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An accurate localization algorithm tailored for anisotropic wireless sensors networks (WSNs) is proposed in this paper. Using
the proposed algorithm, each regular or position-unaware node estimates its distances only to reliable anchors or position-aware
nodes.The latter are properly chosen following a new reliable anchor selection strategy that ensures an accurate distance estimation
making thereby our localization algorithm more precise. It is shown that the proposed algorithm is implementable in both 2-
dimensional (2D) and 3-dimensional (3D) scenarios. A power saving mechanism aiming to enhance the WSN lifetime is also
envisaged in this paper. It is proven that the proposed algorithm could easily incorporate such a mechanism. Simulations show
that our algorithm, whether combined or not with the power saving mechanism, consistently outperforms the best representative
localization algorithms currently available in the literature in terms of accuracy, even with the presence of nonuniform node
distribution or radiation irregularities.

1. Introduction

Due to their reliability, low cost, and ease of deployment,
wireless sensor networks (WSNs) are emerging as a key
tool for many applications such as environment monitoring,
disaster relief, and target tracking [1, 2]. A WSN is a set of
small and low-cost sensor nodeswith limited communication
capabilities.The latter are often deployed in a random fashion
to collect some physical phenomena from the surrounding
environments such as temperature, light, and pressure [3].
Due to their limited transmission ranges, the sensor nodes
are oftenunable to directly communicatewith a remote access
point (AP). For this reason, they recur to multihop commu-
nication through several intermediate nodes that successively
forward their gathered data to the AP. However, the sensing
data are very often meaningless if the location from where
they have been measured is unknown, which makes their
localization a fundamental and essential issue in WSNs. So
far, many localization algorithms have been proposed in the
literature andmainly fall into two categories: range-based and
range-free algorithms.

To properly localize the regular or position-unaware
nodes, range-based algorithms exploit the measurements of
the received signal characteristics such as the time of arrival
(TOA), the angle of arrival (AOA), or the received signal
strength (RSS) [4–6]. These signals are, in fact, transmitted
by nodes having prior knowledge of their positions, called
anchors (or landmarks). Although the range-based algo-
rithms stand to be very accurate, they are unsuitable for
WSNs. Indeed, these algorithms require high power to ensure
communication between anchors and regular nodes which
are small battery-powered units. Furthermore, additional
hardware is usually required at both anchors and regular
nodes, thereby increasing the overall cost of the network.
Moreover, the performance of these algorithms can be
severely affected by noise, interference, and/or fading. Unlike
range-based algorithms, range-free algorithms, which rely on
the network connectivity to estimate the regular node posi-
tions, are more power-efficient and do not require any addi-
tional hardware and, hence, are suitable forWSNs [7–21]. Due
to these practical merits, range-free localization algorithms
have garnered the attention of the research community.
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Unfortunately, in anisotropic environments where obsta-
cles and/or holes may exist, range-free algorithms do not
provide sufficient accuracy due to large errors occurring
when mapping the hops into distance units. Indeed, in such
environments, it is very likely that the shortest path between
an anchor and a regular node is curved, thereby resulting
in overestimation of the distance between these two nodes.
Themore obstacles and/or holes there are, the larger distance
estimation errors and, consequently, less accurate localization
there are.

In this paper, we propose a novel range-free localization
algorithm tailored for anisotropicWSNs. Using the proposed
algorithm, each regular node estimates its distances only to
reliable anchors. The latter are properly chosen following
a new reliable anchor selection strategy that ensures an
accurate distance estimation thereby making our localization
algorithm more precise. New average hop sizes’ expressions
are also developed in this paper for both 2D and 3D scenarios.
We show that the obtained expressions are very accurate espe-
cially for high nodes densities. Furthermore, a power saving
mechanism aiming to enhance theWSN lifetime is envisaged.
We prove that our proposed algorithm could easily incorpo-
rate such amechanism. Simulations show that our algorithm,
whether combined or not with the power saving mechanism,
consistently outperforms the best representative range-free
localization algorithms currently available in the literature
in terms of accuracy, even with the presence of nonuniform
node distribution or radiation irregularities.

The rest of this paper is organized as follows: Section 2
describes the network model. Section 3 presents the related
works and defines the motivation scenario. Section 4 pro-
poses a novel localization algorithm while Sections 5 and 6
introduce a new reliable anchor selection strategy and a novel
distance estimation technique, respectively. A power saving
mechanism aiming to enhance theWSN lifetime is envisaged
in Section 7. Simulation results are discussed in Section 8 and
concluding remarks are made in Section 9.

2. Network Model

Figure 1 illustrates the system model of 𝑁 WSN nodes
uniformly deployed in a 2D square area 𝑆 in the presence of
a rectangle obstacle which makes the network topology C-
shaped. All nodes are assumed to have the same transmission
capability (i.e., range) denoted by 𝑅. Each node is able to
directly communicate with any other node located in the
disc having that node as a center and 𝑅 as a radius, while it
communicates in a multihop fashion with the nodes located
outside. Due to the high cost of the global positioning system
(GPS) technology, only a few nodes commonly known as
anchors are equipped with it and, hence, are aware of their
positions.The other nodes, called hereafter position-unaware
or regular nodes for the sake of simplicity, are oblivious to this
information. As shown in Figure 1, the anchor nodes are
marked with red triangles and the regular ones are marked
with blue circles. If two nodes are able to directly communi-
cate, they are linked with a dashed line that represents one
hop. Let𝑁

𝑎
and𝑁

𝑢
= 𝑁−𝑁

𝑎
denote the number of anchors

√S

√S

Figure 1: Network model (C-shaped topology).

and regular nodes, respectively. Without loss of generality, let
(𝑥
𝑖
, 𝑦
𝑖
), 𝑖 = 1, . . . , 𝑁

𝑎
, be the coordinates of the anchor nodes

and (𝑥
𝑖
, 𝑦
𝑖
), 𝑖 = 𝑁

𝑎
+ 1, . . . , 𝑁, those of the regular ones.

3. Related Works and Motivation

In order to localize the 𝑖th regular node (i.e., (𝑁
𝑎
+ 𝑖)th

node), the distances between it and at least 3 anchors are
usually required. The 𝑘th anchor should then broadcast its
coordinates (𝑥

𝑘
, 𝑦
𝑘
) through the network. If the 𝑖th regular

node is located in the coverage area of this anchor (i.e., the
disc𝐷(𝑘, 𝑅) having the 𝑘th anchor as center and 𝑅 as radius),
it receives the coordinates in 𝑛

𝑘
= 1 hop. Otherwise, it

receives them after 𝑛
𝑘
> 1 hops. So far, in most previous algo-

rithms, the 𝑖th regular node estimates its distance to the 𝑘th
anchor 𝑑

𝑘−(𝑁
𝑎
+𝑖)

using only the information 𝑛
𝑘
as

𝑑
𝑘−(𝑁
𝑎
+𝑖)

= 𝑛
𝑘
ℎ
𝑠
, (1)

where ℎ
𝑠
is a predefined average hop size. Note that this

distance estimation approach relies on the fact that, in highly
dense WSNs,

𝑑
𝑘−(𝑁
𝑎
+𝑖)

≈

𝑛
𝑘

∑

𝑙=1
ℎ
𝑙

(2)

holds. In (2), ℎ
𝑙
is the 𝑙th hop’s distance. ℎ

𝑠
is usually derived

either analytically (i.e., ℎ
𝑠
= 𝐸{ℎ

𝑙
}) as with LAEP [13] or

heuristically as with DV-Hop [7] by computing themean hop
size of all the shortest paths between anchors as follows:

ℎ
𝑠
=

1
𝑁
𝑎
(𝑁
𝑎
− 1)

𝑁
𝑎

∑

𝑘=1

𝑁
𝑎

∑

𝑗=1

𝑑
𝑘−𝑗

𝑛
𝑘,𝑗

, (3)

where 𝑛
𝑘,𝑗

is the number of hops between the 𝑘th and 𝑗th
anchors. Although heuristical and analytical algorithms are
proven to be sufficiently accurate in isotropic WSNs (i.e.,
where obstacles do not exist), their accuracies substantially
deteriorate in anisotropic WSNs (AWSNs). Indeed, in such
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Figure 2: Motivation scenario.

type of networks, it is very likely that the shortest paths
between one regular node and some anchors are not straight
lines due to the presence of an obstacle, as can be observed
from Figure 2. This unfortunately causes an overestimation
of the distances between the regular node and these anchors,
when mapping the number of hops into distance, thereby
hindering localization accuracy. In the example of Figure 2,
the regular node 1 communicates with the anchor node 𝐴1
through 𝑛1 = 6 hops. Its distance estimate to this anchor
𝑑
𝑘−(𝑁
𝑎
+1) is derived using (1). As can be seen from Figure 2,

if the blue obstacle does not exist, 𝑛1 would be much less
than 6 and, hence, the distance from 𝑖 to𝐴1 is overestimated.
Thus, using 𝑑

𝑘−(𝑁
𝑎
+𝑖)

when performing multilateration will
undoubtedly result in an imprecise localization. An interest-
ing approach to circumvent this issue is to properly select
the anchors so that overestimation stemming from situations
similar to the one illustrated in Figure 2 is avoided or mini-
mized. Based on this reliable anchor selection, several local-
ization algorithms for AWSNs have been so far proposed such
as pattern-driven in [20] and RAL in [21]. Despite their valu-
ables to the advancement of knowledge and know-how in this
key topic, we will later see that they still leave room for
significant additional accuracy improvements in AWSNs.

In the following, we develop a novel localization algo-
rithm based on new reliable anchor selection strategy and
prove that it outperforms all the aforementioned algorithms.

4. Proposed Localization Algorithm

As a first step of any anchor-based localization algorithm, the
𝑘th anchor broadcasts through the network a message con-
taining (𝑥

𝑘
, 𝑦
𝑘
, 𝑛) where 𝑛 is the hop-count value initialized

to one. When a node receives this message, it stores the 𝑘th
anchor position as well as the received hop-count 𝑛

𝑘
= 𝑛 in its

database, adds one to the hop-count value, and broadcasts the
resulting message. Once this message is received by another
node, its database information is checked. If the 𝑘th anchor
information exists and the received hop-count value 𝑛 is
smaller than the stored one 𝑛

𝑘
, the node updates 𝑛

𝑘
to 𝑛,

increases it by 1, and then broadcasts the resulting message. If
𝑛
𝑘
is smaller than 𝑛, the node discards the received message.

However, when the node is oblivious to the 𝑘th anchor
position, it adds this information to its database and forwards
the received message after increasing 𝑛 by 1. This mechanism
will continue until all nodes become aware of all anchors’
positions and their corresponding minimum hop counts. In
order to avoid the situation illustrated in Figure 2, we propose
a reliable anchor selection phase in the second step of our
algorithm. In the next section, we introduce a new selection
strategy where the 𝑘th anchor properly selects a set of reliable
anchors among all of those in the network denoted by 𝑠

𝑘
.

The 𝑘th anchor then broadcasts 𝑠
𝑘
over the network. Upon

reception of all (𝑥
𝑘
, 𝑦
𝑘
, 𝑛
𝑘
, 𝑠
𝑘
), 𝑘 = 1, . . . , 𝑁

𝑎
, each regular

node estimates its distance only to its nearest anchor (i.e, 𝑘0 =
argmin

𝑘
𝑛
𝑘
) and to the reliable anchors in the set 𝑠

𝑘0
. The

regular nodes finally compute their own positions exploiting
their available distances’ estimates by performing multilater-
ation [22].

In what follows, we develop our proposed reliable anchor
selection strategy as well as our distance estimation tech-
nique.

5. Reliable Anchor Selection Strategy

After receiving all anchors’ information, the 𝑘th anchor
becomes aware of its own position as well as those of all other
anchors in the network and, hence, is able to compute all true
distances separating it from the latter. On the other hand, this
anchor could also compute the estimate of the distance to
any other anchor 𝑗 and the corresponding estimation error
𝑒
𝑘−𝑗

stemming from the use of (1). Nevertheless, due to the
anisotropic topology of the WSN considered here, errors
could be too large if we fall in a situation such as that in
Figure 2. Consequently, a threshold on 𝑒

𝑘−𝑗
is required to

guarantee some reliability of the 𝑗th anchor with respect to
the 𝑘th anchor. If the topology of the WSN was isotropic, the
estimation error of the distance between these anchors would
be

𝑇1 = 𝑑𝑘−𝑗 −𝑑𝑘−𝑗 = ⌈
𝑑
𝑘−𝑗

ℎ
𝑠

⌉ ℎ
𝑠
−𝑑
𝑘−𝑗
, (4)

where the second line is due to the fact that 𝑑
𝑘−𝑗

is obtained
using (1). In (4), ⌈𝑥⌉ refers to the ceiling function.Thus, a dis-
tance estimation error higher than𝑇1 occurs only if the short-
est path between the 𝑘th and the 𝑗th anchors is curved due
to the presence of obstacles between the two nodes. In such
a case, the number of hops between the latter is much larger
than𝑑

𝑘−𝑗
/ℎ
𝑠
and, hence, we should have 𝑒

𝑘−𝑗
≫ 𝑇1.Therefore,

we chose 𝑇1 as a threshold below/above which an anchor
is deemed reliable or not, respectively. Finally, in order to
ensure an accurate distance estimation, each regular nodewill
estimate its distance only to the nearest anchor and to those
rated reliable by the latter.

However, some anchors deemed reliable by the nearest
anchor could be found unreliable by the regular node, since
the shortest path from the latter to these anchors may be
curved as shown in Figure 3. To circumvent this issue, we
implement a finer selection at the regular node that discards
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% 𝑘 refers to the 𝑘th anchor node %
𝑠
𝑘
= {}

for 𝑗 = 1 to𝑁
𝑎
and 𝑗 ̸= 𝑘 do

𝑑
𝑘−𝑗

= 𝑛
𝑘
× ℎ
𝑠

𝑒
𝑘−𝑗

= 𝑑
𝑘−𝑗

− 𝑑
𝑘−𝑗

if 𝑒
𝑘−𝑗

≤ 𝑇1 then
𝑠
𝑘
= 𝑠
𝑘
∪ {𝑗}

end if
end for
Broadcast the set 𝑠

𝑘
of reliable anchors

Algorithm 1: Localization algorithm for anchor nodes.

% 𝑖 refers to the 𝑖th regular node %
% 𝑠
𝑘
𝑖

is the set of the reliable anchors at the nearest anchor
node from the 𝑖th regular node %
% 𝑠
𝑖
is the new set of reliable anchors at the 𝑖th

regular node %
𝑠
𝑖
= {}

𝑐 = 0
for 𝑘 ∈ 𝑠

𝑘
𝑖

do
if ℎ
𝑖−𝑘

≤ 𝑇2 then
𝑠
𝑖
= 𝑠
𝑖
∪ {𝑘}

𝑐 = 𝑐 + 1
end if

end for
for 𝑗 = 1 → 𝑐 do

𝑑
𝑗
𝑖

= 𝑛
𝑗
𝑖

× ℎ
𝑠

end for
% 𝑗
𝑖
denotes the 𝑗th reliable anchor node index in the

set 𝑠
𝑖
%

% 𝑥
𝑖
, and 𝑦

𝑖
can be estimated using multilateration %.

Algorithm 2: Localization algorithm for regular nodes.

each anchor having a number of hops larger than 𝑇2 = ⌈√2𝑆/
𝑅⌉. Note that 𝑇2 is the maximum number of hops that may
occur if the shortest path is not curved. Processing steps at the
anchors and regular nodes are summarized by localization
Algorithms 1 and 2, respectively.

6. Distance Estimation Technique

We propose in this work to estimate each regular-anchor
distance using (1). To this end, one should accurately derive
the average hop size ℎ

𝑠
between any two consecutive nodes on

the shortest path between any regular and anchor nodes. Let
us consider a two-hop scenario where the 𝑘th node commu-
nicates with the 𝑖th node through an intermediate node 𝑗. In
what follows, we denote by𝑍 and𝑋 the randomvariables that
represent the distances 𝑑

𝑘−𝑗
and 𝑑

𝑘−𝑖
, respectively. In order to

derive

ℎ
𝑠
= 𝐸 {𝑍} , (5)

we start by deriving the conditional cumulative distribution
function (CDF) 𝐹

𝑍|𝑋
(𝑧) of 𝑍 with respect to𝑋.

A1
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A3

1

A4

Figure 3: Reliable anchors.
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Figure 4: 2D distance analysis.

6.1. Two-Dimensional (2D) Case. As can be shown from
Figure 4, 𝑍 ≤ 𝑧 is guaranteed only if there are no nodes
in the area 𝐵

𝑧
= 𝐹 − 𝐴

𝑧
where 𝐹 = 𝐷(𝑘, 𝑅) ∩ 𝐷(𝑖, 𝑅),

𝐴
𝑧
= 𝐹 ∩ 𝐷(𝑘, 𝑧), and 𝐷(⋅, ⋆) is the disc having the ⋅th

node as a center and ⋆ as a radius. It is noteworthy that 𝐹 is
nothing but the forwarding zone area where any potential
intermediate node must exist. 𝐹

𝑍
(𝑧) can be then defined as

𝐹
𝑍|𝑋

(𝑧) (𝑧) = 𝑃 (𝑍≤ 𝑧 | 𝑥) = 𝑃 (𝐸0) , (6)

where 𝑃(𝐸0) is the probability that the event 𝐸0 = {no
nodes in the area 𝐵

𝑍
} occurs. Since the nodes are uniformly

deployed in 𝑆, the probability of having𝐾 nodes in 𝐵
𝑧
follows

a binomial distribution Bin(𝑁, 𝑝) where 𝑝 = 𝐵
𝑧
/𝑆. For

relatively large 𝑁 and small 𝑝, it can be readily shown that
Bin(𝑁, 𝑝) can be accurately approximated by a Poisson distri-
bution Pois(𝜆𝐵

𝑧
)where 𝜆 = 𝑁/𝑆 is the average nodes density

in the network. Consequently, for a large number of nodes
𝑁 and small 𝑝, we have

𝐹
𝑍|𝑋

(𝑧) = 𝑒
−𝜆𝐵
𝑧 . (7)

As can be seen from Figure 4, 𝐹 = 4𝐴Sec−Tr where 𝐴Sec−Tr is
the green sector area minus the dashed triangle area. Please
note that this equality holds only when the two circles have
the same radius 𝑅 (i.e., the 𝑘th and 𝑗th nodes have the same
transmission capability). 𝐹 is then given by

𝐹 = 2 (𝑅2
𝜃 − 𝑎 × ℎ) = 2𝑅2

(𝜃−
sin (2𝜃)

2
) . (8)
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Figure 5: Analytical and empirical results of ℎ
2D
𝑠
.

Following the same approach as above,𝐴
𝑧
can be obtained as

𝐴
𝑧
= 𝑧

2
(𝜃
𝑧
−
sin (2𝜃

𝑧
)

2
)+𝑅

2
(𝜃


𝑧
−

sin (2𝜃
𝑧
)

2
) . (9)

Furthermore, using some geometrical properties, we easily
show that

𝜃
𝑧
= √

𝑧 + 𝑅 (1 − 2 cos (𝜃))
2𝑅 (1 − cos (𝜃))

𝜃,

𝜃


𝑧
= √

𝑅 − 𝑧

2𝑅 (1 − cos (𝜃))
𝜃.

(10)

Substituting (10) into (9) and using (8), we have

𝐵
𝑧
= 𝑅

2
(2𝜃 − sin (2𝜃) − 𝜃

𝑧
+

sin (2𝜃
𝑧
)

2
)

−𝑧
2
(𝜃
𝑧
−
sin (2𝜃

𝑧
)

2
) .

(11)

Substituting (11) into (7) and using the resulting CDF to
compute the mean of the random variable 𝑍 yields to

ℎ
2D
𝑠

= 𝑅−
3
𝜋
∫

𝜋/3

0
∫

𝑅

0
𝑒
−𝜆𝐵
𝑧𝑑𝑧 𝑑𝜃. (12)

Note in (12) that we use the fact that 𝜃 ∈ [0, 𝜋/3] since
𝜃 = arccos(𝑥/2𝑅) where 𝑥 ∈ ]𝑅, 2𝑅]. It follows from (12) that
ℎ
2D
𝑠

increases with the nodes density 𝜆. This is expected since
it is very likely that the per-hop distance increases when the
number of nodes located inside 𝐹 increases if, of course, 𝑅
is fixed. From (12), ℎ

2D
𝑠

is also an increasing function of 𝑅.
Figure 5 plots ℎ

2D
𝑠

versus 𝜆 for different values of 𝑅. From this

hz2

hz1
z

x

h

Figure 6: 3D distance analysis.

figure, the analytical ℎ
2D
𝑠

approaches its empirical counterpart
for small 𝜆 while the two curves almost coincide when the
latter is large. This is expected since the approximation of
Bin(𝑁, 𝑝) by Pois(𝜆𝐹) becomes more accurate as 𝜆 grows
large. Figure 5 also shows that ℎ

2D
𝑠

increases with 𝜆 and 𝑅,
which corroborates the above discussion.

6.2. Three-Dimensional (3D) Case. Since each node is able
to communicate with any other node located at most at 𝑅
meters from it, its transmission coverage in the 3D case is
spherical. Let us denote by 𝑉 the forwarding zone defined as
𝑉 = 𝑆(𝑘, 𝑅) ∩ 𝑆(𝑖, 𝑅) where 𝑆(⋅, ⋆) is the sphere having the ⋅th
node as a center and⋆ as a radius. In 3D case, theCDF𝐹

𝑍|𝑋
(𝑧)

is then given by

𝐹
𝑍|𝑋

(𝑧) = 𝑒
−𝜆V(𝑉−𝑉𝑧), (13)

where 𝑉
𝑧
= 𝑆(𝑘, 𝑧) ∩ 𝑆(𝑖, 𝑅), 𝜆V = 𝑁/𝑉

𝑇
, and 𝑉

𝑇
is the total

volume where the WSN is deployed. As can be shown from
Figure 6,𝑉 = 2𝑉

𝑐
where𝑉

𝑐
is the volume of the spherical cap

with height

ℎ =
2𝑅 − 𝑥

2
. (14)

Therefore, 𝑉 is given by

𝑉 =
1
12
𝜋 (2𝑅−𝑥)2 (4𝑅+𝑥) . (15)

As far as 𝑉
𝑧
is concerned, from Figure 6, it is the sum of the

volumes of two spherical caps with heights

ℎ
𝑧1 =

(𝑅 − 𝑧 + 𝑥) (𝑅 + 𝑧 − 𝑥)

2𝑥
,

ℎ
𝑧2 =

(𝑅 − 𝑥 + 𝑧) (−𝑅 + 𝑥 + 𝑧)

2𝑥
.

(16)

𝑉
𝑧
is then given by

𝑉
𝑧

=

𝜋 (𝑅 − 𝑥 + 𝑧)
2
((𝑥 − 𝑧) (𝑥 + 3𝑧) + 2𝑅 (𝑥 + 3𝑧) − 3𝑅2

)

12𝑥
.

(17)
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.

Substituting (15) and (17) into (13) and using the resulting
CDF, we obtain

ℎ
3D
𝑠

= 𝑅−
1
𝑅
∫

2𝑅

𝑅

∫

𝑅

0
𝑒
−𝜆V(𝑉−𝑉𝑧)𝑑𝑧 𝑑𝑥. (18)

From (18), ℎ
3D
𝑠

is an increasing function of 𝜆V and 𝑅. This
observation is further verified by the empirical results in
Figure 7.

7. Power Saving Mechanism

In order to provide the required operational power, WSN
nodes are usually equipped with batteries or energy har-
vesting devices. However, the batteries have a very limited
capacity while energy harvesting using the technologies so far
developed is not only very expensive, especially if embedded
in large scale WSNs but also unable to provide the sufficient
amount of energy. This makes power saving a crucial mecha-
nism inWSNs. If such amechanism is not taken into account
during the localization process, it may hinder localization
accuracy. In what follows, we will show how a power saving
mechanism could be easily incorporated in our proposed
localization algorithm. Although several power savingmech-
anisms exist in the literature, we are only concerned in this
paper by themost basic mechanismwhich consists in switch-
ing periodically each node between the awake (i.e., power on)
and the sleep (i.e., power off) states to save power and, hence,
increase the WSN lifetime. Using this mechanism, the time
is equally divided into cycles where each node independently
decides whether to be awake or asleep. This causes the ran-
domization of the number of available (i.e, in the awake state)
nodes assumed to be equal to 𝑁 in (12) and (18) may hinder
localization accuracy. To circumvent this issue, we propose to
substitute 𝑁 in these two equations by the average number
of available nodes 𝑁av. Assuming that the time required

to perform the proposed algorithmdoes not exceed one cycle,
𝑁av is given by

𝑁av =
𝑁

∑

𝑖=1
𝑝
aw
𝑖
, (19)

where 𝑝aw
𝑖

is the probability that the 𝑖th node is in the awake
state. If this probability is the same across the network (i.e.,
𝑝
aw
𝑖

= 𝑝
aw, 𝑖 = 1, . . . , 𝑁), 𝑁av would be reduced to 𝑁𝑝aw

𝑖
.

Using the latter result in (12) and (18) yields to

ℎ
2D
𝑠

= 𝑅−
3
𝜋
∫

𝜋/3

0
∫

𝑅

0
𝑒
−𝜆𝑝

aw
𝐵
𝑧𝑑𝑧 𝑑𝜃, (20)

ℎ
3D
𝑠

= 𝑅−
1
𝑅
∫

2𝑅

𝑅

∫

𝑅

0
𝑒
−𝜆V𝑝

aw
(𝑉−𝑉
𝑧
)

𝑑𝑧 𝑑𝑥, (21)

respectively.

8. Simulations Results

In this section, we evaluate by simulations the performance
of the proposed algorithm in terms of localization accuracy
using Matlab. These simulations are conducted to compare,
under the same network settings, the proposed algorithm
with some of the best representative localization algorithms
currently available in the literature, that is, DV-Hop [7], RAL
[21], and pattern-driven [20]. Simulations are run both in
2D and 3D cases. In the 2D case, nodes are assumed to be
uniformly deployed in a square area 𝑆 = 104 m2 and in a cubic
volume 𝑉 = 104 m3 in the 2D and 3D cases, respectively.
Besides the C-shaped network topology in Figure 1, we
consider two other anisotropic topologies commonly used in
the context of WSN: W-shaped and S-shaped topologies as
depicted in Figures 8(a) and 8(b), respectively.
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Figure 8: Anisotropic WSN topologies.

As an evaluation criterion, we propose to use the normal-
ized root mean square error (NRMSE) defined as follows:

𝑒 =

∑
𝑁
𝑢

𝑖=1√(𝑥𝑖 − 𝑥𝑖)
2
+ (𝑦
𝑖
− 𝑦
𝑖
)
2

𝑁
𝑢
𝑅

.
(22)

All the following results are obtained by averaging over 100
trials.

Figure 9 plots the localization NRMSE achieved by DV-
Hop, RAL, pattern-driven, and our proposed algorithm
versus the node density with a constant number of anchors
set to be 20 in C-, W-, and S-shaped network topologies.
Figures 9(a), 9(c), and 9(e) provide the results of the 2D case,
while Figures 9(b), 9(d), and 9(f) provide those of the 3D case.
As can be shown from these figures, the proposed algorithm
always outperforms its counterparts. Indeed, in the 2D case
(3D case), it is up to about 80% (180%), 70% (100%), and 60%
(60%)more accurate thanDV-Hop, RAL, andpattern-driven,
respectively. Furthermore, our algorithm achieves almost the
same performance in the three network topologies while DV-
Hop’s, RAL’s, and pattern-driven’s performance, which are
already poor in the C-shaped topology, severely deteriorate
in theW-shaped topology, more so in the S-shaped topology.

Figure 10 shows the NRMSEs’ standard deviations
achieved by all localization algorithms for different node
densities in the C-, W-, and S-shaped network topologies.
Figures 10(a), 10(c), and 10(e) provide the results of the 2D
case, while Figures 10(b), 10(d), and 10(f) provide those
of the 3D case. As can be seen from these figures, the
NRMSEs’ standard deviations achieved by DV-Hop, RAL,
and pattern-driven slightly decrease when the node density
increases while the one achieved by the proposed algorithm
substantially decreases. This means that implementing our

algorithm in any network topology guarantees an accurate
localization for any given realization. This result is very
interesting in terms of implementation strategy, since it
proves that the result in Figure 9 becomes more and more
meaningful as 𝜆 grows large.

Figure 11 illustrates the localization NRMSE’s CDF
achieved by DV-Hop, RAL, pattern-driven, and our
proposed algorithm with 𝑁 = 200 and 𝑁

𝑎
= 20 in the C-,

W-, and S-shaped network topologies. Figures 11(a), 11(c),
and 11(e) provide the results of the 2D case, while Figures
11(b), 11(d), and 11(f) provide those of the 3D case. Using the
proposed algorithm, up to 80% (90%) of the regular nodes
could estimate their position within twice the transmission
range in the 2D case (3D case). In contrast, up to 38% (10%)
and 42% (60%) of the nodes achieve the same accuracy with
RAL and pattern-driven, respectively, and about 0% (10%)
with DV-Hop. This further proves the efficiency of our new
algorithm.

Figure 12 plots the localization NRMSEs achieved by our
proposed algorithm and its counterparts versus the anchors
number with 𝑁 = 200 in the C-, W-, and S-shaped network
topologies in both 2D and 3D cases. As can be observed
from this figure, all algorithms become more accurate as
the number of anchors in the network increases. From
Figure 12, the NRMSE achieved by the proposed algorithm
decreasesmore rapidly than those achieved byDV-Hop, RAL,
and pattern-driven. This is expected since the number of
potentially reliable anchors increases with the total number
of anchors and, hence, localization is more accurate.This is in
contrast with DV-Hop in which each regular node estimates
its distance to all anchors (i.e., even thosewith curved shortest
path) in the network, thereby hindering localization accuracy.
The fact that the NRMSE achieved by the proposed algorithm



8 International Journal of Distributed Sensor Networks

0.02 0.03 0.04 0.05 0.06 0.07 0.08
0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

2D case

Node density

Lo
ca

liz
at

io
n 

N
RM

SE
 (m

)

(a) C-shape

0.02 0.03 0.04 0.05 0.06 0.07 0.08
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8
3D case

Node density

Lo
ca

liz
at

io
n 

N
RM

SE
 (m

)

(b) C-shape

0.02 0.03 0.04 0.05 0.06 0.07 0.08
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

Node density

Lo
ca

liz
at

io
n 

N
RM

SE
 (m

)

(c) W-shape

0.02 0.03 0.04 0.05 0.06 0.07 0.08

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

Node density

Lo
ca

liz
at

io
n 

N
RM

SE
 (m

)

(d) W-shape

0.02 0.03 0.04 0.05 0.06 0.07 0.08
0.8

1

1.2

1.4

1.6

1.8

2

Node density

Lo
ca

liz
at

io
n 

N
RM

SE
 (m

)

DV-Hop
RAL

Pattern-driven
Proposed

(e) S-shape

0.02 0.03 0.04 0.05 0.06 0.07 0.08
1

1.5

2

2.5

3

3.5

4

Node density

Lo
ca

liz
at

io
n 

N
RM

SE
 (m

)

DV-Hop
RAL

Pattern-driven
Proposed

(f) S-shape

Figure 9: Localization NRMSE versus node density with𝑁
𝑎
= 20 in C-, W-, and S-shaped network topologies in 2D and 3D cases.
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Figure 10: Localization NRMSE’s standard deviation versus node density with𝑁
𝑎
= 20 in C-, W-, and S-shaped network topologies for 2D

and 3D cases.
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Figure 11: Localization NRMSE’s CDF with𝑁 = 200 and𝑁
𝑎
= 20 in C-, W-, and S-shaped network topologies in 2D and 3D cases.
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Figure 12: Localization NRMSE versus anchors number with𝑁 = 200 in C-, W-, and S-shaped network topologies in 2D and 3D cases.
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Figure 13: Localization NRMSE versus 𝑝aw in C-, W-, and S-shaped network topologies in 2D and 3D cases.
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Figure 14: Anchors’ placements illustrated C-shaped topology.

decreases more rapidly than that achieved by pattern-driven
and RAL proves that our anchors selection strategy is more
reliable and efficient than that in [20, 21].

Figure 13 displays the localization NRMSEs achieved by
the proposed algorithm and its counterparts versus 𝑝aw in
the C-, W-, and S-shaped network topologies in both 2D and
3D cases. As can be observed from this figure, localization
accuracy of each algorithm improves when 𝑝

aw increases.
This is expected since the number of potentially available
nodes increases with 𝑝

aw and, hence, the nodes density
increases. Furthermore, from Figure 13, if the proposed algo-
rithm accounts for the power saving mechanism, its achieved
NRMSE remains almost constant when 𝑝

aw increases. This
highlights another advantage of our algorithm over its coun-
terparts, namely, its ability to efficiently incorporate a power
saving mechanism.

Figure 15 plots the localization NRMSEs achieved by the
proposed algorithm and its counterparts versus the nodes
density with different anchors placement strategies: perime-
ter, grid, and random as depicted in Figures 14(a), 14(b),
and 8, respectively. This figure shows that the grid anchors’
placement is the most efficient strategy in W- and S-shaped
topology while the random anchors’ placement is the best in
the C-shaped topologies.This result is very interesting since it
proves that the performance of each strategy is closely related
to the network topology. In other words, if the latter is known
beforehand, we will be able to select the appropriate strategy
when deploying the WSN.

Figures 16 and 17 plot the localization NRMSEs achieved
by the proposed algorithm and its counterparts versus the
nodes density and the degree of range irregularity (DoI),
respectively. In Figure 16, a nonuniform nodes’ deployment
is assumed while in Figure 17 the transmission range is no

longer assumed circular. A range irregularitymodel similar to
that in [23] was implemented instead. From these figures, the
localization NRMSEs achieved by all algorithms deteriorate
due to both nonuniform nodes’ deployment and range irreg-
ularity.This is expected since these phenomena are not taken
into account when designing the proposed algorithm and its
counterparts. However, as could be observed from Figures 16
and 17, the proposed algorithm remains more accurate than
its counterparts.This further proves the increased robustness
of our proposed algorithm to model imperfections.

9. Conclusion

In this paper, we proposed a novel range-free localization
algorithm tailored for anisotropicWSNs. Using the proposed
algorithm, each regular node estimates its distances to reliable
anchors only. The latter are properly chosen following a new
reliable anchor selection strategy that ensures an accurate
distance estimation thereby making our localization algo-
rithm more precise. New average hop sizes’ expressions were
also developed in this paper for both 2D and 3D scenarios.
We showed that the obtained expressions are very accurate
especially for high nodes densities. Furthermore, a power
saving mechanism aiming to enhance the WSN lifetime was
envisaged.We proved that our proposed algorithm could eas-
ily incorporate such a mechanism. Simulations showed that
our algorithm, whether combined or not with the power sav-
ing mechanism, consistently outperforms the best represen-
tative range-free localization algorithms currently available
in the literature in terms of accuracy, even with the presence
of nonuniform node distribution or radiation irregularities.
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Figure 15: Proposed algorithm’s NRMSE versus anchors’ placements in C-, W-, and S-shaped network topologies in 2D and 3D cases.
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Figure 16: Localization NRMSE with𝑁
𝑎
= 20 assuming nonuniform nodes’ deployment in C-, W-, and S-shaped network topologies in 2D

and 3D cases.
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Figure 17: Localization NRMSE versus DOI with𝑁 = 200 and𝑁
𝑎
= 20 in C-, W-, and S-shaped network topologies in 2D and 3D cases.
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