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Abstract—In this paper, we tackle for the first time the problem
of maximum likelihood (ML) estimation of the signal-to-noise
ratio (SNR) parameter over time-varying single-input mul-
tiple-output (SIMO) channels. Both the data-aided (DA) and
the non-data-aided (NDA) schemes are investigated. Unlike
classical techniques where the channel is assumed to be slowly
time-varying and, therefore, considered as constant over the entire
observation period, we address the more challenging problem
of instantaneous (i.e., short-term or local) SNR estimation over
fast time-varying channels. The channel variations are tracked
locally using a polynomial-in-time expansion. First, we derive in
closed-form expressions the DA ML estimator and its bias. The
latter is subsequently subtracted in order to obtain a unbiased
DA estimator whose variance and the corresponding Cramér-Rao
lower bound (CRLB) are also derived in closed form. Due to
the extreme nonlinearity of the log-likelihood function (LLF) in
the NDA case, we resort to the expectation-maximization (EM)
technique to iteratively obtain the exact NDA ML SNR estimates
within very few iterations. Most remarkably, the new EM-based
NDA estimator is applicable to any linearly-modulated signal and
provides sufficiently accurate soft estimates (i.e., soft detection) for
the unknown transmitted symbols. Therefore, hard detection can
be easily embedded in the iteration loop in order to improve its
performance at low SNR levels. We show by extensive computer
simulations that the new estimators are able to accurately estimate
the instantaneous per-antenna SNRs as they coincide with the DA
CRLB over a wide range of practical SNRs.

Index Terms—CRLB, detection, expectation-maximization
(EM), ML estimation, SNR, time-varying SIMO channels.

I. INTRODUCTION

O VER the recent years, there has been an increasing
demand for the a priori knowledge of the propagation

environment conditions, fueled by an increasing thirst for
taking advantage of any optimization opportunity that would
enhance the system capacity. In essence, almost all the nec-
essary information about these propagation conditions can be
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captured by estimating various channel parameters. In partic-
ular, the SNR is considered to be a key parameter whose a
priori knowledge can be exploited at both the receiver and the
transmitter (through feedback), in order to reach the desired en-
hanced/optimal performance using various adaptive schemes.
As examples, just to name a few, the SNR is required in all
power control strategies, adaptive modulation and coding, turbo
decoding, and handoff schemes [2]–[4]. SNR estimators can be
broadly divided into two major categories: i) data-aided (DA)
techniques in which the estimation process relies on a perfectly
known (pilot) transmitted sequence, and ii) non-data-aided
(NDA) techniques where the estimation process is applied
with no a priori knowledge about the transmitted symbols (but
possibly the transmit constellation).
DA approaches often provide sufficiently accurate estimates

for constant or quasi-constant parameters, even by using a re-
duced number of pilot symbols. However, in fast changing wire-
less channels, they require larger pilot sequences in order to
track the time variations of the unknown parameter. Indeed,
when estimating the (time-varying) instantaneous SNR from
far-apart inserted pilot symbols, the DA approaches are unable
to reflect the actual channel quality. This is because the receiver
cannot accurately capture the details of the channel between
the pilot positions. In principle, this problem can be dealt with
by inserting more pilot symbols. Unfortunately, this remedy
results in an excessive overhead that entails severe losses in
system capacity. To circumvent this problem, NDA approaches
are often considered instead for their ability to exploit both pilot
and non-pilot received samples to estimate the channel coeffi-
cients. Consequently, they can provide the receiver with more
refined channel tracking capabilities without impinging on the
whole throughput of the system.
Historically, the problem of SNR estimation was first formu-

lated and tackled in the context of single-input single-output
(SISO) systems under constant channels [5], [6]. These two
early estimators, the well-knownM2M4 technique among them,
are moment-based ones. During the last decade, there has been a
surge of interest in investigating this problem more intensively
and many estimators tailored toward constant SISO channels
were introduced [7]–[13]. More recently, SNR estimation has
also been addressed under different types of diversity. In partic-
ular, a moment-based SNR estimator that exploits the across-an-
tennae fourth-order moments in constant SIMO channels (i.e.,
spatial diversity) was proposed in [14], [15]. ML SNR esti-
mation has also been investigated in [16]–[18] under constant
SIMO and MIMO channels, respectively. Yet, current and fu-
ture generation multi-antennae systems such as long-term-evo-
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lution (LTE), LTE-Advanced (LTE-A) and beyond (LTE-B) are
expected to support reliable communications at very high ve-
locities reaching 500 Km/h [19]. For such systems, classical
assumptions of constant channels no longer hold and conse-
quently all the aforementioned SNR estimators shall suffer from
severe performance loss. Therefore, one needs to explicitly in-
corporate the channel time-variations in the estimation process
and, so far, very few works have been reported on this subject.
In fact, ML SNR estimation under SISO time-varying channels
was investigated in [20]–[22] for the DA and NDA modes, re-
spectively. Under SIMO time-varying channels, however, the
only work that is available from the open literature is based on
a least-squares (LS) approach [23], [24].
Motivated by all these facts, we tackle in this paper

the problem of ML instantaneous SNR estimation over
time-varying SIMO channels, for both the DA and NDA
schemes. Our proposed method is based on a piece-wise poly-
nomial-in-time approximation for the channel process with
very few unknown coefficients. In the DA scenario where the
receiver has access to a pilot sequence from which the SNR is
obtained, the ML estimator is derived in closed form. Whereas
in the NDA case where the transmitted sequence is partially
unknown and random, the LLF becomes very complicated
and its maximization is analytically intractable. Therefore, we
resort to a more elaborate solution using the EM concept [25]
and we develop thereby an iterative technique that is able to
converge within very few iterations (i.e., in the range of 10). We
also solve the challenging problem of local convergence that is
inherent to all iterative techniques. In fact, we propose an appro-
priate initialization procedure that guarantees the convergence
of the new EM-based estimator to the global maximum of the
LLF which is indeed multimodal under complex time-varying
channels (in contrast to real channels). Most interestingly, the
new EM-based SNR estimator is applicable for linearly-modu-
lated signals in general (i.e., PSK, PAM, or QAM) and provides
sufficiently accurate estimates [i.e., soft detection (SD)] for the
unknown transmitted symbols. Therefore, hard detection (HD)
can be easily embedded in the iterative loop to further improve
its performance over the low-SNR region. Moreover, we de-
velop a bias-correction procedure that is applicable in both the
DA and NDA cases and which allows, over a wide practical
SNR range, the new estimators to coincide with the DA CRLB.
Simulation results show the distinct performance advantage
offered by fully exploiting the antennae diversity and gain in
terms of instantaneous SNR estimation. In particular, the new
NDA estimator (either with SD or HD) shows overly superior
performance against the most recent NDA ML technique1 both
in its original SISO version [22] and even in its SIMO-extended
version developed here to further exploit the antennae gain.
The remainder of this paper is structured as follows. In

Section II, we introduce the system model that will be used
throughout the article. In Section III, we derive in closed
form the new DA estimator with its bias and variance along
with the corresponding CRLB. In Section IV, we develop the
new NDA EM-based ML estimator along with its appropriate
initialization procedure. In Section V, we present and analyze
the simulation results before drawing out some concluding
remarks in Section VI.

1It is worth mentioning here that the very first EM-based ML SNR estimator
was developed in [12], but for constant channels.

We mention beforehand that some of the common nota-
tions are adopted in this paper. Indeed, vectors and matrices
are represented in lower- and upper-case bold fonts, respec-
tively. Moreover, and denote the transpose and
the Hermitian (transpose conjugate) operators, respectively.
The operators and return, respectively, the real and
imaginary parts of any complex scalar or vector whereas
returns its conjugate. Finally, denotes a zero
matrix ( when ).

II. SYSTEM MODEL

Consider a digital transmission of a -ary linearly-modu-
lated signal over a SIMO communication system under time-
varying flat-fading channels. Assuming an ideal receiver with
perfect time synchronization, and after matched filtering, the
sampled baseband received signal over the antenna element,
for , can be expressed as:

(1)

where is the discrete-time instant, is the
sampling period which is equal to the symbol period, and is
the size of the observation window. We denote by the lin-
early-modulated (i.e.,M-PSK,M-PAMorM-QAM) transmitted
symbol, by the corresponding received sample, and by

the time-varying complex channel gain, over each an-
tenna branch. Note here that any carrier frequency offset (CFO)
that is due to the Doppler shift and/or any mismatch between
the transmitter and receiver local oscillators is absorbed in the
complex channel coefficients. The noise components, ,
assumed to be temporally white and uncorrelated between an-
tenna elements, are realizations of zero-mean complex circular
Gaussian processes, with independent real and imaginary parts,
each of variance (i.e., with overall noise power ).
We assume that the same noise power is experienced over all
the antenna branches (i.e., uniform noise).
The narrowband model in (1) is well justified in practice by

its wide adoption in current and next-generation multicarrier
communication systems, such as LTE, LTE-A and LTE-B sys-
tems. In fact, it is well known that OFDM systems transform a
multipath frequency-selective channel in the time domain into
a frequency-flat (i.e., narrowband) channel over each subcarrier
as modeled by (1). Actually, multicarrier technologies were pri-
marily designed to combat the multipath effects in high-data-
rate communications by bringing back the per-carrier propaga-
tion channel to the simple flat-fading case [26], [27]. Yet, even
over traditional single-carrier systems, the narrowband model
in (1) could still be valid in practice when the symbol duration
is smaller than the delay spread of the channel. As mentioned in
Section I, however, most of the available techniques are based
on the assumption that the channels are constant during the ob-
servation period, i.e., for . But
since in most real-world situations this assumption does not
hold, one must incorporate the channel time variations in the
SNR estimation process. Actually, all real-life channels have an
essentially finite number of degrees of freedom due to restric-
tions on time duration or bandwidth (i.e., bandlimited). Conse-
quently, their time variations can be efficiently captured through
-power series models [28]. In fact, owing to the well-known
Taylor’s theorem, the time-varying channel coefficients can be



BELLILI et al.: ML SNR ESTIMATION OF LINEARLY-MODULATED SIGNALS OVER TIME-VARYING FLAT-FADING SIMO CHANNELS 443

locally tracked through a polynomial-in-time expansion of order
as follows:

(2)

where is the coefficient of the channel polynomial ap-
proximation over the branch among receiving antennae.
The term refers to the remainder of the Taylor series ex-
pansion. This remainder can be driven to zero under mild condi-
tions such as i) a sufficiently high approximation order ,
or ii) a sufficiently small ratio where
is the sampling rate, is the maximum Doppler frequency
shift, and is the size of the local approximation window.
Choosing a high approximation order (i.e., first condition) may
result in numerical instabilities due to badly conditioned ma-
trices (depending on the value of the sampling rate). The second
condition, however, can be easily fulfilled by choosing small-
size local approximation windows (i.e., by appropriately se-
lecting ). By doing so, the remainder can be neglected
thereby yielding the accurate approximation:

(3)

Given all the received samples , for
, and the statistical noise model, our goal is to

continuously estimate the instantaneous2 per-antenna SNRs
which are defined for each as follows:

Note here that we do not make any other assumption about the
channel coefficients than being unknown and deterministic. Of
course, they might be random in practice. However, we want
to avoid any a priori knowledge about the statistical model of
the channel. The motivation behind this choice is twofold: i) the
statistical models are after all theoretical ones and as such they
may not reflect the true behavior of real-world channels, and
ii) the fading conditions (for instance the presence/absence of
a line-of-sight component) might change in real time as users
move from one location to another. In light of the above rea-
sons, the new estimator is hence well geared toward any type of
fading, a quite precious degree of freedom in practice. It is worth
mentioning, though, that estimators that capitalize on the statis-
tical model of the fading channel, including the correlation in
time between adjacent approximation windows, will generally
perform better than those who do not. Although this research
path sounds interesting, it falls beyond the scope of this paper
and may be treated in a future work.
Besides, the main advantage of local tracking is its ability to

capture the unpredictable time variations of the channel gains
using very few coefficients. Thus, we split up the entire ob-
servation window (of size ) into multiple local approxima-
tion windows of size (where is an integer multiple of ).
Then, after acquiring all the locally-estimated polynomial coef-

2By “instantaneous” SNR, wemean the “local” or “short-term” SNR that can
be estimated from short observation windows.

ficients , where is the index of each local approx-
imation window, and after averaging the local estimates of the
single-sided noise power3, , the estimated SNRs are
ultimately obtained for as follows:

(4)

where, in the NDA case, are estimates of the un-
known transmitted symbols corresponding to each local ap-
proximation window. Indeed, it will be seen in Section IV that
our NDA estimator is able to demodulate the transmitted sym-
bols for any linearly-modulated signal. In the DA case, however,

are equal to the known transmitted symbols, i.e.,
.

III. DERIVATION OF THE DA ML SNR ESTIMATOR AND THE
DA CRLB

In this section, we begin by deriving in closed-form expres-
sion the DA ML estimator for the SNR over each antenna ele-
ment. Then, we will derive its bias revealing thereby that the de-
rived estimator is actually biased due to the neglected remainder
of the Taylor’s series and the use of short observation windows.
This will afterward allow us to obtain an unbiased version of
the DA estimator by removing this bias during the estimation
process. We will also derive the closed-form expressions for the
corresponding variance and CRLB.

A. Formulation of the DA ML SNR Estimator

In most real-world applications, some known pilot symbols
are usually inserted to perform different synchronization tasks.
The DA ML estimator can thus rely on these pilot symbols to
estimate the instantaneous SNR or at least to give a head start
for an iterative algorithm (as will be derived in Section IV) by
providing a good initial guess about all the unknown param-
eters. Assume, therefore, that such pilot or known sym-
bols (out of pilot and non-pilot symbols) are periodically
transmitted every where is an integer
quantifying the normalized (by ) time period between any
two consecutive pilot positions. Here, we denote the size of
the local approximation windows as (we shall later use

in the NDA case). To begin with, we consider each
antenna element, , and gather the corresponding received pilot
samples within each approximation window in a column

vector , where

for . Here,
is the number of pilot symbols in each approximation window
which covers pilot and non-pilot received samples. Note
also that is a design parameter that can always be freely
chosen as an integer multiple of (see Section V for more
details about the appropriate choice of ). The channel co-
efficients at each pilot position, , are also obtained from (3) as
follows:

(5)

3These are indeed multiple estimates of the same constant but unknown pa-
rameter .
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For mathematical convenience, we define the following vectors:

(6)

(7)

(8)

Over the antenna branch and the local approximation
window , contains the complex channel coefficients at
pilot positions only and is the corresponding noise vector.
The vector contains the coefficients of the local polyno-
mial expansion. Then, using (5), we can rewrite the channel
approximation model in a more compact form as follows:

(9)

where is a Vandermonde matrix with linearly-independent
columns and whose entry is given by
for and . Consequently, it
is full-rank meaning that the pseudo-inverse that will appear
in the sequel is always well defined. We further define

to be the
diagonal matrix that contains all the known symbols transmitted
within the approximation window. Then, we can rewrite the
corresponding received samples (over each antenna element )
in a -dimensional column vector as follows:

(10)

where is a known matrix. We
further stack all these per-antenna local observation vec-
tors, , one below another into a single vector

. By doing so, all the
space-time samples corresponding to the approximation
window can be written in a more succinct vector/matrix form
as follows:

(11)

where and

are, respectively, - and
-dimensional column vectors vectorized in the

same way and is a
block-diagonal matrix. The model in (11) is

a well-known linear model in estimation theory for which the
ML estimator along with its bias and variance can be derived in
closed form [32]. In fact, the probability density function (pdf)
of the locally-observed vectors, , conditioned on and
parameterized by (a vector that contains all
the unknown parameters over the approximation window)
is given by:

and whose natural logarithm yields the following DA LLF:

(12)

By differentiating (12) with respect to the vector and setting
the result to zero, we obtain the ML estimate of the local poly-
nomial coefficients over all the receiving antenna branches as
follows:

(13)

where and are known matrices, and so is conse-
quently. This is also the well-known least squares (LS) esti-
mator which coincides with the ML estimator due to the lin-
earity of the observation model (11) and the Gaussianity of the
noise [32]. Note also that is a block-diagonal matrix
and thus its inverse can be easily obtained by computing the in-
verses of its small-size diagonal blocks separately. To estimate
the noise variance, we first find the partial derivative of (12) with
respect to . Then after setting it to zero and substituting by

obtained in (13), the ML estimate for the noise variance
is derived as follows:

(14)
Actually, combining (13) and (14), it can be further shown that:

(15)

in which and are,
respectively, the projection matrices onto the column space of

(i.e., signal subspace) and its orthogonal complement (i.e.,
noise subspace). In order to obtain the estimated SNRs over
the entire observation window for a given antenna element,
we begin by extracting the locally-estimated polynomial coeffi-
cients, . Then the channel coefficients4 corresponding
to the pilot positions over each approximation window are ob-
tained as . The latter are then stacked into

a single vector . On
the other hand, the local estimates for the noise variance are av-
eraged over all the local approximation windows:

(16)

to obtain the DA ML SNR estimator over the antenna as:

(17)

with being a known
diagonal matrix that contains all the pilot

symbols transmitted over the whole observation window.

4TheDASNR estimator is able to implicitly identify the time-varying channel
coefficients and estimate the noise power. Yet study and assessment of these
capabilities or functionalities fall beyond the scope of this paper.
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B. Derivation of the Exact Bias and Variance for the DA ML
SNR Estimator

To improve the accuracy of the DA ML SNR estimator,
we calculate and remove its bias. After doing so, we will
derive the exact expression for the variance of the resulting
unbiased estimator. Here, for reasons that shall become clear
later in Sections IV and V, we are interested in assessing
the performance of the “completely DA” estimator for which
all the transmitted symbols are assumed to be pilots, i.e.,

(or equivalently and hence ).
In a nutshell, our ultimate goal is to develop a bias-correction
procedure that is also valid for the NDA estimator to be derived
in the next section. As will be seen there, the NDA estimator is
able to correctly demodulate all the transmitted symbols which
can then be treated (all) as pilots by the receiver. Thus, the
same bias-correction procedure developed hereafter can also
be applied in order to obtain an unbiased version of the biased
NDA estimator. To begin with, recall from (4) that the ML DA
SNR estimates are given in the “completely DA” scenario by:

(18)

from which we show in Appendix A the following theorem:
Theorem 1: the DA ML SNR estimator in (18) is a scaled

noncentral distributed random variable, i.e:

(19)

where is the noncentral distribution with a noncen-
trality parameter and degrees of freedom
and .

Proof: see Appendix A.
Hence, the mean and the variance of the new DA ML SNR

estimator follow immediately from the following two expres-
sions:

(20)

(21)

Indeed, using (19) through (21) and denoting , one
can easily show the identity given by (23), shown at the bottom

of the page, and the following result (see Appendix B of [33]
for more details):

(22)

Now, using (22) we can derive the exact bias for the DA es-
timator as follows:

which is not identically zero meaning that the estimator is bi-
ased. Actually, this bias is in part due to the use of a limited
number of received samples during the estimation process and
in part due to dropping the Taylor’s remainder in the channel
approximation model. Yet, an unbiased version of this DA esti-
mator (i.e., ) can be straightforwardly obtained
from (22) as follows:

(24)

Therefore, by combining (23) and (24), it follows that:

(25)

In practice, the variance of unbiased estimators is usually com-
pared to the so-called Cramér-Rao lower bound (CRLB) which
is a fundamental benchmark that reflects the best achievable per-
formance ever. Therefore, as detailed in Appendix B, we also
derive the CRLB for DA SNR estimation over time-varying
channels as follows:

(26)

Now, by closely inspecting (25), it can be verified that the
mean square error (or the variance) of the unbiased estimator

tends asymptotically5, i.e.,
when and (or equivalently ), to the
aforementioned CRLB, i.e.:

(27)

5It should be mentioned here that the second asymptotic condition,
, must indeed be taken into account. This is because the estimates of the
channel coefficients, over each approximation window, are obtained from the

samples received over that window only. Their accuracy does not depend,
therefore, on how many samples are received outside the considered approxi-
mation window (the rest of the observation interval). Yet, the size of the whole
observation window, , will ultimately affect the performance of the SNR es-
timator through the noise variance estimate that is indeed obtained from all the
received samples.

(23)
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Therefore, our unbiased DAML estimator is asymptotically ef-
ficient and attains the theoretical optimal performance as will
be validated by computer simulations in Section V. In addition,
even though the CRLB in (26) was primarily derived for the DA
scenario, it will also hold in the NDA case6, for moderate to high
SNR values. This is hardly surprising since the NDA algorithm
developed in the next section is able to perfectly estimate/de-
tect all the unknown transmitted symbols over this SNR region,
reaching thereby the ideal DA performance. In other words, the
new NDA ML estimator derived next will be able to reach the
performance achievable in ideal conditions (i.e., perfect knowl-
edge about all the transmitted symbols).

IV. DERIVATION OF THE NEW EM-BASEDML SNR ESTIMATOR

In this section, we derive the new NDA ML SNR estimator
where partial or no a priori knowledge about the transmitted
symbols is assumed at the receiver. The constellation type and
order, however, are assumed to be known to the receiver.

A. Formulation of the New NDA ML SNR Estimator

To begin with, we mention that the problem formulation
adopted in the DA case is problematic in the NDA scenario.
In fact, as will be seen shortly, the EM algorithm averages
the likelihood function, at each iteration, over all the possible
values of the unknown transmitted symbols. Consequently, by
adopting the same formulation of Section III, the EM algorithm
would average over all the possible realizations of the matrix
that contains the whole transmitted sequence. This results in

a combinatorial problem with prohibitive (i.e., exponentially
increasing) complexity. Typically, its complexity would be of
order where is the modulation order and is the
size of the observation window. In the DA scenario, this was
feasible since the matrix (or the transmitted sequence) is a
priori known to the receiver and no averaging was required.
Thus, we reformulate our system differently so that the EM
algorithm averages over the elementary symbols transmitted
at separate time instants instead of averaging over the whole
transmitted sequence. In this way, the complexity of the algo-
rithm becomes only linear with the modulation order and the
observation window size.
To that end, we define7 the vector

which is the row (transposed
to a column vector) of the Vandermonde time matrix, ,
defined as:

...
...

. . .
...

(28)

and rewrite the channel model as follows:

(29)

6Note here that the derivation of NDACRLBs (especially the stochastic ones)
are extremely challenging in presence of linearly-modulated signals, in general,
and that they usually deserve stand-alone contributions even in the very basic
case of constant SISO channels [29]–[31].
7For the sake of simplifying notations in what follows, we shall use

instead of and keep dropping in all similar quantities.

At each time instant (within the approximation window
of size8 ), we stack all the received samples at
the output of the antennae array, , known as snap-
shot in array signal processing terminology, into a single vector,

, which can be ex-
pressed as:

(30)

in which is the corresponding unknown transmitted
symbol, and

. Note that the vectors
were defined previously in (8). From (30), the pdf of the

received vector, , conditioned on the transmitted symbol
, can be expressed as the product of its element-wise pdfs

as follows:

(31)

in which is the hypothetically transmitted symbol that
is randomly drawn from the -ary constellation alphabet

. Now, averaging (31) over this alphabet
and assuming the transmitted symbols to be equally likely, i.e.,

for , the pdf of the received
vector is obtained as:

(32)

By inspecting (32), it becomes clear that a joint maximization
of the likelihood function with respect to and is
analytically intractable. Yet, this multidimensional optimization
problem can be efficiently tackled using the EM concept after
defining the right incomplete and complete data sets. In fact, we
define at a per-snapshot basis (in array signal processing ter-
minology) multiple “incomplete” data sets each of which con-
taining the samples received at a given instant [i.e.,

]. Each of these “incomplete” data sets is completed by the
unknown symbol, , corresponding to the same snapshot.

Then, the LLF,
, of conditioned on the transmitted symbol is

given by:

(33)

8Note that the local approximation windows in the DA and NDA scenarios
might have different sizes and , respectively.
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The new EM-based algorithm runs in two main steps. During
the “expectation step” (E-step), the expected value of the above
likelihood function with respect to all the possible transmitted
symbols is computed. Then, during the “maximiza-
tion-step” (M-step), the output of the E-step is maximized with
respect to all the unknown parameters. The E-step is established

as follows: starting from an initial guess9, , of the unknown
parameter vector, the objective function is updated iteratively
according to:

where is the expectation over all the possible trans-

mitted symbols, , and is the estimated param-
eter vector at the iteration. After some algebraic ma-
nipulations, it can be shown that:

(34)

where is the second-order moment of the
received samples over the receiving antenna element and:

(35)

(36)

In (35) and (36), is the a pos-
teriori probability of at iteration which can be com-
puted using the Bayes formula as follows:

(37)

Since the transmitted symbols are equally likely, we have
, and thus:

(38)
For normalized-energy constant-envelope constellations (such
as MPSK), we have for all and, therefore,

9Initialization is critical to the convergence of the new iterative NDA algo-
rithm. It will be discussed in more details in Section IV-B.

reduces simply to one (for all ) and does not need to
be computed. Now, the M-step can be fulfilled by determining
the parameters that maximize the output of the E-step, obtained
in (34):

(39)

At this stage, in order to avoid the cumbersome differ-
entiation of the underlying objective function with re-
spect to the complex vectors, , we split them
into . We then maximize in-

stead with respect to and
yielding thereby, at the convergence of the iterative al-
gorithm, their respective ML estimates and

. By the invariance principle of the ML esti-
mator, we easily obtain the NDA ML estimate of as

. Therefore, using the fact that

and after some algebraic manipulations, it can be shown
that:

(40)

where and are, respectively, a matrix and a column
vector that are explicitly constructed from the real and imagi-
nary parts of as follows:

(41)

(42)

After differentiating (40) with respect to and
and setting the resulting equations to zero, we obtain the NDA
estimates of the real and imaginary parts of , at the iter-
ation, as follows:

(43)

and

(44)

Then, using the identity and

after some simplifications, we derive the expression of as
follows:

(45)
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in which is given by:

(46)

where

(47)

is the previous soft estimate for the unknown transmitted
symbol, , involved in (30). Lastly, by differentiating (40)
with respect to , setting the resulting equation to zero, and
replacing therein by , we obtain a new estimate of
the noise power at the iteration as follows:

(48)

where:

(49)

After few iterations (i.e., in the range of 10) and with careful ini-
tialization, the EM algorithm converges over each approx-
imation window to the exact NDA ML estimates and

. The latter is then averaged over all the local approxi-
mation windows to obtain a more refined estimate as follows:

(50)

Finally, given (45) and (50), and taking into account all the ap-
proximation windows of size within the same observa-
tion window of size , the NDAML SNR estimator is obtained
as:

(51)

where is the final (i.e., at the convergence) soft estimate
of the transmitted symbol, , within the approxi-
mation window.

B. Appropriate Initialization of the Iterative EM Algorithm
Using the DA Estimator

Recall that the EM algorithm is iterative in nature and, there-

fore, its performance is closely tied to the initial guess
within each approximation window. We will see in the next sec-
tion that when it is not appropriately initialized, its performance
is indeed severely affected, especially at high SNR levels. This
is actually a serious problem inherent to any iterative algorithm
whose objective function is not convex (i.e., multimodal). That
is, it may settle on any local maximum if it happens that the

algorithm is accidentally initialized close to it. Fortunately, an
appropriate initial guess about the polynomial coefficients, ,

and the noise variance, , can be locally acquired using very
few pilot symbols by applying the DA ML estimator developed
in the previous section.
In order to initialize the EM algorithm with the DA estimates,

we proceed as follows. Using the pilot symbols only, we begin
by estimating the local polynomial coefficients, , using
the DA estimator over approximation windows of size
(possibly different from ). In Section III, was mul-
tiplied by the matrix in order to obtain, over each approx-
imation window, the DA estimates for the channel coefficients,

, at pilot positions only (i.e., ). Yet,
they can also be multiplied by another matrix in order
to obtain the pilot-based estimates for the channel coefficients
at both pilot and non-pilot positions over each DA approxima-
tion window (i.e., ). The underlying time
matrix is equivalent to in (28) except the fact that
it contains instead of rows. Then, over each an-
tenna element, the obtained pilot-based estimates, , are

stacked together to form a single vector, , that contains all
the pilot-based estimates of the channel coefficients over the en-
tire observation window. The latter is again divided into several
adjacent and disjoint blocks, , each of which is now of size

(instead of in the DA scenario). Then, according to
(29), the initial guess about the polynomial coefficients—within
each local NDA approximation window—is obtained from
the block using:

(52)

The initial guess about the noise variance is simply
obtained in (16). In the following, we will use two dif-

ferent designations for the new EM-based estimator depending
on the initialization procedure. We shall refer to it as “com-
pletely-NDA” if initialized arbitrarily and as “hybrid” when ini-
tialized appropriately using the DA estimator. We will also use
two different designations for the DA estimator. We shall refer
to it as “pilot-only DA” when applied using the pilot symbols
only (which are out of the transmitted symbols with

); and as “completely DA” when applied in another sce-
nario in which all the transmitted symbols are assumed to be
perfectly known, i.e., . This scenario is encountered in
many modern communication systems which have a small CRC
(at the PHY layer) serving as a stopping criterion for turbo code
detection. Thismeans that at the end of the decoding process, the
system can recognize whether the bits were detected correctly
or not (i.e., if the CRC matches or not). Thus, at the output of
the decoder, one has access to the transmitted information bits
from which all the transmitted channel symbols can be easily
obtained. These decoded symbols are then used as pilots for the
DA estimator in a “completely DA” mode. Moreover, in some
radio interface technologies such as CDMA, a code-multiplexed
pilot channel is considered with a completely known data se-
quence. In OFDM transmissions, as well, some carriers might
bear completely known data sequences.
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Fig. 1. Data and pilot symbols layout with four and two DA and NDA local approximation windows, respectively, with , , and .

C. EM-Based ML SNR Estimation With Hard Symbol
Detection

The EM-based SNR estimator developed in Section IV-A
relies on the soft detection (SD) of the transmitted symbols as
seen from (47). In fact, at each time instant , all the constel-
lation points are scanned and the corresponding a posteriori
probabilities (APPs), , are updated from one iteration to
another. With a properly selected setup10, the hybrid EM-based
estimator always converges to the global maximum of the
LLF for moderate-to-high SNR values. Therefore, over that
SNR region and at the convergence of the algorithm, the APPs
of the wrong symbols are almost equal to zero. As such, the
weighted sum involved in (47) returns a very accurate soft
estimate, , of the actual transmitted symbol (over
each local approximation window). This makes the “hy-
brid” EM-based SNR estimator equivalent in performance to
the “completely DA” biased estimator. Therefore, the same
bias-correction procedure highlighted earlier in (24) can be ex-
ploited here using . To be more specific, we will
further refer to the “completely-NDA” and “hybrid” EM-based
estimators as “completely-NDA-SD” and “hybrid-SD” when
they are applied with soft detection (SD) using (47).
Yet, for low SNR values, soft detection may not be optimal

and hence both the “completely-NDA-SD” and “hybrid-SD”
EM-based estimators are expected to depart from the “com-
pletely DA” estimator. Therefore, one may resort to hard
detection (HD) in order to bridge such performance gap. In a
nutshell, HD is a separate task that may be applied iteratively
(i.e., at each iteration) by taking each of the soft estimates,

, in (47) as input to return its closest symbol, , in
the constellation alphabet:

(53)

Then, is used in (46) instead of . When applied
with iterative hard detection (IHD), the “completely-NDA”
and “hybrid” EM-based estimators are referred to as “com-
pletely-NDA-IHD” and “hybrid-IHD”, respectively. One other
option would be to apply the HD task only once at the conver-
gence of the algorithm [i.e., final hard detection (FHD)]. In this

10This amounts to carefully choosing the local approximation window sizes
( and ) pertaining, respectively, to the “hybrid” SNR estimator and
the DA version used to initialize it; choices that both depend on the normalized
Doppler frequency as established and reported in table I at the end of the
next section.

case, (53) is applied on the soft symbols’ estimates obtained at
the very last iteration only. Hence, we drop the iteration index
in the output, , of (53) which is reinjected instead of

obtained at the convergence. When applied with FHD,
the two versions of the EM-based estimator are designated,
respectively, as “completely-NDA-FHD” and “hybrid-FHD”.
Finally, the multiple capabilities of the proposed NDA ML
SNR estimator to implicitly and simultaneously i) identify the
time-varying channel coefficients, ii) estimate the noise power,
and iii) detect or demodulate the transmitted symbols owe to be
underlined. Yet study and assessment of these capabilities or
functionalities (i.e., channel identifier, noise power estimator,
and data demodulator or detector) fall beyond the scope of this
paper.

V. SIMULATION RESULTS

In this section, we assess the performance of our new DA
and NDA ML instantaneous SNR estimators. All the presented
results are obtained by running extensive Monte-Carlo simu-
lations over 5000 realizations. The estimators’ performance is
evaluated in terms of the normalized (by the average SNR)mean
square error (NMSE) and compared to the normalized CRLB
(NCRLB) defined as:

where is the average SNR per symbol.
Since the constellation energy is assumed to be normalized to
one, i.e., , is simply given by .
For the sake of complying with a practical and timely scenario,
all the simulations are conducted in the specific context of
uplink LTE [35]. According to its signalling standard speci-
fications, two pilot OFDM symbols are inserted at the fourth
and eleventh positions within the time-frequency grid of each
subframe (consisting of 14 OFDM symbols). In this way a
pilot symbol is transmitted every seven OFDM symbols cor-
responding to . In Fig. 1, we illustrate the data/pilot
symbols layout adopted over each carrier considering an obser-
vation window of eight consecutive subframes (i.e., ),
with typical choices of the DA and NDA local approximation
window sizes and .
In the sequel, the “instantaneous” SNR estimation results are

presented for the first subcarrier only, but they actually hold the
same irrespectively of the subcarrier index. Moreover, all the
results are obtained for complex channels since, in practice, the
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Fig. 2. NMSE of (a): “completely-NDA” and (b): “hybrid” EM-based estima-
tors against benchmarks vs. the average SNR , with , ,

, , and , 16-QAM.

baseband-equivalent representation of the channel coefficients
in the discrete model (1) is always complex. We will also
consider QPSK and 16-QAM as representative examples for
constant-envelope and non-constant-envelope constellations,
respectively.
In Fig. 2, we plot the NMSE for the “completely-NDA” and

“hybrid” EM-based estimators (both with SD, IHD and FHD)
and compare them to the “pilot-only DA” and “completely DA”
estimators.
First, by closely inspecting Fig. 2(a), as expected intuitively

due to the fast time variations of the channel, the “pilot-only DA”
estimator is not able to accurately estimate the SNR by relying
solely on the pilot symbols. Therefore, the received samples at
non-pilot positions must be exploited as well in order to ac-
count for the channel variations between the pilot positions. The
“completely-NDA” EM-based estimator does so and as such is
able to provide substantial performance gains at low-to-medium
SNR values against the “pilot-only DA” method. Yet, its perfor-
mance deteriorates severely at high SNR levels due to its ini-
tialization issues. This is where the “pilot-only DA” estimator
actually becomes extremely useful even though its overall per-
formance is not satisfactory. Indeed, its estimates are accurate
enough to serve as initial guesses for the “hybrid” EM-based
algorithm to make it converge to the global maximum of the
LLF reaching thereby the CRLB as seen from Fig. 2(b). To
clearly show the effect of both arbitrary and appropriate initial-
izations on the EM-based algorithm (i.e., the “completely-NDA”
and “hybrid” estimators, respectively), we plot in Fig. 3 the cor-
responding true and estimated channel coefficients at an average
SNR .
Clearly, when initialized with the “pilot-only DA” esti-

mates11, the iterative algorithm is able to track the channel
variations more accurately. Therefore, as clearly seen from
Fig. 2(b), the “hybrid” EM-based SNR estimator exhibits
paramount performance improvements especially for moderate
to high SNR levels. Fig. 2(b) also highlights the advantage
of performing IHD since the “hybrid-IHD” EM-based esti-
mator is almost equivalent, over the entire SNR range, to the
“completely DA” estimator which assumes all the symbols to
be perfectly known. Even more, both estimators ultimately
coincide with the CRLB which quantifies theoretically the best
achievable performance ever. Fig. 2(b) also reveals that IHD

11See Section IV-B for more details about the pilot-assisted initialization
process.

Fig. 3. True vs. estimated channel magnitude for the EM-based algorithmwhen
initialized (a) arbitrarily with ones, and (b) appropriately with the “pilot-only
DA” estimates, for , , , ,
and .

yields more accurate SNR estimates than FHD and, therefore,
the latter will not be considered in the remaining simulations.
The “completely-NDA” EM-based estimator with SD, IHD, and
FHD was also included in Fig. 2(a) to have these preliminary
comparisons exhaustive and to motivate the use of the “pilot-
only” DA estimates in initialization. Thus, in the remaining sim-
ulations we will focus on the “hybrid” EM-based estimator with
SD and IHD only. Yet, we will keep using the “completely DA”
estimator and the CRLB as ideal benchmarks.
Now, we will compare our new “hybrid” estimator against the

only reported work12 on EM-based ML SNR estimation over
time-varying channels introduced by A. Wiesel et al. in [22].
Using the initials of its authors’ names, we will henceforth des-
ignate it as “WGM”. This estimator was originally derived for
single-input single output (SISO) systems. Thus, it can be di-
rectly applied at the output of each antenna element in order to
estimate the instantaneous SNR in SIMO configurations. Yet, it
can also be easily modified to take advantage of the antenna gain
offered by SIMO systems experiencing uniform noise. In fact,
over each antenna branch, the SISO WGM algorithm yields
two estimates; one for the signal power, , and the other for
the noise power, . The individual estimates can
be averaged over the receiving antenna elements to provide
a more refined estimate, , for the unknown noise power. The
SIMO-enhanced WGM estimator over each antenna branch, re-
ferred to hereafter as the “WGM-SIMO” estimator, is then re-
defined as .
In Fig. 4, we compare our “hybrid” EM-based estimator

(with , i.e., SISO) against WGM in terms of complex
channel tracking capabilities and noise variance estimation
accuracy over 5000 Monte-Carlo runs (i.e., 5000 consecutive
observation windows each of size ). The reason
behind considering such a very large number of observation
windows—although it does not allow one to distinguish the

12Note also that, using exhaustive computer simulations, we have demon-
strated the clear superiority of our new ML estimators against other state-of-
the-art techniques developed for constant channels [6], [14], [15] and time-
varying channels [20], [23]. The results were not included in this paper due
to lack of space.
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Fig. 4. True and estimated channel amplitude and noise variance for: WGM
estimator (left-hand side) and our “hybrid” EM-based estimator with ,
i.e., SISO (right-hand side) at an average SNR (i.e., )
and , QPSK.

true channel from its estimates—is to show that our estimator
always converges to the global maximum. This can be, in fact,
easily deduced by inspecting the noise variance estimates in
the same figure. In plain English, under complex time-varying
channels, the multidimensional LLF has many local maxima
(i.e., multimodal) and the WGM estimator gets trapped into
one of them due to its initialization issues. Therefore, as seen
from Fig. 4(c), it is not able to estimate the noise variance over
almost all the observation windows. Owing to our new proper
initialization procedure, however, our “hybrid” EM-based
estimator enjoys guaranteed global optimality and thus returns
very accurate noise variance estimates over all the observation
windows. Consequently, in contrast to WGM, it achieves the
DA CRLB as shown in Fig. 5. Most remarkably, the “hybrid”
algorithm is able to do so with 86% of the transmitted symbols
being completely unknown (corresponding to a pilot insertion
rate of as advocated by the signalling standard
specifications of the LTE uplink).
Fig. 6 depicts the performance of WGM-SIMO and the dif-

ferent versions of our estimator over three SIMO configurations
(i.e., , 4, and 8). First, by inspecting the behaviour of the
WGM estimator across the three subfigures, it is seen that the
performance of its SIMO-enhanced version improves remark-
ably with the number of receiving antenna elements. For in-
stance, at the typical value of the average SNR ,
it is seen from Fig. 6(a) and (b) that the variance of this esti-
mator is reduced by a factor of 1/5 when the number of antennae
is doubled from to . The same improvements
hold—although with a slightly smaller factor of 1/4—by further
doubling the array size from to . Such improve-
ments are actually due to the antennae gain only. Indeed, since
WGM-SIMO is not able to exploit the antenna diversity, it is
substantially outperformed even by our “completely-NDA-SD”
estimator, for low-to-medium SNR levels. Here, we make a
clear difference between the two concepts of antennae gain and
diversity. The former is actually inherent to all SIMO systems

Fig. 5. Comparison of our new SNR estimators withWGMover SISO systems,
i.e., with , QPSK.

Fig. 6. Comparison of our estimators against WGM-SIMO for different num-
bers of receiving antenna elements: (a) , (b) , and (c) ,
with , , , and , ,
QPSK.

experiencing uniform noise across the antenna elements (under
correlated or uncorrelated channels). In this case, averaging the
independent estimates of the same noise power produces a

new estimate whose variance is always shrunk by a factor of
, improving thereby the final estimates of the per-antenna

SNRs.
Antennae diversity, however, is another more interesting

feature of SIMO systems. Fully exploiting the antennae
diversity consists in optimally combining the multiple indepen-
dently-fading copies of the received signal in order to detect
each of the transmitted symbols correctly. By solving the ML
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Fig. 7. NMSE for the “hybrid” EM-based and the “completely DA” unbiased
estimators vs. the average SNR with and for: (a)

, , , (b) , ,
, (c) , , and

(d) , , , 16-QAM.

criterion, our “hybrid-SD” (or “hybrid-IHD”) EM-based esti-
mator takes indeed advantage of the available spatial diversity
to accurately estimate (or detect) the unknown transmitted sym-
bols. For these reasons and owing to our proper initialization
procedure, the “hybrid” EM-based algorithm (with SD or IHD)
outperforms by far WGM-SIMO over the entire SNR range.
From another perspective, the performance improvements that
are obtained by fully exploiting the antennae gain together with
the antennae diversity offered by SIMO over SISO systems can
be easily appreciated by comparing Figs. 6 and 5. For instance,
at the typical average SNR value of , the NMSE of
the “hybrid” EM-based estimator is substantially reduced by a
factor as high as 2500 using 8 antenna branches compared to
SISO.
So far, all the simulations where conducted under a normal-

ized Doppler frequency of corresponding to
a maximum Doppler shift with the sampling rate
of LTE systems . This translates into a medium
user velocity at a carrier frequency

with being the speed of light.
Therefore, we plot in Fig. 7 the performance of the newly de-
rived ML estimator for higher normalized Doppler frequencies.
It is seen from this figure that both the “completely DA”

and “hybrid” estimators succeed in accurately estimating the
SNR reaching thereby the DA CRLB even at high Doppler
frequencies. In Fig. 7(d), for instance, the normalized Doppler
frequency is as high as corresponding to a
maximum Doppler frequency of 700 Hz (translating to a user
velocity as high as at ). Within the
same context, we emphasize the fact that the sizes of the local
approximation windows, and , for both the “hy-
brid” estimator and the “pilot-only DA” that is used to initialize
it should be properly selected according to the Doppler range

TABLE I
LOCAL ESTIMATION CONFIGURATIONS FOR DIFFERENT RANGES OF

as shown in Table I. In practice, the Doppler frequency can be
estimated from the samples received at the pilot positions and
the approximation window sizes are then selected accordingly.
When designing these Doppler-dependent configurations, our
primary goal was to obtain the lowest possible polynomial
orders and which define the sizes of the two
matrices that need to be inverted. Yet, it should be mentioned
that these small-size matrices are predefined ones. Hence, in
practice, they can be computed and inverted offline once for
all, stored in memory, and then used in online estimation at no
extra computational cost.

VI. CONCLUSION

In this paper, we formulated and derived ML estimators for
the instantaneous SNR over time-varying SIMO channels using
local polynomial-in-time expansions. In the DA scenario, the
ML estimator was derived in closed form, and so were its bias,
its variance and the DA CRLB. In the NDA case, however,
we proposed a ML solution that is based on the iterative EM
concept and that is able to converge to the global maximum
within very few iterations. Appropriate initialization is indeed
guaranteed by applying the DA estimator over periodically
inserted pilot symbols. Furthermore, the new estimator is appli-
cable to any channel fading type over a relatively large Doppler
range and for any linearly-modulated signal (i.e., PSK, PAM,
QAM). Finally, it is able to reach the CRLB over a wide SNR
range and outperforms by far the new SIMO-extended version
of the only work published so far, to the best of our knowledge,
on EM-based ML SNR estimation over SISO time-varying
channels.

APPENDIX A
PROOF OF THEOREM 1

To begin with we define, , as the orthogonal projector on
the signal subspace (of each antenna element) corresponding
to the local DA approximation window (of size ) as
follows:

(54)

where and is a diagonal matrix that contains
the known transmitted symbols on its main diagonal, i.e.,

. Note here that is dif-
ferent from that is defined earlier right after (15) as the or-
thogonal projector over the signal subspace (of the whole an-
tennae array) corresponding to the local DA approximation
window. We associate to the operator as the
projector onto the orthogonal complement of the corresponding
signal subspace.
Now recall that the estimates of the antenna’s channel

coefficients corresponding to the local DA approximation
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window, ,
are obtained as:

(55)

where is obtained by extracting the corresponding
block from obtained in (13) to yield:

(56)

Therefore, by substituting (56) back into (55), it follows that:

(57)

Moreover, from (55), we readily see that the component,
, of is obtained as the inner product between

the row of (i.e., the vector and
leading to:

(58)

Now, recall from (18) that the estimated SNR in the DA mode
is given:

(59)

and owing to (58), the numerator of the estimated SNR in (59)
(denoted herafter as “ ”) is expressed as follows:

(60)

By further noticing that:

(61)

it follows that:

(62)

Then, by using (57) and recalling the fact that , we
have:

(63)

Then, by substituting (63) in (62), it follows that:

(64)

Now, the denominator of the SNR estimate in (59) is given by:

(65)

and since is obtained from (15) as:

(66)

with , we obtain by sub-
stituting (66) back in (65) the following result:

(67)

Recalling that , it can be
easily shown from (67) that:

(68)

Now, let be a vector that
contains all the received samples over the antenna element.
Thus, the SNR estimate at the antenna element is obtained
from (64) and (68) as follows:

(69)

Next, in order to find the distribution of , we will first
proceed to finding the distributions of and sepa-
rately. To that end, recall first from (10) that (when ):

(70)

where with being the
identity matrix. Therefore, the mean and covariance ma-

trix of are given by:
(71)

(72)

Therefore, if we define the following transformed random
vector:

(73)

then we immediately have . Now,

since is a Hermetian matrix then it can be diagonalized as
follows:

(74)

where is a unitary matrix (i.e., )
and is a diagonal matrix that con-
tains the eigenvalues of (which are all positive). More-
over, since , we have:

(75)
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which means that or equivalently for
and, therefore, { or for
}. However, since is a Vondermende ma-

trix, it is of (full) rank and since is a diagonal matrix, it
follows that is also of rank . Consequently, the projection
matrix is also of rank and, there-
fore, we have exactly eigenvalues that are equal to one and
the others are exactly zero. In the following we assume (without
loss of generality) that the first eigenvalues are non-zero.
That is for and for

, which means:

(76)
Now, combining (73) and (74) and using the fact that is a
unitary matrix, it follows that:

(77)
By further defining the transformed received vector:

(78)

and again using the fact that is a unitary matrix, it follows
that and:

(79)

in which is used to denote the element of the vector

and where the last equality follows from the fact that only
the first diagonal entries of are non-zero and are all equal to
one [see (76)]. By plugging (79) back into (64), we obtain:

(80)

In addition, since the vector is Gaussian distributed ac-

cording to , then its elements

are independent and Gaussian distributed according to:

(81)

where is used to denote the column of the matrix .
Consequently, is a sum of the squares of
independentGaussian random variables all having unit variance
but non-zeromeans and, therefore, is chi-square distributed with

degrees of freedom and noncentrality parameter:

where the last quality follows from the fact that the first diag-
onal entries of are equal to one and the remaining

diagonal ones are all equal to zero. Furthermore, by recalling
that and that , it follows that:

(82)

In conclusion, we have is a noncentral chi-dis-
tributed, i.e., with degrees
of freedom and noncentrality parameter . Now recall
from (68) that the denominator is equal to:

(83)

Similarly, by noticing that is of rank and recurring
to equivalent manipulations, it can be shown that the denomi-
nator can be rewritten in the following form:

(84)

where are the components of another transformed ob-
servation vector which are Gaussian distributed with zero mean
and unit variance. Hence, the random variable
follows a central chi-distribution [34], i.e.:

(85)

with degrees of
freedom. Moreover, and involve projection onto
a signal subspace and its orthogonal complement, respectively,
and hence the two chi-distributed random variables are indepen-
dent. In conclusion, we have:

(86)
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which implies that the scaled estimated SNR over each an-
tenna element verfies:

(87)

where is a noncentral distribution with a noncen-
trality parameter and degrees of freedom
and .

APPENDIX B
DERIVATION OF THE DA CRLB

To assess the performance of the new unbiased DA ML esti-
mator, we need to compare its variance to a theoretical lower
bound. Thus, we derive in this Appendix the corresponding
DA CRLB. Here, for some reasons that are better clarified in
Sections IV and V, we are interested in comparing our estima-
tors against the lowest possible bound (i.e., the best achievable
performance). Without loss of generality, we hence consider an
ideal scenario where all the transmitted symbols are assumed
to be perfectly known (i.e., or equivalently ).
Now, we define the following parameter vector:

(88)

where and denote the real and imaginary
parts of the vector that contains the
true channel coefficients over all the receiving antenna elements
and the entire observation window. The CRLB for the DA SNR
estimation over the antenna is given by:

(89)

where with being a diagonal ma-
trix containing the transmitted pilot symbols andwhere

denotes the Fisher information matrix (FIM) whose en-
tries are defined as:

(90)

where

(91)
In (91), ans are given by:

with for . Starting from (91), we
will now derive the analytical expression for the FIM. In fact,
by recalling that where and stand for the
real and imaginary parts of , respectively, we can obtain the
required partial derivatives in (90) as follows:

(92)

(93)

(94)

and

(95)

Moreover, it is easy to verify that:

(96)

for and with . Additionally,
the expected values of the previously derived partial derivatives
with respect to are given by:

(97)

(98)

And it can be easily shown that:

(99)

Now using:

(100)

we can finally derive the analytical expression for the FIM as
follows:

. . .
. . .

...
...

...
. . .

. . . (101)

which turns out to be a block-diagonal matrix whose
inverse is straightforward. Moreover, by recalling that

and , it is easy to
verify that:

(102)
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from which it can be shown that [36]:

(103)
and for . Finally, by using
this result, injecting (101)–(103) in (89) and after some alge-
braic manipulations, a simple closed-form expression for the
CRLB of the DA instantaneous SNR estimates is obtained as
follows:

(104)
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