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Abstract—In this paper, we propose a novel low-cost local-
ization algorithm tailored for multihop heterogeneous wireless
sensor networks (HWSNs) where nodes’ transmission capabili-
ties are different. This characteristic, if not taken into account
when designing the localization algorithm, may severely hinder
its accuracy. Assuming different nodes’ transmission capabilities,
we develop two different approaches to derive the expected hop
progress (EHP). Exploiting the latter, we propose a localization
algorithm that is able to accurately locate the sensor nodes owing
to a new low-cost implementation. Furthermore, we develop a cor-
rection mechanism, which complies with the heterogeneous nature
of wireless sensor networks (WSNs) to further improve localiza-
tion accuracy without incurring any additional costs. Simulations
results show that the proposed algorithm, whether applied with or
without correction, outperforms in accuracy the most representa-
tive WSN localization algorithms.

Index Terms—Heterogeneous wireless sensor networks (WSNs),
multihop, localization, low cost, energy harvesting (EH), (EH-
WSNs), expected hop progress (EHP).

I. INTRODUCTION

R ECENT advances in wireless communications and low-
power circuits technologies have led to proliferation of

wireless sensor networks (WSNs). A WSN is a set of small and
low-cost sensor nodes often equipped with small batteries. The
latter are often deployed in a random fashion to sense or collect
from the surrounding environments some physical phenomena
such as temperature, light, pressure, etc. [1]–[4]. Since power
is a scarce resource in such networks, sensor nodes usually
recur to multi-hop transmission in order to send their gathered
data to an access point (AP). However, the received data at
the latter are often fully or partially meaningless if the loca-
tion from where they have been measured is unknown [5]–[7],
making the nodes’ localization an essential task in multi-hop
WSNs. Owing to the low-cost requirements of WSNs, uncon-
ventional paradigms in localization must yet be investigated.
Many interesting solutions exist in the literature [8]–[36]. To
properly localize each regular or position-unaware node, most
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of these algorithms require the distance between the latter and at
least three position-aware nodes called hereafter anchors. Since
it is very likely in multi-hop WSNs that some regular nodes be
unable to directly communicate with all anchors, the distance
between each anchor-regular nodes pair is usually estimated
using their shortest path. The latter is obtained by summing the
distances between any consecutive intermediate nodes located
on the shortest path between the two nodes. Depending on the
process used to estimate these distances, localization algorithms
may fall into three categories: measurement-based, heuristic,
and analytical [8]–[36].

Measurement-based algorithms exploit the measurements of
the received signals’ characteristics such as the received sig-
nal strength (RSS) [8]–[9] or the time of arrival (TOA) [11],
etc. Using the RSS measurement, the distance between any
sensors’ pair could be obtained by converting the power loss
due to propagation from a sensor to another based on some
propagation laws. Unfortunately, due to the probable presence
of noise and interference, the distance’s estimate would be
far from being accurate, thereby leading to unreliable local-
ization accuracy. Using the TOA measurement, nodes require
high-resolution clocks and extremely accurate synchronization
between them. While the first requirement may dramatically
increase the cost and the size of sensor nodes, the second results
in severe depletion of their power due to the additional over-
head required by such a process. Furthermore, in the presence
of noise and/or multipath, the TOA measurement is severely
affected thereby hindering nodes’ localization accuracy. As
far as heuristic algorithms [12]–[14] are concerned, they also
have a major drawback. Indeed, most of these algorithms are
based on variations of DV-HOP [12] whose implementation
in multi-hop WSNs requires a correction factor derived in a
non-localized manner and broadcasted in the network by each
anchor. This causes an undesired prohibitive overhead and
power consumption, thereby increasing the overall cost of the
network.

Popular alternatives, more suitable for multi-hop WSNs, are
the analytical algorithms [15]–[36] which evaluate theoretically
the distance between any two consecutive intermediate nodes.
The latter is in fact locally computable at each node, thereby
avoiding unnecessary costs incurred if it is fully or partially
computed at other nodes and then broadcasted in the network,
such as in heuristic algorithms. In spite of their valuable contri-
butions, the approaches developed so far in [15]–[36] to derive
that distance are based on the unrealistic assumption that all
nodes have the same transmission capabilities (i.e., the WSN
is homogenous). However, due to the fact that these sensor
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nodes are designed using various technologies to achieve dif-
ferent tasks, their sensing as well as transmission capabilities
are very-often different. Furthermore, if an energy harvesting
(EH) technology is locally integrated at each node, which is the
case in the most recently developed WSNs referred to hereafter
as EH-WSNs [38]–[42], the available harvested power at nodes
would then be random. This phenomenon actually results in
the randomization of the nodes’ transmission capabilities, since
the latters are closely related to the nodes’ available powers.
During the localization process, it is then very likely that nodes’
transmission capabilities be different. As the approaches in
[15]–[36] assume the same transmission capability throughout
the network, their localization accuracy substantially deterio-
rates in the so-called heterogeneous WSNs (HWSNs) making
them unsuitable for such networks. To the best of our knowl-
edge, there is no analytical algorithm that accounts so far for
the heterogeneous nature of WSNs.

To bridge this gap, we propose in this paper a novel ana-
lytical algorithm tailored for multi-hop HWSNs where nodes
have different transmission capabilities. Taking into account
this characteristic, two approaches are developed to accurately
derive the distances between any consecutive nodes. Using
the so-obtained distances, the proposed algorithm is able to
accurately locate the nodes owing to a new low-cost implemen-
tation. Furthermore, we develop a correction mechanism which
complies with the heterogeneous nature of WSNs to further
improve localization accuracy without incurring any additional
costs. Simulations results show that the proposed algorithm,
whether applied with or without correction, outperforms in
accuracy the most representative multi-hop WSNs localization
algorithms.

The rest of this paper is organized as follows: Section II
describes the system model and discusses the motivation of
this work. Section III derives the distance between consecutive
sensors using two approaches. A novel localization algorithm
for HWSNs is proposed in section IV. Its implementation cost
is discussed in Section VI. Simulation results are discussed in
Section VII and concluding remarks are made in section VIII.

Notation: Uppercase and lowercase bold letters denote matri-
ces and vectors, respectively. [·]il and [·]i are the (i, l)-th entry
of a matrix and i-th entry of a vector, respectively. I is the iden-
tity matrix. (·)T denotes the transpose. D (i, x) denotes the disc
having the i-th sensor as a center and x as a radius.

II. NETWORK MODEL AND OVERVIEW

Fig. 1 illustrates the system model of N sensor nodes uni-
formly deployed in a 2-D square area S. The transmission
coverage of each node is assumed to be circular, i.e., the
i-th node could directly communicate with any node located in
D (i, T ci ), the disc having this node as a center and its transmis-
sion capability T ci as a radius [37]. In a multi-hop transmission,
note that the i-th node could also communicate with any node
located outside its coverage area D (i, T ci ). Due to the het-
erogonous nature of WSNs, nodes are assumed here to have
different transmission capabilities. It is also assumed that only
a few nodes commonly known as anchors are aware of their
positions. The other nodes, called hereafter position-unaware

Fig. 1. Network model.

Fig. 2. Multi-hop transmission.

or regular nodes for the sake of simplicity, are oblivious to
this information. As shown in Fig. 1, the anchors are marked
with red squares and the regular nodes are marked with blue
crosses. If a node is located within the coverage area of an
another node, the two nodes are linked with a dashed line
that represents one hop. Three discs were drawn as few illus-
trative examples of the coverage areas of the corresponding
nodes. Let Na and Nu = N − Na denote the number of anchors
and regular nodes, respectively. Without loss of generality, let
(xi , yi ) , i = 1, . . . , Na be the coordinates of the anchors and
(xi , yi ) , i = Na + 1, . . . , N those of the regular nodes.

As a first step of any localization algorithm for multi-hop
WSNs aiming to estimate the regular nodes’ positions, the k-th
anchor broadcasts through the network a message containing its
position. As it can be seen in Fig. 2, if the (i − Na)-th regular
node (or the i-th node) is located outside the anchor coverage
area, it receives this message through multi-hop transmission.
For simplicity, let us assume that only one intermediate node j
located over the shortest path between the k-th anchor and the
i-th node is necessary (i.e., two-hop transmission). Assuming a
high node density in the network, the distance dk−i between the
two nodes can be accurately approximated as [15]–[36]

dk−i � dk− j + d j−i , (1)
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Fig. 3. Node’s neighborhood in HWSN.

where dk− j (d j−i ) is the effective distance between the k-th
(i-th) and j-th nodes. Two methods have been so far devel-
oped to analytically estimate the distance dk−i exploiting the
aforementioned approximation [15]–[36]. In the first method,
the j-th node estimates the distance dk− j using the number
of common neighbors with the k-th node. In fact, if nkj com-
mon neighbors exist in the intersection area I = D(k, T ck) ∩
D( j, T c j ), I could be approximated by Î = nkjλ

−1 where λ =
N/S is the average node density in the network. Furthermore,
using some geometrical properties, one can show that

I = f (dk− j ) = T c2
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k
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− 1
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√
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)2
.

(2)

dk− j is then obtained as dk− j = f −1 (I ) � f −1
(
nk− jλ

−1
)
.

Since it is impossible to derive f −1 in closed-form, dk− j can be
numerically derived using for instance the well-known secant
method. The problem here is that the j-th node needs to be
aware of nkj to be able to estimate the area I . To this end, the
k-th and j-th nodes broadcast a “Hello” message that will be
sent back by their respective neighbors. Upon reception of the
k-th node neighbors’ list, the j-th node compares it with its
own neighbors’ list and, hence, nkj is obtained. Unfortunately,
it is no longer possible to get an exact knowledge of nkj in
HWSNs. Indeed, in such networks, it is very likely that the
neighbor of a node has a different transmission capability from
the latter. Thus, as shown in Fig. 3, some “Hello” messages sent
back by some respective neighbors of the k-th and j-th node
would not reach the latter nodes, due to their weaker capabil-
ities. Consequently, the j-th node obtains n̂k j ≤ nkj leading,
hence, to inaccurate distance estimation. Note that this discus-
sion also holds for d j−i . This proves that this first analytical
method is not suitable for HWSNs.

The second method uses the fact that the minimum mean
square error (MMSE) of the distance estimation is obtained if
d̂ = E (d) and, hence,

d̂k−i � d̄k− j + d̄ j−i , (3)

where d̄k− j = E
{
dk− j

}
is the expected hop progress (EHP)

and d̄ j−i = E
{
d j−i

}
is the mean last hop (MLH). One of the

well-known analytical expressions of EHP is the one developed
in [23] as follows:

d̄k− j =
√

3λ
∫ T ck

0
x2e−

1
3λπ

(
T c2

k−x2
)
dx, (4)

where λ is the node density, and x is the distance between the
k-th and the i-th node. From (4), the EHP a priori depends only
on the k-th node transmission capability T ck and, therefore,
its computation does not supposedly require any knowledge
of the j-th node transmission capability T c j . In what follows,
and in contrast to (4), we will prove the EHP expression to be
dependent on both T ck and T c j thereby revealing the expres-
sion derived in [23], as one example among too many others
[20]–[28] whose approaches are similar to the above but not
discussed here for lack of space, to lack accuracy.

Let F be the potential forwarding area wherein the intermedi-
ate node j could be located. Since this node should, at the same
time, be located in the k-th node coverage area and communi-
cate directly with the i-th node using its transmission capability
T c j , F is given by

F = D(k, T ck) ∩ D(i, T c j ). (5)

It is noteworthy that the EHP is nothing but the mean of all dis-
tances between the k-th node and all the potential intermediate
nodes located in F and, hence, the EHP strongly depends on
F . As can be observed from Fig. 4, if the intermediate node
transmission capability T c j increases, the potential forwarding
area F increases to include potential intermediate nodes closer
to the k-th anchor, thereby decreasing the EHP. Likewise, if
T c j decreases, F decreases to exclude potential intermediate
nodes closer to the k-th anchor and, hence, the EHP increases.
Consequently, the EHP depends not only on T ck , but also on
T c j . Let us now turn our attention to the MLH. It is obvious
that the transmission capability of the i-th node does not have
any effects on the last hop size d j−i . Therefore, in contrast with
the EHP, the MLH depends only on the transmission capability
of the transmitting node j . In the next section, novel approaches
are developed to accurately derive the expressions of both the
MLH and the EHP. These results will be exploited in Section IV
to propose a low-cost localization algorithm that complies with
the heterogeneous nature of WSNs.

III. ANALYTICAL EVALUATION OF THE MLH AND EHP

In this section, expressions of both the MLH and the EHP are
accurately derived. To this end, we consider the same scenario
described in Section II. For the sake of clarity, in what follows,
we denote by X , Y , and Z the random variables that represent
dk−i , d j−i , and dk− j , respectively.
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Fig. 4. Effect of the intermediate node transmission capability.

A. MLH derivation

Since the i-th regular node could be located anywhere in
D( j, T c j ) (the j-th node’s coverage area) with the same proba-
bility, Y can be considered as a uniformly11 distributed random
variable on [0, T c j ]. Therefore, the MLH denoted hereafter by
hlast(T c j ) is given by

hlast(T c j ) =
∫ T c j

0
y fY (y)dy =

∫ T c j

0

y

T c j
dy = T c j

2
, (6)

where fY (y) = 1/T c j is the probability density function (pdf)
of Y .

B. EHP derivation

In order to derive the EHP, one should first compute the
conditional cumulative distribution function (CDF) FZ |X (z) =
P (Z ≤ z|x) of Z with respect to the random variable X . In the
following, two approaches are proposed to derive this CDF.

1) Approach 1: As can be shown from Fig. 5, Z ≤ z is
guaranteed only if there are no nodes in the dashed area A.
Therefore, the conditional CDF FZ |X (z) can be defined as

FZ |X (z) = P (Z ≤ z|x) = P (A0|F1) , (7)

where P (A0|F1) is the probability that the event A0 = {no
nodes in the dashed area A} given F1 = {at least one node in
the potential forwarding area } occurs. Since the nodes are uni-
formly deployed in S, the probability of having K nodes in F

1This assumption is actually made to simplify the analytical derivations,
thereby reducing the computational burden at each node.

Fig. 5. EHP analysis.

follows a Binomial distribution Bin (N , p) where p = F
S . For

relatively large N and small p, it can be readily shown that
Bin (N , p) can be accurately approximated by a Poisson dis-
tribution Pois(λF) [30]. Using the Bayes’ theorem, FZ |X (z)
could be rewritten as

FZ |X (z) = P (F1|A0) P (A0)

P (F1)
, (8)

and, hence, for a large number of nodes N and small p, we have

FZ |X (z) = e−λA
(
1− e−λB

)
(
1− e−λF

) , (9)

where B = F − A. In the equation above, note that we use
the fact that P (F1|A0) is the probability that at least one
node is in B. As can be observed from (9), when z = α
where α = x − T c j , we have B = 0 and A = F and, therefore,
FZ |X (z) = 0. This is expected since all potential intermediate
nodes are located in the forwarding zone F where any node is
at least at distance α from the k-th node (i.e., P(Z ≤ α) = 0).
Furthermore, if z = T ck , it holds that B = F and A = 0 and,
hence, P(Z ≤ T ck) = 1. This is also expected since all poten-
tial intermediate nodes are located in the k-th node’s coverage
area at distance T ck at most from the latter (i.e., P(Z ≤ T ck) =
1). It should be noticed here that the properties above are not
satisfied by any previously developed CDF expressions such as
those in [23]–[24].

Using some geometrical properties and trigonometric trans-
formations, one can readily show that

F = T c2
k

(
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2

)
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j
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′
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2
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B = z2
(
θz − sin(2θz)

2

)
+ T c2

j

(
θ
′
z −

sin(2θ
′
z)

2

)
, (11)
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Fig. 6. Effect of the k-th node transmission capability on the EHP.

Fig. 7. Effect of the intermediate node transmission capability on the EHP.

Finally, the EHP h(T ck, T c j ) between the k-th and j-th nodes
can be derived as

h(T ck, T c j ) = Ex

(
αHZ |X (α)+

∫ T ck

α

HZ |X (z)dz

)

=
∫ T ck+T c j

T ck

(
αHZ |X (α)+

∫ T ck

α

HZ |X (z)dz

)
fX (x)dx,

(12)

where HZ |X (z) = 1− FZ |X (z) and fX (x) is the pdf of X . Note
that the latter can be considered as a Uniform1 random variable
over

[
T ck, T ck + T c j

]
and, hence, fX (x) can be substituted

there by 1/T c j . To the best of our knowledge, a closed-
form expression for the EHP in (12) does not exist. However,
h(T ck, T c j ) can be easily implemented since it depends on
finite integrals. As can be observed from (12), the proposed
EHP depends on both T ck and T c j . Such extremely important
and crucial features in HWSNs no longer hold true for the previ-
ously proposed EHPs, such as in (4), which are only dependent
on the sender node’s transmission capability. It can be shown
from Figs. 6 and 7 that the so-obtained EHP decreases if T c j

increases while it increases when T ck increases. This collabo-
rates the discussion made above. These figures also show that
the proposed EHP above increases with the node density. This
is expected since it is very likely that the per-hop distance
increases when the number of nodes located in F increases if, of
course, both T ck and T c j are fixed. Therefore, the so-obtained
EHP expression is more accurate than those developed so far
and, hence, should allow more accurate distance estimation and
more reliable localization as will be shown next.

2) Approach 2: The main issue with the approach devel-
oped above is that it holds only when the number of nodes N is
sufficiently large and the area F is much smaller than the net-
work size. Since N is typically large in the context of WSNs,
the first condition is very likely to be satisfied. Unfortunately,
the second condition cannot be always guaranteed, especially
when the transmission capabilities T ck and T c j are not small
enough. Indeed, in such a case F is very likely to be large and,
hence, the EHP derived using the above CDF is no longer accu-
rate. In this section, we propose another approach aiming to
derive this CDF for any N , T ck and T c j .

Let us assume that M potential intermediate nodes exist
between the i-th and k-th nodes, or, in other words, M potential
positions of the intermediate node j exist in F . Let Zm be the
random variable that represents the distance between the k-th
node and the m-th potential intermediate node. Thus, one can
define FZ |X (z) as follows

FZ |X (z) = P (Z1 ≤ z ∩ Z2 ≤ z, . . . ,∩Z M ≤ z) . (13)

Using the fact that Zm,m = 1, . . . ,M are independently and
identically distributed (i.i.d) random variables, we obtain

FZ |X (z) = P (Zm ≤ z)M . (14)

As can be observed from Fig. 5, in order to satisfy Zm ≤ z, the
m-th intermediate node should be located in the area B and,
hence,

FZm |X (z) = P (Zm ≤ z|x) = P (E2) , (15)

where P(E2) is the probability that the event E2 = {the
m-th intermediate node is located in B} occurs. Since the nodes
distribution is assumed to be uniform, the m-th intermediate
node could be located anywhere in F with the same probabil-
ity. Therefore, the probability that this node is located in any
area � ⊂ F is nothing but the ratio of � to F . Consequently,
FZ |X (z) is given by

FZ |X (z) =
(

1− A

F

)M

. (16)

Using similar steps to derive A, it can be shown that

F = T c2
k

(
θ − sin(2θ)

2

)
+ T c2

j

(
θ
′ − sin(2θ

′
)

2

)
, (17)

where A is obtained by subtracting (11) from (10). Finally, the
EHP is derived by substituting (16) in (12). By avoiding the
Binomial-to-Poisson approximation exploited in Approach 1,
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the obtained EHP using Approach 2 is then valid for any N , T ck

and T c j and, hence, it is more likely to be accurate than that
developed in Section III-B1. However, the main drawback of
Approach 2 is that the EHP depends on the number of potential
intermediate nodes M which should be determined by train-
ing, i.e., at additional overhead and power costs with respect
to Approach 1. Therefore, the latter should be employed when
the power and overhead costs’ restrictions are severe while
Approach 2, which performs better as will be verified later by
simulations in Section VII, should be used if these restrictions
are alleviated.

In the next section, based on the so-obtained EHP and
MLH expressions, we propose a novel localization algo-
rithm suitable for HWSNs where nodes have different range
capabilities.

IV. PROPOSED LOCALIZATION FOR HWSNS

In this section, we propose a novel three-step localization
algorithm for HWSNs. In the first step, the regular nodes
receive in a multi-hop fashion all the information required to
estimate their respective positions while, in the second step,
they compute an initial guess exploiting one of the two EHP
expressions developed above. In the third and last step, a cor-
rection mechanism is locally performed at each node, in order
to further minimize the incurred localization errors. These three
steps will be further detailed in the sequel.

A. Initialization

In this step, the k-th anchor starts by broadcasting through
the network a packet which consists of a header followed by
a data payload. The packet header contains the anchor posi-
tion (xk, yk), while the data payload contains (T ck, d̂k), where
T ck is the transmission capability of the k-th anchor and d̂k is
the estimated distance initialized to zero. If the packet is suc-
cessfully received by a node, the latter estimates the EHP using
either Approach 1 or 2 above, adds it to d̂k , stores the resulting
value in its database and then, rebroadcasts the resulting packet
after substituting T ck by its own transmission capability. Once
this packet is received by another node, its database informa-
tion is checked. If the k-th anchor information exists and the
stored estimated distance is larger than that of the received one,
the node updates the k-th anchor’s information, then broadcasts
the resulting packet after substituting the received transmis-
sion capability by its own. Otherwise, the node discards the
received packet. However, when the node is oblivious to the
k-th anchor position, it adds this information to its database
and forwards the received packet after substituting the received
transmission capability by its own. This mechanism will con-
tinue until each regular node in the network becomes aware of
each anchor position as well as the distance from the latter to
the last intermediate node before reaching that node. Note that
the implementation of the proposed algorithm requires that each
node broadcasts the anchor information not only with its esti-
mated distance but also its transmission capability to allow the
EHP computation at the next receiving node. In contrast, the

implementation of existing algorithms in HWSNs requires the
broadcast of the anchor information and the estimated distance
only. Yet we will prove next in Section VI that the additional
power cost that could be incurred a priori when broadcasting the
transmission capabilities can be easily avoided by the proposed
algorithm.

B. Positions’ computation

In this section, we will show how the so-received informa-
tion can be exploited to get an initial guess of each regular node
position. Using its available information, the (i − Na)-th regu-
lar node (or the i-th node) computes an estimate of its distance
to the k-th anchor as

d̂k−i = d̂k + hlast(T ck+L), (18)

where

d̂k =
k+L−1∑

l=k

h (T cl , T cl+1) , (19)

is the distance from the k-th anchor to the last intermediate
node. In (18) and (19), we assume for simplicity, yet without
loss of generality, that L intermediate nodes exist over the short-
est path between the k-th anchor and the (i − Na)-th regular
node and that the l-th intermediate node is the (k + l)-th node.
Using its estimated distances to the Na anchors as well as the
latters’ coordinates, the position of the (i − Na)-th regular node
could be obtained by multilateration [45].

Unfortunately, errors are expected to occur when estimating
the distance between each regular node-anchor pair, thereby
hindering localization accuracy. As a third step of our pro-
posed algorithm, we propose a correction mechanism aiming
to reduce this error.

C. Correction mechanism

Let εki denote the estimation error of the distance between
the k-th anchor and the i-th regular node as

εki = d̂k−i − dk−i , (20)

where dk−i is the true distance between the two nodes. As dis-
cussed above, this error hinders localization accuracy. As such,
we have {

xi = x̂i + δxi

yi = ŷi + δyi

, (21)

where δxi and δyi are the location coordinates’ errors to be
determined. Exploiting the Taylor series expansion and retain-
ing the first two terms, the following approximation holds:

dk−i � d̃k−i + ψkiδxi + φkiδyi , (22)

where

d̃k−i =
√
(x̂i − xk)

2 − (ŷi − yk)
2, (23)
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and

ψki = ∂ d̃k−i

∂x

∣∣∣∣
x̂i ,ŷi

= x̂i − xk√
(x̂i − xk)

2 − (ŷi − yk)
2
= x̂i − xk

d̃k−i
,

(24)

φki = ∂ d̃k−i

∂y

∣∣∣∣
x̂i ,ŷi

= ŷi − yk√
(x̂i − xk)

2 − (ŷi − yk)
2
= ŷi − yk

d̃k−i
,

(25)

for k = 1, 2, . . . , Na . Note that d̃k−i is different from d̂k−i

due to the error incurred by multilateration [45]. Therefore,
rewriting (22) in a matrix form yields

�iδi = ζ i − εi , (26)

where � is a Na × 2 matrix with

[�i ]k1 = ψki , [�i ]k2 = φki , (27)

and

ζ i =
[

d̂i−1 − d̃i−1 d̂i−2 − d̃i−2 . . . d̂i−Na − d̃i−Na

]T
,

(28)

εi = [ε1i , ε2i , . . . , εNai ]T , and δi = [δxi , δyi ]
T .

Algorithm 1. Proposed algorithm for every nodes

Input: Number of anchors Na , and their positions (xk, yk),
where k = 1, . . . , Na , as well as their transmission capa-
bilites
for i = 1→ Na do

d̂k−i ← using Approach 1 or 2 (Section III)
end for
x̂i , ŷi ←Multilateration

δi =
(
�T

i P−1
i �i

)−1
�T

i P−1
i ζ i ← Eq. (29)

xi ← x̂i + δx ;
yi ← ŷi + δy;

while δi ≥ 0 do
x̂i ← xi ;
ŷi ← yi ;
Recalculate |δi | ← Eq. (29)
xi ← x̂i + δx ;
yi ← ŷi + δy;

end while
Output (xi , yi ) � Estimated position of the i-th node

Many methods such as the weighted least squares (WLS)
might be used to properly derive δi . Using WLS, the solution
of (26) is given by :

δi =
(
�T

i P−1
i �i

)−1
�T

i P−1
i ζ i , (29)

where Pi is the covariance matrix of εi . Since εki k =
1, . . . , Na are independent random variables, Pi boils down to
diag {σ 2

1i , . . . , σ
2
Nai }where σ 2

ki is the variance of εki . A straight-
forward inspection of (29) reveals that δi depends on some

Fig. 8. Convergence of |δ| vs. the number of iterations.

locally available information as well as all σ 2
ki , k = 1, . . . , Na .

Yet we will show in what follows that the derivation of σ 2
ki , k =

1, . . . , Na requires a negligible additional power cost that could
be easily avoided. Once we get δi , the value of (x̂i , ŷi ) is
updated as x̂i = x̂i + δxi and ŷi = ŷi + δyi . The computations
are repeated until |δi | approaches zero. In such a case, we
have from (21) that xi � x̂i and yi � ŷi and, hence, more
accurate localization is performed. As can be observed from
Fig. 8, the proposed correction mechanism converges after 5
iterations at most. Nevertheless, we will prove in Section VI
that the proposed algorithm perfectly tailored for HWSNs,
and whose pseudocode implementable at each node is sum-
marized in Algorithm 1, does not burden the overall cost of
the WSN.

V. VARIANCE EVALUATION

This section aims to derive the expression of the vari-
ances σ 2

ki , k = 1, . . . , Na which are required for the proposed
algorithm’s implementation. As such, two different methods,
analytical and non-parametric, are proposed.

A. Analytical method

Assuming a high node density in the network, the distance
dk−i between two nodes can be rewritten as

dk−i �
k+L∑
l=k

dl−(l+1), (30)
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where L is the number of intermediate nodes over the short-
est path and dl−(l+1) is the distance between the l-th and
(l + 1)-th intermediate node. It follows from (18) and (30) that
the distance estimation error (DER) εki is given by

εki �
k+L−1∑

l=k

el + elast, (31)

with el = h (T cl , T cl+1)− dl−(l+1) being the error incurred
during the (l − k + 1)-th hop and elast = hlast(T ck+L)−
d(k+L)−i the error incurred at the last hop. It can be readily
shown from (31) that σ 2

ki =
∑k+L−1

l=k σ 2
l + σlast

2 where σ 2
l and

σlast
2 are the variances of el and elast, respectively. Using the

results developed in Section III, we obtain

σlast
2 = T c2

(k+L)

12
, (32)

and

σl
2 =

∫ T cl+T cl+1

T cl

(
α2 H(α)+ 2

∫ T cl

α

zH(z)dz

)
fX (x) dx

−
(∫ T cl+T cl+1

T cl

(
αH(α)+

∫ T cl

α

H(z)dz

)
fX (x) dx

)2

.

(33)

Note that σl
2 could be obtained using any of the CDFs devel-

oped in Section III-B. As can be observed from (32) and (33),
σlast

2 is locally computable by the i-th node while σl
2 should

be computed at the (l + 1)-th intermediate node, added to the
term

∑l−1
m=k σ

2
m , then forwarded to the next intermediate node.

This results in additional few bits that must be transmitted by
each node in the network. In what follows, we will prove that
the additional power cost that could be incurred a priori when
transmitting σl can be easily avoided by the proposed algorithm.

B. Non-parametric method

In the previous section, the analytical expression of σ 2
ki was

derived using the approximation in (30) which holds only for
highly dense networks. However, if this assumption is not
satisfied (i.e., lowly dense network), (30) would no longer
be valid and, hence, σ 2

ki ’s expression would no longer be
accurate enough. In such a case, to properly derive σ 2

ki , we
propose to exploit the PDF of the DER εki denoted by f (ε).
Unfortunately, to the best of our knowledge, there is no closed
form solution for such a PDF. In this work, we propose to
use a non-parametric technique to estimate it owing to some
potential observations available at anchors. So far, many non-
parametric techniques have been proposed in the literature such
as the histogram [49] and the well-known kernel density esti-
mation (KDE) [50] techniques. In this paper, we are only
concerned by the latter which can estimate an arbitrary distri-
bution without much observations. Such observations can in
fact be easily obtained at the k-th anchor. Indeed, since this
anchor is aware of all other anchor positions, it is able to derive
the actual distances between it and the latters. Using (18), the

k-th anchor could also obtain the estimated distances between
it and the other anchors and, therefore, derive εki . Hence, if
Na anchors exist in the network, the total number of available
observations is no = Na (Na − 1). Let ε1, ε2, . . . , εno denote
such observations. Using the KDE technique, f (ε) can be then
approximated by

f̂ (ε) = 1

psε

no∑
t=1

K

(
ε − εt

sε

)
, (34)

where sε is a smoothing parameter determined using the method
in [51] and K (ε) is the Gaussian kernel given by

K (ε) = 1√
2π

exp

(
−1

2
ε2

)
. (35)

As can be noticed from (34) and (35), the estimated PDF is
computed by averaging the Gaussian density over all observa-
tions. Substituting (35) in (34) and using the resulting PDF to
compute σ 2

ki yields

σ 2
ki =

∑no
t=1

(
Xt Gt − Y 2

t

)
∑no

t=1 G2
t

, (36)

where

Xt =
(

s2
ε + ε2

i

)
Gt − s2

ε

(
(εt + 1) e

− (1−εt )2
2s2
ε

+ (εt − 1) e
− (1+εt )2

2s2
ε

)
, (37)

Gt = sε
√

2π

(
Q

(
εt − 1

sε

)
− Q

(
εt + 1

sε

))
, (38)

and

Yt = εt Gt − s2
ε

[
e
− (1−εt )2

2s2
ε − e

− (1+εt )2
2s2
ε

]
, (39)

with Q(x) being the Q-function.
Fig. 9 plots the empirical f (ε) as well as f̂ (ε) for different

numbers of anchors. We see there that only a few anchors (i.e.,
few observations) are required to accurately estimate the local-
ization errors’ PDF. Furthermore, from Fig. 9, the estimated
PDF approaches the empirical one, as Na increases. This gives
a sanity check for the proposed nonparametric method.

Nevertheless, in order to derive σ 2
ki using this approach,

each regular node needs to be aware of all observations. If
this is not properly done, it will be very expensive in terms of
power consumption, since each anchor would recur to a second
broadcast to share its observations with the regular nodes. In
order to circumvent this problem, we propose in what follows
a power-efficient observation sharing protocol where anchors
periodically broadcast their information. In fact, during the first
time slot, only the first anchor should broadcast its own infor-
mation while the (Na − 1) other anchors only execute the tasks
described in Section IV-A. At the second time slot, the sec-
ond anchor derives an estimation error observation using the
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Fig. 9. Estimated DER’s PDF using KDE.

information received from the first anchor, adds it to its packet
and broadcasts the resulting packet in the network. Upon recep-
tion of this information, the rest of anchors derive and store a
second observation. Two observations are then available at the
third anchor which also broadcasts them in the network. This
process will continue until each regular node becomes aware of
a sufficient number of observations. Note that if Na is large
enough so that (Na − 1) observations are sufficient to accu-
rately derive the PDF, only two time slots are required. Indeed,
after the first time slot, (Na − 1) observations are available and
can be simultaneously broadcasted by the (Na − 1) anchors in
the network. In the next section, we will prove that each anchor
could transmit few observations without incurring any power
cost. Fig. 10 plots the error variance for different node densi-
ties. It shows, as expected, that the variance decreases when
the node density increases. Beyond a node density threshold
of less than 0.1, both the analytical and the non-parametric
methods start to yield about the same variance as the empirical
one. Furthermore, when Na increases, more so at large enough
values, the efficiency of the non-parametric method increases
even at low node densities. Note that increasing the number of
anchors Na does not only result in a more accurate variance,
but also in a more reliable localization [12].

VI. PROPOSED ALGORITHM’S IMPLEMENTATION COST

As discussed in Section IV, the Proposed algorithm’s imple-
mentation requires the (i − Na)-th regular node to be able to
compute its coordinates’ initial guess (x̂i , ŷi ) as well as δi

which is used at the position correction step. As discussed
above, since these quantities depend solely on the information
locally available at the (i − Na)-th regular node, their com-
putation does not require any additional overhead or power
cost. Furthermore, from (29), this node must perform matrix-
inversion operations to the matrices ϒϒT and �T

i P−1
i �i in

order to derive (x̂i , ŷi ) and δi , respectively. This kind of
operations which is often highly computationally demand-
ing may significatively increase the overall cost of the WSN.
Nevertheless, since these matrices are 2-by-2, the entries of

Fig. 10. Global variance for different node densities.

their inverses can be analytically and easily derived using the
locally available information at the (i − Na)-th regular. This
proves that the computation of (x̂i , ŷi ) and δi does not bur-
den neither the implementation complexity of the proposed
algorithm nor the overall cost of the WSN. Moreover, some iter-
ations should be repeated, at most 5 times as shown in Fig. 8, to
ensure the convergence of the proposed correction mechanism.
Knowing that the required power to execute one instruction is
in the range of 10−4 of the power consumed per transmitted bit
[46]–[47], the power needed to execute this mechanism is then
very negligible with respect to the overall power consumed by
each node. On the other hand, as discussed in Sections IV and
V, the proposed algorithm’s implementation requires that each
node transmits, upon reception a message from an anchor, its
transmission capability and variance besides to the latter’s coor-
dinates and the distance between the two nodes. This results
in additional few bits, with respect to the existent algorithms,
thereby causing an additional power cost. We will shortly see
below that this cost could be easily avoided.

Let pi be the available power at the i-th node, bi be the length
in bits of the original packet sent when the existing algorithms
are implemented (i.e., packet includes only the anchor’s coordi-
nates and its distance to the i-th node), and ai be the cost in bits
if T ci and σi

2 are added to the packet. If the power pi allows
the i-th node to transmit bi bits over a T ci coverage distance,
this power will also allow the latter node to transmit bi + ai

bits but over a coverage distance T̃ ci < T ci , where T̃ cl is the
new transmission capability of the i-th node. Since no matter
are the transmission capabilities of the i-th node and the previ-
ous intermediate node, this node is always able to compute the
EHP, the fact that T ci decreases to T̃ ci does not affect the per-
formance of the proposed localization algorithm. Therefore, the
additional bits ai could be broadcasted without any additional
power cost.

All the above discussion proves that the proposed localiza-
tion algorithm can be implemented at a low cost. Furthermore,
since it complies with the heterogeneous nature of WSNs
and, further, is power efficient, it could easily find applica-
tion in EH-WSNs where the power is considered as a scarce
resource.
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TABLE I
SIMULATION PARAMETERS

Fig. 11. Empirical PDFs of the DERs achieved by different localization
algorithms.

VII. SIMULATIONS RESULTS

In this section, we evaluate the performance of the proposed
algorithm in terms of localization accuracy by simulations
using Matlab. These simulations are conducted to compare,
under the same network settings, the proposed algorithm with
some of the best representative localization algorithms cur-
rently available in the literature, i.e., DV-Hop [12], LAEP [23]
and EPHP [24]. All simulation results are obtained by aver-
aging over 100 trials. In the simulations, nodes are uniformly
deployed in a 2-D square area S = 100× 100 m2. We always
assume that T ci �= T c j if i �= j and that all transmission capa-
bilities are set between 5 and 30 meters, except in Fig. 12(b)
where the transmission capability Tc = 20 meters is the same
across the network (i.e., homogenous WSN). We also assume
that the number of anchors Na is set to 20. All simulation
parameters are summarized in Table I.

As a performance metric, we propose to adopt both the
distance DER and the normalized root mean square error
(NRMSE) which is defined as and

NRMSE = 1

Nu

Nu∑
i=1

√
(xi − x̂i )

2 + (yi − ŷi )
2

T ci
. (40)

Fig. 11 illustrates the empirical DER’s PDF achieved by
our proposed localization algorithm as well as those achieved
by other well-known algorithms. Since these localization algo-
rithms exploit the distance between each regular node and all
anchors to estimate the coordinates of the latter, the better is
the distance estimation, the more accurate are these localiza-
tion algorithms. As can be shown from this figure, when using

Fig. 12. Localization NRMSE vs. node density in: (a) Heterogenous and
(b) Homogenous WSN.

Approaches 1 or 2, we are able to achieve a narrower PDF cen-
tered around 0, thereby offering unbiased and far-more accurate
distance estimation. This is expected since in contrast to the pre-
vious works, both Approaches 1 and 2 take into account the fact
that different transmission capabilities may coexist as it is the
case in HWSNs.

Fig. 12 plots the localization NRMSE achieved by DV-Hop,
EPHP, LAEP and the proposed algorithm for different node
densities λ in (a) HWSN and (b) Homogenous WSN. From
Fig. 12(a), the proposed algorithm, with or without localiza-
tion correction, always outperforms its counterparts. Indeed,
our proposed algorithm turns out to be until about two, three
and four times more accurate than LAEP, DV-Hop, and EPHP,
respectively. Furthermore, as can be observed from this figure,
the NRMSE achieved by the proposed algorithm significantly
decreases when the node density λ increases while those
achieved by its counterparts slightly decrease then quickly sat-
urate. This is expected since two conflicting phenomena arise
when λ grows large. The first is that the approximation in (30)
becomes more realistic and, hence, more accurate localization
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Fig. 13. Standard deviation vs. node density.

is performed. The second is the increase of the number of dif-
ferent transmission capabilities due to the heterogeneous nature
of WSNs when the node density increases. Since more differ-
ent are the transmission capabilities in the network, worse is
the accuracy of the former algorithms. This explains why their
performance quickly saturates when the node density increases.
The proposed algorithm’s accuracy, in contrast, increases with
λ since it takes into account the difference between the trans-
mission capabilities that is typical of HWSNs. This further
proves the efficiency and suitability of the proposed localization
algorithm to HWSNs. Moreover, from Fig. 12(b), our algorithm
is also the most accurate in homogenous WSNs where the trans-
mission capability is the same across the network. As could be
seen from this figure, although the accuracy gaps between the
proposed algorithm and its counterparts reduces as expected,
the first remains the best algorithm. This is due to the fact that
our EHP accounts for the transmission capabilities of the sender
and receiver nodes, leading thereby to a more accurate localiza-
tion. This is in contrast with DV-Hop, EPHP ans LAEP whose
respective EHPs are derived accounting only for the sender
node’s transmission capability. The last result further proves the
efficiency of our proposed algorithm.

Fig. 13 plots the NRMSE’s standard deviation achieved by all
localization algorithms. As can be observed from this figure, the
one achieved by the proposed algorithm substantially decreases
when the node density increases while those achieved by the
other algorithms slightly decrease. This is due once again to the
fact that the proposed algorithm complies with the heteroge-
neous nature of the WSNs when the former algorithms do not.
Furthermore, the NRMSE standard deviation achieved by the
proposed algorithm using either Approach 1 or 2 approaches
zero. This means that implementing our algorithm in HWSNs
guarantees a very accurate localization for any given realiza-
tion. This result is very interesting in terms of implementation
strategy, since it proves that the result in Fig. 12 becomes
more and more meaningful as λ grows large. Fig. 14 illus-
trates the localization NRMSE’s CDF. Using the proposed
algorithm, 90% (99.5% with Approach 2) of the regular nodes
could estimate their position within almost the fifth of their

Fig. 14. Localization NRMSE’s CDF.

Fig. 15. Localization NRMSE vs. DOI with λ = 0.045.

transmission capabilities. In contrast, 20% of the nodes achieve
the same accuracy with LAEP, about 14% with DV-Hop, and
only 9% with EPHP. This further proves the efficiency of the
proposed localization algorithm.

Fig. 15 plots the localization NRMSE achieved by DV-Hop,
EPHP, LAEP and the proposed algorithm versus the degree
of irregularity (DoI) of the transmission capabilities, when
λ = 0.045. The adopted transmission model in this figure is
the same as in [48]. As could be shown from Fig. 15, the
accuracy of all algorithms deteriorate, as expected, when DoI
increases. However, from this figure, the proposed algorithm
still outperforms its counterparts even in more realistic con-
ditions (i.e., practical transmission model). Furthermore, from
Fig. 15, our algorithm accuracy slowly deteriorates with DoI, in
contrast with its counterparts. This makes it more robust against
such a phenomenon and, hence, more suitable for real-world
conditions’ implementation.

Fig. 16 shows the total number of exchanged packets Npackets
using by the proposed algorithm and its counterparts versus the
node density. As could be seen from this figure, the proposed
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Fig. 16. The total number of exchanged packets Npackets versus the node
density.

algorithm requires the same number of exchanged packets as
LAEP and EPHP while it requires the half packets exchanged
with DV-Hop. This is expected since the three first are ana-
lytical algorithms where the EHP evaluation and, hence, the
position estimation are locally performed at each node after the
initialization step, without requiring any additional information
exchange. This is in contrast with DV-hop whose heuristical
nature imposes a second broadcast from the anchors to assist
regular nodes’ self-localization. This implies that the over-
all power required by our algorithm to transmit and receive
the exchanged packets is the same as that required by LAEP
and EPHP while it is the half of that needed by DV-Hop.
On the other hand, the additional power cost incurred by the
proposed algorithm due to the correction mechanism’s instruc-
tions is negligible and to the few extra bits in each packet
is easily avoidable, as discussed in Section VI. Therefore,
our proposed algorithm incurs almost the same power cost as
LAEP and EPHP while it incurs the half cost of DV-hop. This
proves that although it outperforms in accuracy all its counter-
parts, the proposed algorithm’s implementation almost does not
require any additional power cost, thereby highlighting again its
superiority.

VIII. CONCLUSION

In this paper, a novel low-cost localization algorithm
which accounts for the heterogeneous nature of WSNs was
proposed. Two different approaches were developed to accu-
rately derive the EHP. Using the latter, the proposed algo-
rithm is able to accurately locate the sensor nodes owing
to a new low-cost implementation that avoids any addi-
tional power consumption. Furthermore, a correction mecha-
nism which complies with the heterogeneous nature of WSNs
was developed to further improve localization accuracy with-
out incurring any additional costs. The proposed algorithm,
whether applied with or without correction, is shown to out-
perform in accuracy the most representative WSN localization
algorithms.
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