. Moreover,
it can be observed from Figs. 3(a) and 3(b) that the curves
of ξ̃wBD and ξ̃wM are indistinguishable from ξ̄wBD and ξ̄wM ,
respectively, when K = 20. This is due to the fact that the
achieved ASANRs and ASNRs have the same behaviors when
K is large as claimed in Theorem 4.

Fig. 4 shows the ASANRs ξ̃wBD and ξ̃wB and the ASNRs
ξ̄wBD and ξ̄wB versus the AS σθ for K = 5, 10, 20, when
the scattering distribution is Uniform and Gaussian. It can be
verified from this figure that the proposed B-DCB and the B-
CB techniques always achieve the same ASANR when σθ is
relatively small to moderate, even for small K . This is due to
the fact that, regardless of the number of terminals K , μD � μ
for relatively small σθ and, hence, wBD � wB. Moreover,
as can be observed from Figs. 4(a) and 4(b), the curves
ξ̃wBD and ξ̄wBD as well as ξ̃wB and ξ̄wB always coincide
when σθ is relatively small. This is expected since PwB,n �
PwBD,n � σ2

v/K + σ2
n for relatively small σθ and, therefore,

ξ̄w = E {Pw(φs)/Pw,n} � E {Pw(φs)} /Pw,n = ξ̃w for
w ∈ {wBD,wB}. This further proves that the ASANR is a
meaningful performance measure. Furthermore, if σθ is large
in highly-scattered environments, the achieved ASANR using
the proposed beamformer fits perfectly with that achieved
using the B-CB, which is unsuitable for a distributed imple-
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Fig. 3. The analytical and the empirical ASANRs achieved by wBD and
wM as well as their empirical ASNRs versus σθ for K = 20 when the
scattering distribution is Uniform and Gaussian (compared to the empirical
ASANR achieved by wP).

mentation, when K is in the range of 20 while it looses only
a fraction of a dB when K is in the range of 10. It can also be
observed from Figs. 4(a) and 4(b) that ξ̃wBD and ξ̃wB perfectly
match ξ̄wBD and ξ̄wB , respectively, for K = 20. All these
observations corroborate the results in Theorems 3 and 4.

Fig. 5 plots the ASANRs ξ̃wM and ξ̃wBD for K = 20
when the estimated AS is corrupted by a deterministic es-
timation error Δσθ ∈ {−2.5,−1.2, 0, 1.6, 3}. In such a case
σθ = σ†

θ + Δσθ where σ†
θ is the actual AS. The scattering

distribution is assumed to be Uniform in Fig. 5(a) and Gaus-
sian in Fig. 5(b). These figures show that the proposed B-
DCB technique is sensitive to AS estimation errors when the
actual AS σ†

θ is relatively small to moderate. Nevertheless,
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Fig. 4. The empirical ASANRs and ASNRs achieved by wBD and wB

versus σθ for K = 5, 10, 20 when the scattering distribution is Uniform and
Gaussian.

the ASANR degradation caused by such an error remains
acceptable provided that Δσθ is kept reasonable. Fig. 5 shows
on the other hand that, regardless of the scattering distribution,
the proposed technique is quite robust to AS estimation errors
when σ†

θ is large in highly-scattered environments. This is
expected since, in such areas, Δσθ is negligible compared to
σ†
θ and, hence, σθ � σ†

θ .

VII. CONCLUSION

Whereas previous works neglected the scattering effect
to assume a monochromatic channel, in this paper, a poly-
chromatic channel due to the presence of scattering was
assumed. We considered a P-CB technique to achieve a dual-
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Fig. 5. The ASANRs ξ̃wBD and ξ̃wM versus the actual σ†
θ for K = 20,

and different AS estimation errors when the scattering distribution is Uniform
and Gaussian.

hop communication from a source to a receiver, through a
wireless network comprised of K independent terminals. Due
to the complex nature of polychromatic channels, the design of
this technique both in closed-form and in distributed fashion
is impossible. Using the fact that, for a relatively small to
moderate AS, a polychromatic channel may be considered as
bichromatic, we introduced a new B-CB technique that can
be easily designed in closed-form and, further, accurately ap-
proximates the P-CB technique. Unfortunately, this technique
is unsuitable for a distributed implementation. To circumvent
this problem, we exploited the asymptotic expression at large
K of the B-CB whose weights could be locally computed
at every terminal and, further, well-approximate their original



1678 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 62, NO. 5, MAY 2014

counterparts. The performances of the so-obtained B-DCB
technique were analyzed and compared to those of the M-
DCB and B-CB techniques. We showed that the proposed
B-DCB technique is able to reach its maximum achievable
ASNR in lightly- to moderately-scattered environments while
the achieved ASNR using the M-DCB technique, which is
designed without taking into account the scattering effect,
decreases in lightly-scattered environments and becomes soon
unsatisfactory from moderately- to highly-scattered environ-
ments. We also showed that the proposed B-DCB technique
achieves as much as 3 dB of ASNR gain in high scattering,
when K is large enough. Moreover, we proved that for large
K the achieved ASNR using the B-DCB technique approaches
that achieved using the B-CB technique, which cannot be
implemented in a distributed fashion.

APPENDIX A: PROOF OF THEOREM 1

It follows from (23) that

P̃wBD(φ�)=
(μD

K

)2
(E {x1}+E {x2}+E {x∗2}+E {x3}) , (45)

where

x1=aH(σθ)Λ
−1

L∑
l=1

αla(φ�+θl)

L∑
m=1

α∗
maH(φ�+θm)Λ

−1a (σθ)

(46)

x2=aH(σθ)Λ
−1

L∑
l=1

αla(φ�+θl)

L∑
m=1

α∗
maH(φ�+θm)Λ

−1a(−σθ)

(47)

x3=aH(−σθ)Λ−1
L∑
l=1

αla(φ�+θl)

L∑
m=1

α∗
maH(φ�+θm)Λ

−1a(−σθ) .

(48)

First, we derive the expression of x1 as shown on the top of
the next page. Using (9) in (49) yields

Eαl
{x1}=

L∑
l=1

1

L

(
K+

K∑
k=1

ej
2π
λ rk(cos(σθ−ψk)−cos(φ�+θl−ψk))×

K∑
s=1,s�=k

e−j
2π
λ rs(cos(σθ−ψs)−cos(φ�+θl−ψs))

)
. (50)

However, we know that

Erk,ψk

{
ej

2π
λ rk(cos(σθ−ψk)−cos(φ�+θl−ψk))

}
=2

J1(γ(φ�+θl−σθ))
γ(φ�+θl−σθ) ,

(51)

and, therefore,

E{x1} = K+4K(K−1)

∫
Θ

p(θ)

(
J1(γ(φ�+θ−σθ))
γ(φ�+θ−σθ)

)2

dθ. (52)

Following similar steps as above, it can be shown that

E{x2} = 2K
J1(γ(2σθ))

γ(2σθ)
+ 4K(K − 1)∫

Θ

p(θ)
J1(γ(φ�+θ−σθ))
γ(φ�+θ−σθ)

J1(γ(φ�+θ+σθ))

γ(φ�+θ+σθ)
dθ. (53)

As E{x2} is real, E{x2} = E{x∗2}. In turn, x3 is obtained by
substituting σθ with −σθ in (49) and, hence,

E{x3}=K+4K(K−1)

∫
Θ

p(θ)

(
J1(γ(φ�+θ+σθ))

γ(φ�+θ+σθ)

)2

dθ. (54)

Finally, using (52), (53) and (54) in (45), (28) is obtained.
On the other hand, from (5), the received noise power using

wBD is given by

PwBD,n=
(μD

K

)2(
aH(σθ)+aH(−σθ)

)
Λ−1(a (σθ)+a (−σθ))+σ2

n

=
(μD

K

)2 (
2 +

K∑
k=1

ej
2π
λ rk(cos(ψk+σθ)−cos(ψk−σθ)) +

K∑
k=1

e−j
2π
λ rk(cos(ψk+σθ)−cos(ψk−σθ))

)
+ σ2

n. (55)

Applying the expectation operator over both sides of (55) and
using (21) in the resulting equation, (27) is obtained.

APPENDIX B: PROOF OF THEOREM 2

Using (24), the achieved beampattern by the M-DCB
technique can be expressed as shown on the top of the next
page. Thus, using (9) and the fact that

Erk,ψk

{
ej

2π
λ rk(cos(ψk)−cos(φ�+θl−ψk))

}
=2

J1 (γ (φ�+ θl))

γ (φ�+ θl)
,

(57)

in (56), (33) is obtained.
In turn, from (5) the received noise power PwM,n is given

by

PwM,n =
σ2
v

K2
aHΛ−1a+ σ2

n

=
σ2
v

K
+ σ2

n. (58)

It follows from (58) that P̃wM,n = PwM,n and, therefore, (32)
is verified.

APPENDIX C: PROOF OF THEOREM 3

Using (17) we show that

P̃wB (φ�) = E

{( μ
K

)2
(x1 + x2 + x∗2 + x3)

}
, (59)

and

P̃wB,n=E

{( μ
K

)2 (
2 +

K∑
k=1

ej
2π
λ rk(cos(ψk+σθ)−cos(ψk−σθ)) +

K∑
k=1

e−j
2π
λ rk(cos(ψk+σθ)−cos(ψk−σθ))

)}
+ σ2

n. (60)

It is direct to show from (59) that

lim
K→∞

P̃wB (φ�)=E

{(
lim
K→∞

μ
)2(

lim
K→∞

x1
K2

+ lim
K→∞

x2
K2

+

lim
K→∞

x∗2
K2

+ lim
K→∞

x3
K2

)}
. (61)
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x1 =

(
aH (σθ)Λ

−1
L∑
l=1

αla(φ� + θl)

)
·
(

L∑
m=1

α∗
maH(φ� + θm)Λ−1a (σθ)

)

=

K∑
k=1

K∑
s=1

(
L∑
l=1

|αl|2 ej 2π
λ rk(cos(σθ−ψk)−cos(φ�+θl−ψk)) × e−j

2π
λ rs(cos(σθ−ψs)−cos(φ�+θl−ψs)) +

L∑
l=1

αle
j 2π

λ rk(cos(σθ−ψk)−cos(φ�+θl−ψk)) ×
L∑

m=1,m �=l
α∗
me

−j 2π
λ rs(cos(σθ−ψs)−cos(φ�+θm−ψs))

)
. (49)

PwM (φ�) =
1

K2

(
aHΛ−1

L∑
l=1

αla(φ� + θl)

)
·
(

L∑
m=1

α∗
maH(φ� + θm)Λ−1a

)

=
1

K2

K∑
k=1

K∑
s=1

(
L∑
l=1

|αl|2 ej 2π
λ rk(cos(ψk)−cos(φ�+θl−ψk)) × e−j

2π
λ rs(cos(ψs)−cos(φ�+θl−ψs)) +

L∑
l=1

αle
j 2π

λ rk(cos(ψk)−cos(φ�+θl−ψk)) ×
L∑

m=1,m �=l
α∗
me

−j 2π
λ rs(cos(ψs)−cos(φ�+θm−ψs))

)
. (56)

lim
K→∞

x1
K2

= 4

(
L∑
l=1

|αl|2
(
J1 (γ (φ�+ θl − σθ))

γ (φ� + θl − σθ)

)2

+

L∑
l=1

αl
J1 (γ (φ�+ θl − σθ))

γ (φ� + θl − σθ)
×

L∑
m=1,m �=l

α∗
m

J1 (γ (φ�+ θm − σθ))

γ (φ� + θm − σθ)

)
. (62)

lim
K→∞

x2
K2

=4

(
L∑
l=1

|αl|2 J1 (γ(φ�+θl−σθ))
γ(φ�+θl−σθ) × J1 (γ (φ�+θl+σθ))

γ (φ�+θl + σθ)
+

L∑
l=1

αl
J1 (γ(φ�+θl−σθ))
γ(φ�+θl−σθ) ×

L∑
m=1,m �=l

α∗
m

J1 (γ(φ�+θm+σθ))

γ(φ�+θm+σθ)

)
.(63)

lim
K→∞

x3
K2

=4

(
L∑
l=1

|αl|2
(
J1 (γ (φ� + θl + σθ))

γ (φ� + θl + σθ)

)2

+

L∑
l=1

αl
J1 (γ (φ� + θl + σθ))

γ (φ� + θl + σθ)
×

L∑
m=1,m �=l

α∗
m

J1 (γ (φ� + θm + σθ))

γ (φ� + θm + σθ)

)
. (64)

Using the strong law of large numbers and (51), we can
obtain (62), (63) and (64). Moreover, we can easily prove that
limK→∞ x∗2/K2 = limK→∞ x2/K

2. Substituting (62), (63)
and (64) in (61) and using (22) and the property in (9) yields

lim
K→∞

P̃wB (φ�) = lim
K→∞

P̃wBD (φ�) . (65)

Furthermore, we can show that

lim
K→∞

P̃wB,n = lim
K→∞

P̃wBD,n. (66)

(43) can then be inferred from (65) and (66).

APPENDIX D: PROOF OF THEOREM 4

To prove (44), we first focus on the achieved ASNR ξ̄wBD

given by

ξ̄wBD = E

{
PwBD(φs)

PwBD,n

}
. (67)

From (67), we have

lim
K→∞

ξ̄wBD = E

{
limK→∞ PwBD(φs)

limK→∞ PwBD,n

}
. (68)

It is direct to show from (55) that

lim
K→∞

PwBD,n = σ2
n, (69)

and, hence,

lim
K→∞

ξ̄wBD =
E {limK→∞ PwBD(φs)}

σ2
n

. (70)

Moreover, we have

E
{

lim
K→∞

PwBD (φ�)
}
= μ2

DE

{(
lim
K→∞

x1
K2

+ 2 lim
K→∞

x2
K2

+

lim
K→∞

x3
K2

)}
. (71)

Substituting (62), (63) and (64) in (71), we show that
E {limK→∞ PwBD (φ�)} = limK→∞ P̃wBD (φ�). Using this
result in (70), (44) is obtained for w = wBD.

Using the same method as above, (44) can be also proved
for w = wM and w = wB.
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